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Abstract Collapse settlement is one of the main geotechnical
hazards, which should be controlled during first impoundment
stage in embankment dams. Imposing large deformations and
significant damages to dams makes it an important phenom-
enon, which should be checked during design phases. Also,
existence of a variety of contributing parameters in this phe-
nomenonmakes it difficult and complicated to well predict the
potential of collapse settlement. Thus, artificial neural net-
works, which are commonly applied by majority of geotech-
nical engineers in predicting various perplexing problems, can
be efficiently used to calculate the value of collapse settle-
ment. In this paper, feedforward backpropagation neural net-
works are considered. And three-layered FFBPNNs with the
architectures of 4–6–2 and 4–9–2 accurately predicted the
coefficient of stress release and collapse settlement value,
respectively. These networks were trained using 180 datasets
gained from large-scale direct shear test, which were carried
out on gravel materials. High correlation between measured
and predicted values for both collapse settlement and coeffi-
cient of stress release can be easily understood from the
coefficient of determination and root mean square error. It is
shown that sand content and normal stress applied to the
specimens, respectively, are most effective parameters on the
collapse settlement value and coefficient of stress release.

Keywords Large-scale direct shear test . Artificial neural
network . Collapse settlement of gravels .

Coefficient of stress release

Introduction

When granular material becomes saturated, the in situ
stresses, which have the role of confining pressure, suddenly
decrease. And then, the particle's breakage may happen and
cracks may develop in the grains. Breakage of particles
bonds accompanies the stress reduction (Soroush and
Aghaeiaraei 2005). As a consequence of this phenomenon,
rearrangement of the broken particles will happen and col-
lapse settlement will occur (Terzaghi 1960; Feda 1995;
Alonso and Oldecop 2000; Hunter 2002; Soroush and
Aghaeiaraei 2005). Nevertheless, the rate of strains will
decrease after flooding (Marachi et al. 1969; Marsal 1973;
Alonso and Oldecop 2000; Asadzadeh and Soroush 2009;
Oshtaghi and Mahinroosta 2010).

The results of a significant number of laboratory tests
indicated that collapse settlement degrades the strength
parameters and deformation modulus of soils (Asadzadeh
and Soroush 2009; Oshtaghi and Mahinroosta 2010; Alonso
2003; Soroush and Aghaeiaraei 2009; Kakoli and Hanna
2011; Haeri et al. 2012; Kim et al. 2012). This decrease is
due to the weakening of particles leading to their breakage
(Marsal 1967) and lubrication effects of water, which acts
on the grain-to-grain contacts (Farmer and Attewell 1973;
Touileb et al. 2000).

Collapse settlement is also important in central clay core
of rockfill dams. Significant settlement in the upstream
shells of such dams commonly occurs when the reservoir
is filled. This can be 1–2 % of the height of dam (Naylor
1997). Also, it can be considerably more than the mentioned
value in the cases that the quality of rockfill material is not
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so good (Baumann 1958; Naylor 1997). Collapse settlement
may also be important in inundated road embankments or in
reclaimed lands, where buildings are to be constructed.
Nevertheless, the degree of importance of this phenomenon
for rockfill dams is higher than embankments (Naylor 1997;
Soriano and Sánchez 1999).

Figure 1 shows hypothetical stress and strain path for dry
gravel in direct shear test. According to this figure, collapse
factor, C, and the value of collapse settlement, ΔHC, can be
efficiently used in studying the collapse phenomenon
(Oshtaghi and Mahinroosta 2010).

Collapse settlement factor can be used to model the stress
reduction when the rockfill or the gravel material is saturat-
ed. Therefore, this factor which is also called coefficient of
stress release, CSR, can be used to calculate the stress of the
gravel in the saturated condition. By multiplying the stress
of the material in the dry condition to the coefficient of
stress release, the collapsed stress can be achieved. Thus,
the collapse settlement factor can be obtained using Eq. (1)
(Oshtaghi and Mahinroosta 2010):

CSR ¼ tc
t t
: ð1Þ

In Eq. (1), τc is the collapse shear stress at the end of the
impounding stage, when the collapse is completed, and τt shows
dry shear stress of the specimen before the impounding stage.

CSR is related to the relaxation coefficient, “a”, which was,
firstly, introduced by Justo (1991) with the following equation:

CSR ¼ 1� a ð2Þ

where,

a ¼ tc þ t t
t t

: ð3Þ

There is a broad range of affecting parameters on the
collapse settlement phenomenon such as initial water content,
normal stress, shear stress level, sand soil content, clay con-
tent, relative density, number of impounding stages, etc.
(Hunter 2002; Soroush and Aghaeiaraei 2005; Oshtaghi and
Mahinroosta 2010). Contributing this wide range of parame-
ters in this phenomenon makes it difficult to easily predict the
value of the collapse settlement. Thus, in dire need of an
inventive solution to predict this complicated function is
completely obvious. High performance of artificial neural
networks, a branch of artificial intelligence, and representing
a precise solution for intricate situations have made it highly
in demand in predicting several complicated problems. Arti-
ficial neural networks (ANNs) are broadly applied to a wide
range of engineering and science complicated problems
(Yang and Rosenbaum 2002; Neaupane and Adhikari 2006;
Juang and Elton 1997; Yasrebi and Emami 2008; Monjezi et
al. 2009; Hasanzadehshooiili et al. 2012a, b).

In this study, in order to predict the collapse settlement
and the coefficient of stress release, an artificial neural
network model is developed and the most affective param-
eters on these collapse parameters were gained by means of
sensitivity analysis. Also, the effect of input parameters is
investigated and results are compared by basic concepts in
soil mechanics.

Fig. 1 a Shear stress versus
horizontal displacement and b
vertical displacement versus
horizontal displacement of
gravel specimens during
collapse settlement test
(Oshtaghi and Mahinroosta
2010)

Fig. 2 a Shear stress and b
vertical displacement versus
horizontal displacement gained
by large-scale direct shear test
for vertical stress of 3 kg/cm2,
shear stress level of 50 %, and
relative density of 85 %
(Oshtaghi and Mahinroosta
2010)

2304 Arab J Geosci (2014) 7:2303–2314



Artificial neural network method

ANN is a branch of artificial intelligence, which its ability to
calculate logic functions is firstly introduced by McCulloch
and Pitts (1988). In this method, the accuracy of the model
strongly depends on the database. The larger database
results in the more accurate prediction (Maulenkamp and
Grima 1999; Habibagahi and Taherian 2001; Khandelwal
and Singh 2006; Monjezi et al. 2009). Indeed, an ANN
model predicts values of desired outputs using some input
parameters. To show the ability of ANN in the pattern
recognition, Rosenblatt (1988) built a perceptron network.
Multilayer perceptron (MLP), which is known as the best
type of ANNs, is made up of three types of layers (input–
hidden–output). It is documented that this type of neural
networks can accurately approximate any type of the con-
tinuous function (Hornik 1989; Funahashi 1989). ANNs do
not need any prior knowledge about the nature of relation-
ships between the input/output variables, which is one of the
benefits of ANNs in comparison to the most of the empirical
and statistical methods (Yasrebi and Emami 2008). The
number of layers depends on the complexity of the problem,
which is to be solved. But, at least, one input, one output,
and one hidden layer are required. Each layer contains some
elements that are called neurons. These neurons are
connected from one layer to the next one. But, there is not
any connection between nodes of a specific layer. These
nodes are connected using some links which have weight
vectors. These weights are multiplied into processed

information. And the sum of weighted input signals to each
neuron is transformed by an activation function (Monjezi et
al. 2010). To obtain the optimum model, the network has to
be trained. After well training from a large number of data-
sets, network detects similarities and can predict the outputs
while a new pattern is fed into the network (Khandelwal et
al. 2004). A network has three major components that
should be accurately assigned regarding the problem type,
the transfer function, the learning law, and the network
architecture (Simpson 1990).

Input and output parameters

In order to study the collapse settlement phenomenon and its
affecting parameters, the large-scale direct shear test was
considered. This test was carried out in the geotechnical
laboratory of University of Zanjan using a 30×30×15-cm
direct shear device. First of all, under a constant normal stress,
dry gravel with a specific relative density was sheared to reach
to a pre-assumed shear stress level. Then, in this level, the
material was saturated. After well saturation, which was ac-
companied by the collapse settlement, the shearing process
was continued to the failure of the gravel. For more clarifica-
tions about the actual behavior of the studied material, the
shear stress and the vertical displacement variation versus the
horizontal displacement are plotted in the normal stress of
3 kg/cm2, shear stress level of 50 %, and relative density of
85 % in Fig. 2 (Oshtaghi and Mahinroosta 2010).

Fig. 3 Gradation range of
studied material

Table 1 Input and output
parameters used in ANN Type of data Parameter Symbol Range

Inputs Sand content (%) SC 0–100

Normal stress (kg/cm2) σn 1–5

Shear stress level (%) SL 30–100

Relative density (%) Dr 60–85

Outputs Collapse settlement (mm) ΔH 0.11–2.92

Coefficient of stress release CSR 0.289–0.779
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As it was previously mentioned, there are lots of parameters
affecting on the value of the collapse settlement. Thus, to
comprehensively study the material's collapse behavior, the
effect of all the concerning parameters should be considered.
In this regard and relying on the literature, all the concerning
parameters were sorted and were taken into account. And then,
based on the material type, clean gravel (its gradation range is
shown in Fig. 3), the influencing parameters were assigned.
Among all the parameters with the most influence, due to the
low variation in the samples' clay contents and stress paths,
also, because of the constant value of the initial water content of
the specimens, four parameters, which are commonly reported
as the most influential parameters (Alonso and Oldecop 2000;
Basma and Kallas 2004; Asadzadeh and Soroush 2009;
Oshtaghi and Mahinroosta 2010), sand content, normal stress,
shear stress level, and relative density, were considered as
input parameters. Also, to investigate their effects on the value

of the collapse settlement, using the large-scale direct shear
test, the values of the collapse settlement and the coefficient of
stress release were calculated as output parameters. It should
be noted that in this study, the material's clay content does not
significantly vary. Furthermore, the impounding stages and
the initial water content of the samples remain constant.

On balance, input parameters, which their range of variation
is shown in Table 1, are restricted to the sand content, normal
stress, shear stress level, and relative density. In this study, a
database including 180 datasets is prepared using the large-
scale direct shear test. Also, the collapse settlement value and
the coefficient of stress release are considered as output param-
eters, which are to be predicted by the network as desired
values. The mentioned datasets are presented in Appendix 1.

Training the network

Backpropagation algorithm is widely suggested as the most
efficient procedure in the training of neural networks. It has
been implemented by a variety of researchers for learning
procedure of their multilayer perceptron neural networks
(Basma and Kallas 2004; Neaupane and Adhikari 2006;
Yuan-Ping and Xiao-Yan 2007; Hasanzadehshooiili et al.
2012a, b). In this technique, in the forward pass, first of all,
a specific value for connections between neurons is assigned.
Afterward, in the backpropagation pass, the differences

Fig. 4 Tan-sigmoid transfer function (Demuth et al. 1996)

Table 2 Results of comparison between some of the built models

No. Architecture RMSE

ΔH CSR

1 (4–15–6–2) 0.206263 0.031432

2 (4–8–2) 0.154059 0.027494

3 (4–20–10–2) 0.148103 0.034656

4 (4–15–2) 0.138138 0.019409

5 (4–18–3–2) 0.136221 0.02171

6 (4–12–8–2) 0.130723 0.034064

7 (4–10–4–2) 0.127384 0.024837

8 (4–20–2) 0.120991 0.023225

9 (4–12–2) 0.115423 0.031315

10 (4–10–2) 0.107085 0.031738

11 (4–5–2) 0.094232 0.029996

12 (4–6–2) 0.092219 0.01713

13 (4–9–2) 0.081711 0.027887

Network with the architecture of 4-9-2 showing the minimum RMSE,
presents the optimum network for predicting “ΔH”. Also, the network
architecture of 4-6-2 has the minimum RMSE in prediction of “CSR”.
Thus, the RMSE values of these two optimum networks were pre-
sented in italics Fig. 5 Architecture of optimum model for predicting the value of ΔH
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between predicted and measured values are calculated. Then,
the error, which is calculated during forward pass, is back-
propagated through the network to update the weights. The
controlling parameter for this mechanism is a predefined
threshold for the differences (Demuth et al. 1996; Yang and
Rosenbaum 2002).

In order to build the model, at first, datasets were ar-
ranged and normalized in a scale of 0–1 using Eq. (4). Then,
90 % of datasets were considered as training datasets. The
remaining was kept as the test datasets.

Scaled value ¼ unscaled value�min valueð Þ=
max value�min valueð Þ:

ð4Þ

After a large number of trials on different networks, the
nonlinear tangent sigmoid function, TANSIG, showing the
minimum error was considered as the transfer function for
all the layers. Figure 4 shows the nonlinear TANSIG transfer
function. Also, its formula is presented in Eq. (5) (Demuth
et al. 1996).

f ¼ eex � e�ex

eex þ e�ex
ð5Þ

where ex is the weighted sum of the inputs for a processing unit.
As an important point, during the training process, two

main phenomena should be considered: overfitting and
underfitting. Overfitting, which makes the network memo-
rize the outputs, occurs when a significant number of epochs
are used during the training process. Also, if there is insuf-
ficient number of epochs used to train the network, the
results will be underfitted and will lead to the model's
inaccuracy (Maulenkamp and Grima 1999).

Network architecture

The best architectures of neural networks are gained by means
of modeling a variety of one and two hidden layer neural

networks and comparing their values of root mean square
error (RMSE) and mean absolute error (MAE) (Hornik
1991; Pearson et al. 1995; Monjezi and Dehghani 2008).

RMSE and MAE are calculated using Eq. (6) and Eq. (7),
respectively:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Oi � Tið Þ2
N

s

ð6Þ

MAE ¼
X

Ti � Oið Þ
�

�

�

�

�

�
ð7Þ

where Oi and Ti represents the predicted and the measured
outputs, respectively. Also, N is the number of data pairs. As
shown in Table 2 for CSR, a network with the architecture
of 4–6–2 having the minimum value of RMSE is the opti-
mum one. Also, it can be seen that the topology 4–9–2 has
the minimum RMSE for ΔH and therefore is the optimum
model.

For the optimum models gained for CSR and ΔH,
MAE was equal to 0.013 and 0.062 mm, respectively.
Also, for better understanding of the network, schematic
architecture of the optimum network for ΔH is shown
in Fig. 5.

Fig. 6 Comparison between measured and predicted CSR and ΔH for
testing datasets for 4–6–2 architecture

Fig. 7 Comparison between measured and predicted CSR and ΔH for
testing datasets for 4–9–2 architecture

Fig. 8 Correlation between measured and predicted CSR for optimum
model (4–6–2)
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Model performance

By comparing predicted and measured values of the col-
lapse settlement and the coefficient of stress release, the
performance of constructed models can be easily evaluated.
Figures 6 and 7 show the normalized measured and pre-
dicted values of both the collapse settlement and the stress
release coefficient for 4–6–2 and 4–9–2 model architecture
in a single diagram, respectively.

Also, achieving a considerable high value for the coeffi-
cient of determination for both models shows the good
performance of models. As it can be seen in Figs. 8 and 9,
for CSR and ΔH models, R2 is equal to 0.9806 and 0.9828,
respectively. To show the reasonable correlation between
measured and predicted values of CSR and ΔH, the line
y=x is depicted in addition to the datasets. Also, for CSR
optimum model, MAE is equal to 0.013 and for ΔH opti-
mum model, MAE is equal to 0.062.

Sensitivity analysis

In order to attain the most affective factors on the CSR andΔH,
the cosine amplitude method (CAM), is considered (Yang and
Zhang 1997; Monjezi et al. 2009). The expressed similarity

relation between the target function and the input parameters is
used to obtain by this method. In this method, all of data pairs
are expressed in the common X-space. They would form a data
array X defined as Eq. (8) (Yong-Hun and Chung-In 2004;
Khandelwal and Singh 2006; Monjezi et al. 2010):

X ¼ x1; x2; x3; x4; . . . ; xi; . . . xnf g ð8Þ

where each element, xi, is a vector of the length of m and is
shown in Eq. (9).

xi ¼ xi1; xi2; x3i; . . . ximf g: ð9Þ

Thus, each of the datasets can be considered as a point in the
m-dimensional space, where each point requiresm-coordinates
to be fully described (Monjezi et al. 2010). The strength of the
relationship between xi and xj is given by Eq. (10).

rij ¼
P

m

k¼1
xikxjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

m

k¼1
x2ik

P

m

k¼1
x2jk

s : ð10Þ

Regarding this mentioned formula, the strength of the
relationship between CSR and input parameters also ΔH
and input parameters is shown in Figs. 10 and 11,
respectively.

The results show that sand content is the most influential
factor on the collapse settlement value,ΔH. Also, the normal
stress is the most sensitive parameter affecting on the CSR.

Fig. 9 Correlation between measured and predicted ΔH for optimum
model (4–9–2)

Fig. 10 Sensitivity analysis carried out between CSR and input
parameters

Fig. 11 Sensitivity analysis carried out between ΔH and input
parameters

Table 3 The mean and
standard deviation of
input parameters

Parameter X δ

SC 0.5 0.408

σn 0.5 0.354

SL 0.482 0.376

Dr 0.467 0.411
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Geotechnical interpretation of the network prediction

To well peruse the collapse settlement phenomenon and to
ensure the accuracy of trends of predicted outputs, variation
of predictions with inputs was studied. In order to study
input-predicted output behavior, the mean and standard
deviation of each input parameter were calculated using
the following equations:

X ¼
P

xi
N

ð11Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

xi � Xð Þ2
N

s

ð12Þ

where xi and N are input parameters and number of datasets,
respectively. Also, in these formulas, X and δ, represent the

mean and standard deviation of each input parameter for the
studied range. Mean and standard deviation of each normal-
ized input parameter are presented in Table 3. To gain the
trend of the predicted collapse settlement and the coefficient
of stress release with each of inputs, the values of X−δ,
X−δ/2, X, X+δ/2, and X+δ are calculated for each input.
Then, the desired outputs are predicted using their optimum
models. Table 4 illustrates the mentioned procedure for assess-
ing input-predicted output behavior. In this table, variation of
the input X1 on the collapse parameters is investigated.

Where, the index “i; i=1, … 4” present the mean of i-th
input data. For both optimum models, this table is built for
all four inputs, separately. Finally, the behavior of the pre-
dicted coefficient of stress release and the collapse settle-
ment with change in the value of sand content, normal
stress, shear stress level, and relative density is, separately,
depicted in Figs. 12 and 13, respectively.

As it can be seen in Figs. 12 and 13, results obtained from
the network are efficiently in a good agreement with their
real status. In Fig. 12, on one hand, the coefficient of stress
release is increased with the increase in the amount of the
normal stress and the relative density. On the other hand, it
decreases with the increase in the amount of the sand con-
tent and the shear stress level.

Also, from Fig. 13, it is clear that the collapse settlement
has a direct relationship with the sand content, normal stress,
and shear stress level. And, it has an inverse relationship
with the relative density.

As a matter of fact, the normal stress with imposing more
breakage, the sand content with increasing the inter-grain

Table 4 Parameters used to gain the variation of predicted outputs
with inputs

Input Predicted output

X1−δ X2 X3 X4 CSRX1�d ΔHX1�d

X1−δ /2 X2 X3 X4 CSRX1�d 2= ΔHX1�d 2=

X 1 X2 X3 X4 CSRX1 ΔHX1

X1+δ /2 X2 X3 X4 CSRX1þd 2= ΔHX1þd 2=

X1+δ X2 X3 X4 CSRX1þd ΔHX1þd

Fig. 12 Variation of coefficient of stress release with input parameters
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displacement, and stresses and the relative density with
increasing the weight of compacted soil in the shear box
cause these behaviors, which are plotted in Figs. 12 and 13.

The dependency of the collapse phenomenon to the
confining pressure has been observed experimentally and
numerically by some researchers (Naderian and Williams
1997; Alizade 2009; Oshtaghi and Mahinroosta 2010;
Poorjafar and Mahinroosta 2011). In fact, with increasing
the normal stress, the larger amount of collapse settlement
occurs, which its trend agrees with the results inferred from
Figs. 12b and 13b.

Increasing the relative density in the media results in the
better and stiffer contact between soil particles, which leads
to fall in the collapse settlement and rise in the stress release
coefficient. Also, higher shear stresses induce more micro
and possibly macro cracks in rock particles. This facilitates
the penetration of water into the cracks, resulting in the
breakage and more degradation of the strength and the
deformation modulus (Soroush and Aghaeiaraei 2005).

Conclusion

In this study, a new ANN was developed to predict the
collapse settlement value and the coefficient of stress release
in gravel materials using 180 datasets which were obtained
by means of the large-scale direct shear test. Neglecting the
parameters with the low variation and those which were
constant in this study, four variables were considered as

input parameters. Using the sand content, SC, the normal
stress, σn, the shear stress level, SL, and the relative density,
Dr, as input parameters, a feedforward backpropagation
method was used to train the datasets. After some trials
and based on the comparing the values of RMSE, for dif-
ferent built models, a network with the architecture of 4–6–2
was found as the optimum network in predicting the value
of the coefficient of stress release. For this mentioned net-
work, RMSE and the coefficient of determination, R2, were
equal to 0.0171 and 0.981, respectively. Also, an MLP
network with the topology 4–9–2 was realized to be the
optimum network in predicting the value of the collapse
settlement. For this network, the value of the root mean
square error and the coefficient of determination were equal
to 0.082 and 0.983, respectively. Furthermore, by finding
the strength of the relationships between input and output
parameters, based on the CAM method, the SC was intro-
duced as the most important parameter and the Dr was the
least affective parameter on the collapse settlement value,
ΔH. Also, it was observed that the σn is the most effective
parameter on the coefficient of stress release, whereas the
SL was found as the parameter with the least effect on the
CSR. Finally, the geotechnical interpretation of the designed
network was taken into account. It was shown that all trends
in input–output connections are in a good agreement with
the basic laws of soil mechanics. Thus, it is shown that
besides the well prediction of collapse parameters, the de-
veloped ANN is well behaved with the geotechnical engi-
neering considerations.

Fig. 13 Variation of ΔH with input parameters
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Appendix 1

Table 5 Data gained by large-scale direct shear test and used in ANN

Input Output

SC (%) σn (kg/cm
2) SL (%) Dr (%) CSR ΔH (mm)

0 1 30 60 0.667 0.12

0 1 50 60 0.578 0.15

0 1 75 60 0.48 0.3

0 1 100 60 0.43 0.61

0 2 30 60 0.685 0.2

0 2 50 60 0.581 0.32

0 2 75 60 0.501 0.4

0 2 100 60 0.431 1.23

0 3 30 60 0.695 0.32

0 3 50 60 0.583 0.42

0 3 75 60 0.502 0.5

0 3 100 60 0.433 1.27

0 4 30 60 0.719 0.45

0 4 50 60 0.589 0.65

0 4 75 60 0.512 0.75

0 4 100 60 0.441 1.3

0 5 30 60 0.723 0.5

0 5 50 60 0.59 0.85

0 5 75 60 0.512 0.91

0 5 100 60 0.444 1.35

50 1 30 60 0.602 0.2

50 1 50 60 0.514 0.3

50 1 75 60 0.452 0.45

50 1 100 60 0.39 0.7

50 2 30 60 0.608 0.3

50 2 50 60 0.516 0.45

50 2 75 60 0.457 0.92

50 2 100 60 0.39 1.1

50 3 30 60 0.608 0.77

50 3 50 60 0.52 0.83

50 3 75 60 0.463 0.95

50 3 100 60 0.39 1.35

50 4 30 60 0.609 0.75

50 4 50 60 0.54 0.91

50 4 75 60 0.483 1.27

50 4 100 60 0.396 1.52

50 5 30 60 0.609 1.12

50 5 50 60 0.541 1.38

50 5 75 60 0.485 1.45

50 5 100 60 0.398 2.28

100 1 30 60 0.558 1.1

100 1 50 60 0.417 1.09

100 1 75 60 0.302 1.25

100 1 100 60 0.289 1.52

100 2 30 60 0.562 1.48

Table 5 (continued)

Input Output

SC (%) σn (kg/cm
2) SL (%) Dr (%) CSR ΔH (mm)

100 2 50 60 0.417 1.6

100 2 75 60 0.346 1.78

100 2 100 60 0.292 2.3

100 3 30 60 0.565 1.89

100 3 50 60 0.419 1.99

100 3 75 60 0.348 2.18

100 3 100 60 0.295 2.64

100 4 30 60 0.587 1.92

100 4 50 60 0.42 2.22

100 4 75 60 0.397 2.34

100 4 100 60 0.376 2.68

100 5 30 60 0.588 1.92

100 5 50 60 0.43 2.35

100 5 75 60 0.398 2.38

100 5 100 60 0.378 2.92

0 1 30 70 0.68 0.12

0 1 50 70 0.58 0.13

0 1 75 70 0.5 0.28

0 1 100 70 0.433 0.55

0 2 30 70 0.708 0.2

0 2 50 70 0.585 0.26

0 2 75 70 0.506 0.39

0 2 100 70 0.437 0.96

0 3 30 70 0.728 0.28

0 3 50 70 0.586 0.36

0 3 75 70 0.508 0.44

0 3 100 70 0.438 0.93

0 4 30 70 0.758 0.4

0 4 50 70 0.61 0.55

0 4 75 70 0.52 0.73

0 4 100 70 0.448 1.05

0 5 30 70 0.769 0.43

0 5 50 70 0.619 0.72

0 5 75 70 0.526 0.82

0 5 100 70 0.45 1.33

50 1 30 70 0.608 0.18

50 1 50 70 0.519 0.27

50 1 75 70 0.465 0.33

50 1 100 70 0.392 0.63

50 2 30 70 0.616 0.29

50 2 50 70 0.53 0.39

50 2 75 70 0.489 0.52

50 2 100 70 0.396 0.85

50 3 30 70 0.628 0.47

50 3 50 70 0.54 0.52

50 3 75 70 0.5 0.65

50 3 100 70 0.41 1.08
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Table 5 (continued)

Input Output

SC (%) σn (kg/cm
2) SL (%) Dr (%) CSR ΔH (mm)

50 4 30 70 0.631 0.71

50 4 50 70 0.547 0.87

50 4 75 70 0.509 1.1

50 4 100 70 0.42 1.47

50 5 30 70 0.638 1.07

50 5 50 70 0.549 1.33

50 5 75 70 0.51 1.42

50 5 100 70 0.437 2.1

100 1 30 70 0.566 1.06

100 1 50 70 0.42 1.08

100 1 75 70 0.338 1.23

100 1 100 70 0.289 1.48

100 2 30 70 0.575 1.44

100 2 50 70 0.42 1.55

100 2 75 70 0.351 1.68

100 2 100 70 0.297 2.15

100 3 30 70 0.58 1.84

100 3 50 70 0.424 1.98

100 3 75 70 0.36 2.13

100 3 100 70 0.3 2.59

100 4 30 70 0.592 1.87

100 4 50 70 0.429 2.18

100 4 75 70 0.398 2.25

100 4 100 70 0.386 2.64

100 5 30 70 0.598 1.88

100 5 50 70 0.43 2.3

100 5 75 70 0.4 2.37

100 5 100 70 0.387 2.85

0 1 30 85 0.687 0.11

0 1 50 85 0.581 0.12

0 1 75 85 0.505 0.28

0 1 100 85 0.435 0.5

0 2 30 85 0.712 0.2

0 2 50 85 0.585 0.2

0 2 75 85 0.508 0.38

0 2 100 85 0.437 0.7

0 3 30 85 0.731 0.28

0 3 50 85 0.59 0.34

0 3 75 85 0.511 0.42

0 3 100 85 0.44 0.86

0 4 30 85 0.768 0.38

0 4 50 85 0.619 0.5

0 4 75 85 0.527 0.71

0 4 100 85 0.452 0.98

0 5 30 85 0.779 0.42

0 5 50 85 0.621 0.69

0 5 75 85 0.53 0.8

Table 5 (continued)

Input Output

SC (%) σn (kg/cm
2) SL (%) Dr (%) CSR ΔH (mm)

0 5 100 85 0.453 1.33

50 1 30 85 0.615 0.18

50 1 50 85 0.522 0.27

50 1 75 85 0.47 0.3

50 1 100 85 0.392 0.62

50 2 30 85 0.629 0.29

50 2 50 85 0.538 0.36

50 2 75 85 0.5 0.44

50 2 100 85 0.398 0.8

50 3 30 85 0.635 0.39

50 3 50 85 0.544 0.45

50 3 75 85 0.502 0.57

50 3 100 85 0.41 0.97

50 4 30 85 0.64 0.7

50 4 50 85 0.549 0.87

50 4 75 85 0.509 0.99

50 4 100 85 0.428 1.45

50 5 30 85 0.642 1.02

50 5 50 85 0.553 1.29

50 5 75 85 0.511 1.4

50 5 100 85 0.44 1.93

100 1 30 85 0.573 1.06

100 1 50 85 0.422 1.07

100 1 75 85 0.351 1.23

100 1 100 85 0.291 1.45

100 2 30 85 0.585 1.43

100 2 50 85 0.425 1.52

100 2 75 85 0.362 1.66

100 2 100 85 0.3 2

100 3 30 85 0.591 1.8

100 3 50 85 0.427 1.98

100 3 75 85 0.368 2.09

100 3 100 85 0.302 2.54

100 4 30 85 0.597 1.82

100 4 50 85 0.434 2.15

100 4 75 85 0.398 2.2

100 4 100 85 0.386 2.6

100 5 30 85 0.598 1.85

100 5 50 85 0.435 2.25

100 5 75 85 0.401 2.36

100 5 100 85 0.387 2.8
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