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Abstract The Beni Bousera peridotite massif and its meta-
morphic surrounding rocks have been analyzed by the fis-
sion track (FT) method. The aim was to determine the
cooling and uplift history of these mantle and associated
crustal rocks after the last major metamorphic event that
dates back to the Lower Miocene–Upper Oligocene time
(∼22–24 Ma). The zircon FT analyses give an average

cooling—i.e., below 320 °C—age of ∼19.5 Ma. In addition,
the apatite FT data give an average cooling—i.e., below
110 °C—age of ∼15.5 Ma. Taking into account the thermal
properties of the different thermochronological systems used
in this work, we have estimated a rate of cooling close to
50 °C/Ma. This cooling rate constrains a denudation rate of
about∼2mmyear−1 from 20 to 15Ma. These results are similar
to those determined in the Ronda peridotite massif of the Betic
Cordilleras documenting that some ultrabasic massifs of the
internal zones of the two segments of the Gibraltar Arc have a
similar evolution. However, Burdigalian sediments occur along
the Betic segment (Alozaina area, western Betic segment)
unconformably overlying peridotite. At this site, ultramafic
rock was exposed to weathering at ages ranging from 20.43
to 15.97 Ma. Since the Beni Bousera peridotite was still at
depth until 15.5 Ma, we infer that no simple age projection
from massif to massif is possible along the Gibraltar Arc.
Moreover, the confined fission track lengths data reveal that a
light warming (∼100 °C) has reheated the massif during the
Late Miocene before the Pliocene–Quaternary tectonic uplift.

Keywords Zircon and apatite fission tracks . Beni Bousera
massif . Peridotite exhumation . Miocene . Rif . Betic
Cordilleras

Introduction

Various segments of the Alpine chains internal zones exhibit
major ultramafic bodies such as those extensively described
in the French and Italian Alps. Along the Betic–Rif–Tell
belts, the Beni Bousera and Ronda massifs border the
Alboran coasts of the western Mediterranean Sea (Fig. 1).
These peridotite massifs and associated rocks recorded a
complex tectonometamorphic history, including high-
temperature–(ultra) high-pressure and low-temperature–
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low-pressure metamorphism. Most often, their exhumation
appears to have been related to a major thinning of the crust
(Garrido et al. 2011; Beslier et al 1990), or a ductile exhu-
mation associated with the post-orogenic extensional pro-
cess (Rossetti et al. 2005).

While in the Alps ss. and the Betic Cordilleras the
latest stages of denudation were investigated by fission
track (FT) thermochronology, this was not yet the case
for their Maghrebian counterparts. We present here the
first FT data obtained for an ultramafic body from the
southern branch of the Gibraltar Arc, the Beni Bousera
massif. The Arc resulted from the Cenozoic collision
between the allochtonous metamorphic terranes of the
Alboran Domain and the African and Iberian plates
(Andrieux et al. 1971; Balanyá and García-Dueñas
1987; Booth-Rea et al. 2007; Vergés and Fernandez
2012). During the Early and Middle Miocene, the re-
gion then underwent a large-scale extensional collapse,
accommodated by thin-skinned fold belts at the periph-
ery of the system and by a coeval subsidence along the
Alboran Sea basin (Martinez-Garcia et al. 2011 and
references therein). The purpose of this work is to
contribute to the time/temperature/pressure history of
the Beni Bousera massif in the frame of the Gibraltar
Arc evolution.

Geological setting

The Rif Chain, which forms the southern branch of the
Gibraltar Arc, extends along the North Africa Maghrebian
coast. The northern branch of this Arc corresponds to the
Betic Cordilleras. Three major zones are usually distinguished
within the Rif chain (Bourgois 1978; Chalouan et al. 2008;
Vergés and Fernandez 2012), the External Rif, the Flysch units,
and the Internal Rif (Fig. 1). The External Rif nappes aremainly
composed of sediments deposited along the North African
paleomargin during the Mesozoic and the Cenozoic. These
rocks exhibit a thin-skinned tectonic style associated locally to
a low-grade metamorphism (Andrieux 1971; Frizon de
Lamotte 1985; Michard et al. 1992; Asebriy 1994; Asebriy et
al. 2003; Azdimousa et al. 1998, 2007; Negro et al. 2006;
Booth-Rea et al. 2012).

The Flysch units, also known as Maghrebian Flyschs, orig-
inate from the Ligurian–Maghrebian Ocean that connected the
Central Atlantic and Alpine Oceans during the Jurassic to the
Paleogene times (Durand-Delga and Fontboté 1980; Bouillin
1986; Vergés and Fernandez 2012). These nappes, which mark
a suture zone, root beneath the internal zones and overlie the
external zones. During the Miocene, part of the Flysch nappes
was back-thrusted onto the northern internal zones (Bourgois
1977, 1978; Comas et al 1992; Martinez-Garcia et al. 2013).
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The Internal Rif units form part of the Alboran Domain
(Andrieux 1971; Balanyá and Garcia-Dueñas 1987). They
were interpreted as part of allochthonous terranes thrusting
over the Flysch units that, in turn, thrust over the External Rif.

It was proposed that the original paleogeographical loca-
tion of the internal zones was close to the Kabylian,
Peloritanes, and Calabrian internal zones (Wildi 1983;
Bouillin 1986; Chalouan 1986). The internal zones of the
Betic Cordilleras, as those of Algeria and Italy, were previ-
ously proposed as originating from a block detached from
northern Africa (Bourgois 1980a, b).

In the studied area (Fig. 2), the Internal Rif exhibits two
major tectonic complexes. From base to top, it includes the

Sebtide Complex and the Ghomaride nappes. The Ghomaride
nappes include Paleozoic sequences structured and metamor-
phosed during the Variscan orogeny as were the deepest units
along the Betic Complex (Gomez-Pugnaire et al. 2012); they
are covered by thin remnants of Mesozoic and Cenozoic non-
metamorphic rocks (Kornprobst 1969, 1974; Chalouan 1986).
Two units were recognized in the Sebtide Complex, the Upper
Sebtides, also known as the Federico Units (Milliard 1959),
including Carboniferous to Triassic metamorphic rocks
(Michard et al. 1983; Bouybaouene 1993) and the Lower
Sebtides. The Beni Bousera ultramafic rocks of the Lower
Sebtide units exhibit envelopes including, from top to bottom,
medium- to high-grade micaschists, gneisses, and kinzigites.
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Fig. 2 a Simplified geological map of the Beni Bousera massif show-
ing the location of the sampling sites and the location of the cross
section of b. Note that the Beni Bousera massif exhibits an antiformal
structure showing envelopes including kinzigite, gneiss, micaschist,
and very low-grade metamorphic rock of the Ghomarides nappes from
base to top. b General cross section of the Beni Bousera massif,
location on a. Note the truncation of lower envelopes of the peridotites

in relation with the Ras Aarabene normal fault extending along the
northern side of the massif. Also note that no significant age variation
exists with rock facies, see text for details. F Federico unit, G gneiss,
Gh Ghomaride nappes, K kinzigite, M micaschists, P peridotite, PP
mylonitized zone (pseudoperidotite and serpentinized breaches), Ri
sample. Black squares sterile samples. c Column showing the succes-
sion of major facies exposed in the Beni Bousera area
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The age of these rocks emplacement has been strongly
discussed. Kornprobst (1974) proposed that it occurred during
Hercynian or older times. Subsequently, Loomis (1975), Polvé
(1983), Michard et al. (1983), and Garrido et al. (2011) inferred
these rocks to be related to the opening of the Alboran Sea
during the Oligocene–Lower Miocene times, about 27–21 Ma
ago. Using the SHRIMP U-Pb dating technique on zircon,
Rossetti et al. (2010) and U–Th–Pb electron microprobe dating
on monazite of kinzigites (Montel et al. 2000) documented that
the high temperature emplacement of the Beni Bousera perido-
tite occurred during the Hercynian time. The accordant contact
between the peridotite and its kinzigitic envelope, underlined
by a mylonite zone and serpentinized breccias, is presumably
pre-Alpine in age.

The Beni Bousera massif exhibits lherzolites, harzburgites,
dunites, and pyroxenites (Kornprobst 1974; El Maz 1989).
Subsequently, leptynite and granite dykes were injected into
the peridotites and their surrounding metamorphic cover.
Bouybaouene (1993) and Bouybaouene et al. (1995, 1998)
describe a HP-LT metamorphism of Alpine age involving the
Sebtides rocks similar to the one affecting the Alpujarrides in
the Betic chain (Goffé et al. 1989; Tubia and Gil Ibarguchi
1991). This HP-LT metamorphism of rocks covering the peri-
dotites and the associated mineral assemblages were
transformed by a subsequent HT metamorphism, which oc-
curred during the Oligocene–Early Miocene times (Michard
et al. 1983; Blichert-Toft et al. 1999; Platt et al. 2003a;
Garrido et al. 2011). Fluid circulations are associated with these
late thermal events that induced a serpentinization and a
kelyphytization at the top of the peridotite bodies along the
mylonitized zone. This HT metamorphism was related to the
Oligo-Miocene extensional phase that produced the Alboran
Basin (Platt and Vissers 1989; Platt et al. 2003a; Garrido et al.
2011).

The Beni Bousera ultramafic massif and associated meta-
morphic envelopes (Fig. 2) exhibit a NW–SE trending dome
(Milliard 1959; Kornprobst 1974; Michard et al. 1983).
According to Reuber et al. (1982), the intensity of ductile
deformation increases toward the peridotites body.
Moreover, a stretching lineation is observed in the peridotites
with trends ranging from NNW–SSE to NW–SE, although
NE–SW trends within the kinzigites or N–S trends in the
Federico units were also documented. Isoclinal folds with
hinges subparallel to this stretching lineation have been de-
scribed (Saddiqi 1995; Draoui et al. 1995). The deformation
that generated these folds and lineations was associated with
simple shear zones exhibiting a top-to-the NNW sense of
movement. Brittle deformations are also recognized in the
area. On the other side, the main foliation trajectories in
peridotites and their overlying crustal units show a systematic
rotation toward their mutual contact, indicating a kilometer-
scale top to the NW shearing with a dextral component along
this crust/mantle contact (Afiri et al. 2011). The low-angle

fault bounding the base of the Lower Ghomarides nappe cuts
the lower levels of the underlying Sebtides toward the east.

There are two sets of normal faults bounding the perido-
tite massif. It includes faults parallel to the coastline and a
conjugate set of N–S trending faults. The largest of these
two faults sets bounds the NE limb of the peridotite dome. It
is a high-angle normal fault trending NW–SE that dips
seaward toward the northeast. This fault cuts across the
internal zone nappe pile including the Sebtides and
Ghomarides nappes in the Ras Aarabene area (Fig. 2).
Moreover, geophysical models show that the Beni Bousera
peridotite branches downward to the mantle (Demnati
1972).

Thermochronometric analysis

Fission track analysis

Twenty-five samples were collected in the Beni Bousera
peridotite massif and mainly in its metamorphic envelopes,
at elevations ranging from sea level to 1,000 m (Fig. 2).
About 3 kg of each rock was crushed. The 80–125-μm-size
range was selected for apatite and zircon individual sorting
under a stereomicroscope (×20). Thirteen samples have
provided enough apatite for dating them. Only four of these
13 samples have provided zircon allowing us to obtain ages.
Twelve other samples were found to be sterile (Fig. 2). We
assume that the absence of apatite in these samples is related
to the extreme abundance of sillimanite. Indeed, the silli-
manite has many physical characteristics similar to those of
apatite, including the 3.2 density—close to the 3.1 apatite
density—the non-fluorescent luminescence, and the trans-
parent to translucent diaphaneity.

The powders Ri11314, Ri5051, Ri356, Ri78, Ri16, Ri18,
Ri52, Ri54, Ri55, Ri56, Ri58, Ri60, and Ri62 have provid-
ed apatite. Only powders Ri5051, Ri356, Ri78, and Ri18
have also provided zircon. These four samples, which pro-
duced both apatite and zircon, include three gneisses (Ri18,
Ri78, and Ri5051) and one kinzigite (Ri356). These sam-
ples appear to be those where the tracks are discrete indi-
cating an area of total stability—i.e., an area where the
tracks acquire their maximum length (15 to 16.3 μm for
apatite, 10–13 μm for zircon)—that has suffered an inter-
mediate partial annealing—i.e., a partial annealing zone
(PAZ) where the tracks are shorter than in the area of total
stability. This PAZ varies between 60 and 120 °C for apatite
(Wagner and Van den Haute 1992) and 200 to 320 °C for
zircon (Yamada et al. 1995; Tagami et al. 1996; Tagami and
Shimada 1996; Tagami 2005; Sueoka et al. 2012). The
presence of these two minerals in the same rock is particu-
larly useful for the reconstruction of the thermal history of a
massif for temperatures lower than 300 °C.
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The fossil tracks were etched in apatites in a solution of
HNO3, 1 M volume during 30 to 50 s at room temperature
and in zircons using an eutectic melt of NaOH+KOH at
225 °C (Gleadow et al. 1976) during 24–36 h. The dating
was performed following the external detector method
(Hurford and Green 1983; Hurford and Carter 1991) using
the zeta (ζ) technique (Fleischer and Hart 1972; Hurford and
Green 1983). According to the conventional analysis of
Green (1981), the FT age equation is t=1/λa ln[1+λa ξ g
ρm (ρs/ρi)]; λa is the total (alpha and fission) decay constant
for 238U=1.55125×10−10 year−1 (Jaffey et al. 1971); g is the
geometry factor of 0.5 for the external detector method (e.g.,
Wagner and Van den Haute 1992). ρm is the induced fission
track density in the standard uranium glass component used
as a neutron flux monitor; ρs is the spontaneous fission track
density of 238U in apatite; ρi is the induced fission track
density in apatite that is recorded by an external detector.

These densities were obtained after counting Nm, Ns, and
Ni tracks counted, respectively, in the monitor, the sample
spontaneous fission tracks, and their correlative external
detector induced tracks. The standard deviation on the fis-
sion track age is calculated taking into account the number
of spontaneous fission tracks counted in the sample and the
inducted fission tracks counted in the external detector and
the monitor glass according to the equation (δt)= t [1/Ns+
1/Ni+1/Nm+(δξ/ξ)

2]1/2. In order to objectively test whether
there is real variation in single grain ages beyond that
expected from track counting alone, Green (1981) and
Galbraith (1981) suggested the determination of a chi-
squared statistical test (χ2).

The zeta factor is unique for each observer; its value is
specific for a particular standard glass (NIST glass 962, in
this work) and is derived empirically from fission track
determinations on age standards. For the calibration of these
zeta factors, one of us (A. Azdimousa) conducted two
irradiations for standard zircon and four for apatite. All
irradiations and calibrations were performed in the
ORPHÉE nuclear reactor of the Centre d’Etudes Nucléaires
of Saclay (France). Therefore, the zircon zeta factors are
calculated three times for the Buluk Member Tuff (16.2±
0.2 Ma; McDougall and Watkins 1985) and seven times for
the Fish Canyon Tuff (FCT; 27.8±0.2 Ma; Hurford and
Hammerschmidt 1985). These factors are giving us an error
weighted mean zeta of ∼374±5 (Table 1). Similarly, the
calibration of apatite zeta factor gives 317±5 for using three
apatite samples of FCT and three others of Durango (31.4±
0.3 Ma; Naeser and Fleischer 1975).

Results

The results are reported in Table 2. Most of the percent χ2

values for AFT and ZFT ages pass the 5 % test documenting
that most of the obtained individual crystal ages belong to one

population in each sample analyzed. So, the apatite fission
track ages range from 13.25±1.04 (Ri78) to 17.38±0.63 Ma
(Ri16). An average value for apatite ages of ∼15.50±1.25 Ma
can be considered. For zircons, the ages obtained vary from
18.63±0.65 (Ri18)Ma to 19.34±0.38 Ma (Ri356). The dated
zircons allow estimating an average age of ∼19.30±1.30 Ma.

In order to determine the final history of cooling, we
performed the measurement of confined fission track length
(Gleadow et al. 1986) in two apatite samples where the internal
track lengths distribution could be determined. The results give
12.78 μm for Ri16 and 13.40 μm for Ri78 (Table 2).

Interpretation

The homogeneous distributions of the zircon individual ages
(χ2 probability test is in general higher than 20 %) suggest
that the samples have crossed very fast the retention zone of

Table 1 Determination of the zircon zeta value, using Buluk Member
Tuff and Fish Canyon Tuff standards

Sample ρs ρi ρm Zeta (±1σ)
(Ns) (Ns) (Nm)

BMT

Bul 1 9.76 5.86 0.6011 354±26

(489) (320) (7,155)

Bul 2 12.69 9.06 0.6313 367±27

(468) (334) (9,351)

Bul 2 12.69 9.06 0.6313 367±27

(468) (334) (9,351)

362±15

FCT

FCT 1 56.14 23.67 0.6313 370±14

(2,825) (1,191) (9,351)

FCT 2 61.27 26.83 0.6313 384±13

(3,214) (1,407) (9,351)

FCT 3 65.18 27.44 0.6313 370±14

(2,463) (1,037) (9,351)

FCT 4 53.74 22.02 0.6313 360±21

(1,984) (690) (9,351)

FCT 5 56.39 25.38 0.6313 391±16

(2,131) (959) (9,351)

FCT 6 64.2 27.68 0.6313 379±15

(3,432) (1,480) (9,351)

FCT 7 62.6 26.28 0.6313 369±13

(3,058) (1,284) (9,351)

376±6

Weighed zeta value 374±5

ρ and N are track densities in 105 tracks/cm2 and number of tracks
counted. The suffix s, i, and d refer to the fossil tracks counted in the
crystals and the induced tracks in the external detectors and the NIST
glass 962 wafers, respectively

BMT Buluk Member Tuff, FCT Fish Canyon Tuff
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the PAZ between 19 and 20 Ma. These data also document
that the Beni Bousera massif was not influenced by a ther-
mal event exceeding 240 °C during the past 19 Ma. In a
similar way, apatite FT ages reveal that the PAZ was crossed
at 17–14 Ma and that these samples were not re-heated
beyond 100 °C since 14 Ma. The zircon and apatite ages
support that a very rapid cooling occurred between 19 and
14 Ma. This history and age agree with those proposed for
the Alpujarrides in the Betic Cordilleras (Orozco et al. 1998,
2004). Besides, an apatite and zircon FT age-elevation plot
shows no clear normal correlation—i.e., between sea level
and 1,000 m (Fig. 3). These results evidence that the Beni
Bousera dome structure evolved at depth before the final
uplift induced by the tensional tectonic phase of the Lower–
Middle Miocene. The ductile shearing limiting the kinzigitic
gneisses (Kornprobst et al. 1995) must have occurred also at
depth, with temperatures higher than 300 °C, which agrees
with the deformation temperatures of dry quartz.

The maximum and minimum apatite and zircon FT ages
evidence that cooling of the rocks between 300 and 120 °C
occurred at rates ranging from 36 to 90 °C/Ma. As these
cooling rates took place during the Early Miocene HT exten-
sional event (Platt et al. 2003a), we assume a gradient of 25 to
30 °C/km to calculate the denudation rates. The denudation
rates range from 1.4 to1.2 mm/year (minimum) to 3.6 to 3.
0 mm/year (maximum). The maximum values are in good
agreement with the 3 km/Ma of exhumation calculated for
the Western Betic Cordilleras at 19–20 Ma (Monié et al.
1994). Regarding the Beni Bousera massif, our results indicate
that about 6–7 km of the metamorphic rock of the envelope
overlying the peridotite has been removed over the past 19–
15 Ma. Part of the denudation originated from erosion, provid-
ing detrital sediments to the West Alboran Basin (Comas et al.
1992, 1999; Bourgois et al. 1992; Soto et al 1996; Alvarez-
Marron 1999; Martinez-Garcia et al. 2013) the deepest
depocenter along the Alboran Basin. Indeed, more than 8 km
of sediment accumulated in this basin during the Burdigalian to
Lower Langhian times. However, part of the denudation orig-
inated from a tectonic uplift event related to the Ras Aarabene
fault (Fig. 2) that cuts the whole Sebtides Complex. This fault
exhibits a 6–8-km minimum extensional displacement that
accounts for the main part of the denudation.

Considering that the mean track length is about 13 μm
(Table 1), this indicates that they are partially annealed
(in our etching condition, the mean track length in
Durango apatites is of 14.11±1.26 μm). In Ri16 sample,
the percent χ2 is high enough (97 %) to grant a single
age population. An optimization with the Ketcham
HeFTy software (2005) was attempted (Fig. 4), keeping
in mind that (a) the apatite composition in this sample is
unknown and (b) the etching conditions were different.
The choice of boxes is changed gradually until the at-
tenuation of conformity between the measured data

(age and length) and the data provided by the model is
achieved. The software that provides a best fit of cooling
from the GOF parameters calculates the T–t pathway.
The path is accepted when the GOF is close to 1.

The diagrams of the time–temperature models applied
to these samples suggest that after the fast cooling from
∼140 to 20 °C, occurring at about 20–17 Ma ago, the
massif was progressively reheated to 80 °C between 15
and 5 Ma, before its final cooling and recent denuda-
tion. The reheating event was coeval not only with the
extensional tectonics that occurred along the Rif Chain
at that time but also with the volcanism extending along
the Eastern Rif (Hernandez and Bellon 1985). The re-
sults of the modeling show also that the final exhuma-
tion would be coeval with the Pliocene–Quaternary
tectonic uplift that marked the Rif chain. Let us note
that similar thermal and exhumation histories have been
modeled for the rocks originating from the basement of
the Alboran Sea (Hurford et al. 1999).

Thermal and exhumation history

The cooling and uplift history of the Beni Bousera massif
presented in this work for temperatures lower than 300 °C
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can be integrated with the cooling evolution at temperatures
higher than 300 °C taking into account the petrological and
chronological studies previously published (Fig. 5). According
to Davies et al. (1993) and Crespo-Blanc et al. (2006), the
peridotites of the Beni Bousera massif originated from the
upper mantle (150 km depth, around 1,400 °C and 50 kb). In
this sense, the petrologic studies demonstrate that a primary
paragenesis had been crystallized at 1,400 °C–25 kb conditions
(Kornprobst 1969, 1974). Sanchez-Rodriguez and Gebauer
(2000) have proposed that the approximation of the peridotites
to the base of the crust would have begun with the Tethys
Ocean opening during the Early–Late Jurassic. For the period
of convergence between Africa and Europe (Cretaceous to
Oligocene), the migration of the Alboran plate toward the west
induces a HP metamorphism in the internal units of the
Gibraltar arc followed by the subduction of the Tethyan oceanic
floor (Van der Wal and Vissers 1993; Azañón et al. 1997; Puga
et al. 1995; Davies et al. 1993; Zeck 1996; Chalouan and

Michard 2004; Haissen et al. 2004; Michard et al. 2006). The
emplacement of the internal zones recorded the Oligocene
collision between the various plates. After these compression
events, a decompression (Haissen et al. 2004) accompanying
the opening of the Alboran basin would have caused again high
temperature conditions (∼850 °C). The ages obtained by the
Nd/Sm method (Polvé 1983), whose closing temperature ranges
between 800 and 900 °C as well as the ages obtained by the
Lu–Hf (Blichert-Toft et al. 1999) method whose closing tem-
perature exceeds 700 °C (Scherer et al. 2000), allow us to
determine that the passage of the isotherms ranging between
900 and 700 °C occurred between 24 and 22Ma (Figs. 5 and 6).

On the other side, the 22–20-Ma 40Ar/39Ar data on biotite
(Saddiqi 1995) indicate that the Beni Bousera massif had
reached conditions of low pressure and low temperatures
(600 to 300 °C) during their uplift toward the surface.
Previous data agree with the zircon FT data (20 to 17 Ma)
that define a limit age for the last metamorphic event in the
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internal zones of the Rif that must be older than 20 Ma. In
addition, the apatite FT ages (17–14 Ma) mark the cooling
stage related to the exhumation of the Beni Bousera sector
(Fig. 6).

Consequently, if we combine the apatite and zircon FT
ages with the 40Ar/39Ar isotopic data of the biotite and take
into account also the thermal properties of these
thermochronometers, we obtain an average cooling rate of
50 °C/Ma for the period between 20 and 15 Ma. These data
document an uplift rate of ∼2 mm/year. The comparison of
the cooling history of the Beni Bousera massif with the
peridotite massifs in the Betic Cordilleras shows that both
sectors have undergone a very fast exhumation during the
Lower Miocene (Sanchez-Rodriguez and Gebauer 2000;
Platt et al. 2003a, 2005; Esteban et al. 2004). The important
rates of “tectonic” exhumation in Beni Bousera are close to
those observed in the Betic Cordilleras (Priem et al. 1979;
De Jong 1991; Zeck et al. 1989, 1992; Monié et al. 1994;
Morillon et al. 1996; Sosson et al. 1998; Platt et al. 2003b;
Zeck 2004). Finally, the confined length tracks distribution
suggests that a light late warming should have occurred in
the Beni Bousera massif during the Late Miocene. This
warming was probably caused by the crustal thinning at
the origin of the volcanism, which occurred in the Western

Mediterranean area. These geodynamic events would be
synchronous of the African lithosphere delamination during
the episode of withdrawal to the west of the oceanic slab of
the western Mediterranean (Duggen et al. 2005). In the same
way, the modeling of the confined track length distribution
shows a fast uplift during the Pliocene and Quaternary times
consistent with the regional geology (Fig. 3).

Conclusion and discussion

The zircon FT data obtained in this work document cooling
age below 300 °C ranging from 20 to 17 Ma. These ages are
slightly younger than the Aquitanian age (Janots et al. 2006;
Rossetti et al. 2010) of the last metamorphic event of the
Sebtides. Moreover, the apatite FT ages of 17–14 Ma are
well correlated with those obtained by FT methods in the
Betic Cordilleras (Morillon et al. 1996; Andriessen and
Zeck 1996; Platt et al. 2003a, b; Esteban et al. 2003,
2004). Zircon and apatite FT dating associated with other
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isotopic dating indicate a rapid cooling associated with a ten-
sional exhumation of the Riffian–Betic internal zones during
the Lower–Middle Miocene that post-dated the main metamor-
phic and tectonic events characterizing the internal zones
throughout and the external zones locally (Andrieux 1971;
Azdimousa et al. 1998). The tensional-related exhumation
phase marked the last tectonic events associated with the
individualization of the Gibraltar Arc and the coeval
Alboran Sea evolution. The rates of exhumation show that
tectonic processes controlled the peridotites denudation dur-
ing the Lower Miocene. This mode of uplifting was similar
to that described in the Betic Cordilleras, suggesting a
synchronous and symmetrical tectonic evolution of the
two segments of the internal system and coincides reason-
ably with the model proposed for the Gibraltar arc evolu-
tion during the Lower Miocene times (Iribarren et al.
2007).

Several sedimentological and stratigraphic works have doc-
umented that the Sebtides/Alpujarrides and Ghomari-
des/Malaguides nappes were already exposed to weathering
by the Early–Middle Burdigalian and Aquitanian ages. It in-
cludes (1) the shallow-water Alozaina and Pantano de Andrade
Formations of early Burdigalian age, which unconformably
overly the Malaguides of Paleozoic age (Bourgois et al. 1971;
Bourgois et al. 1972a; Bourgois et al. 1973; Bourgois 1978); (2)
the Las Millanas and Viñuela Formations of Burdigalian age,
which unconformably overly not only the Malaguides nappes
but also the Alpujarrides nappes and associated peridotites
(Bourgois et al. 1972b, 1973; Boulin et al. 1973; Bourgois
1978; Serrano et al. 2006). These formations deposited in a
shallow to intermediate water depth environment document that
all rock facies, including the peridotites, were brought to surfi-
cial environment exposed to erosion processes by the Lower
Miocene time. Because the Las Millanas Formation uncon-
formably overlies folds involving the Alozaina Formation,
Bourgois (1978) assumed that compression shortening stopped
by the end of the Aquitanian time as stretching-related tensional
tectonics began to control the Alboran basin formation.
Following the International Commission on Stratigraphy
(Gradstein et al. 2004; Wade et al. 2011), the Las Millanas
and Viñuela Formations (Bourgois 1978) extend through the
M4 zone, from the lower occurrence of Globoquadrina
dehiscens—i.e., astronomical age (Lourens et al. 2004) at
22.44 Ma and geomagnetic polarity time scale at 23.20 Ma
(Cande and Kent 1995)—to the highest occurrence of
Globigerinita dissimilis—i.e., astronomical age (Lourens et al.
2004) at 17.54 Ma and geomagnetic polarity time scale at
17.62–17.50 Ma (Cande and Kent 1995). In other words, the
peridotite massif of the Alozaina area (Betic Cordilleras) was
exposed to weathering before 17.62 Ma—i.e., between 23.20
and 17.62 Ma.

Since the Beni Bousera zircon FT ages extend back to 20–
18Ma—i.e., roughly coeval with the age of the unconformity at

the base of the Las Millanas and Viñuela Formations—we
assume that most of the tectonic uplift recorded by both apatite
and zircon cooling ages was tensional-related. The Beni
Bousera zircon and apatite FT data document two basic points
constraining the evolution of the Beni Bousera antiformal
dome: (1) no significant age variation exists in relation with
rock facies from the peridotites at the heart of the dome to the
micaschist of the most external envelope and (2) no significant
age variation exists with elevation between 1,000 m and sea
level. We therefore assume that the domal structure formed at
depth pre-dating the exhumation through the annealing zircon
zone. Accepting a reasonable geothermal gradient ranging from
25 to 30 °C/km, we consider that the Beni Bousera dome
structure shaped at depth ranging from 12 to 10 km as a
minimum. Whether a cooling rate of 80 °C/Ma (Fig. 6) is
accepted, a mean uplift rate of about 2.7 km/Ma acted between
25 and 15 Ma. Since the Beni Bousera peridotite passed
through the annealing apatite zone at ∼15.5 Ma, an age signif-
icantly younger than 17.62Ma, we assume that ultrabasic rocks
were outcropping along the Western Betic Cordilleras
(Alozaina area) segment by about 2 Ma earlier. We should
consider that the peridotites massifs of the Gibraltar arc evolved
through different tectonic history and processes during the time
window 20–15 Ma. Because the Beni Bousera peridotites were
at ∼30 km depth at ∼25–22 Ma, we infer that this particular
ultramafic body was not the source of detrital material feeding
sediment accumulation similar—i.e., the so-called sous-
Numidien Formation, NWof the Beni Bousera massif—to that
of the Las Millanas-Viñuela Formation.
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