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Abstract The current study presents the application of se-
lected chemometric techniques—hierarchical cluster analy-
sis (HCA) and principal component analysis (PCA)—to
evaluate the spatial variation of the water chemistry and to
classify the pollution sources in the Langat River. The HCA
rendered the sampling stations into two clusters (group 1
and group 2) and identified the vulnerable stations that are
under threat. Group1 (LY 1 to LY 14) is associated with
seawater intrusion, while group 2 (LY 15 to LY 30) is
associated with agricultural and industrial pollution. PCA
analysis was applied to the water datasets for group 1
resulting in four components, which explained 85 % of the
total variance while group 2 extracted six components,
explaining 88 % of the variance. The components obtained
from PCA indicated that seawater intrusion, agricultural and
industrial pollution, and geological weathering were poten-
tial sources of pollution to the study area. This study dem-
onstrated the usefulness of the chemometric techniques on
the interpretation of large complex datasets for the effective
management of water resources.

Keywords Hierarchical cluster analysis . Principal
component analysis . Surface water

Introduction

In recent years, increasing attention has been given to
surface water quality. The quality of surface water is an
essential component of the natural environment and is
considered as the main factor for controlling environ-
mental health and potential hazards. Studies have shown
that the quality of surface water is commonly deter-
mined by both natural and anthropogenic influences,
including catchment geology, atmospheric inputs, an-
thropogenic inputs, and climatic conditions (Shrestha
and Kazama 2007; Altın et al. 2009; Saim et al. 2009;
Shokrzadeh and Saeedi Saravi 2009; Najar and Khan
2012). Due to intensive human activities, the anthropo-
genic inputs from urban, mining, industrial, and agricul-
tural activities are the primary factors affecting the
surface water quality. As such, surface water including
rivers, lakes, estuaries, and seas are most susceptible to
pollution owing to their easy accessibility for wastewater
disposal especially for those close to highly urbanized
regions (Singh et al. 2004). Therefore, a monitoring
program that is capable of presenting a reliable estima-
tion of the quality of surface water is necessary in order
to evaluate the spatial and temporal variations. Compar-
ing the value of the environmental variables with exist-
ing guidelines is the most common method in water
quality assessment. However, this method does not read-
ily give information regarding the status of the pollution
sources (Debels et al. 2005).

Environmental datasets are usually complex and con-
tain a large amount of information with internal rela-
tionships among variables, often in a partially hidden
structure (Saim et al. 2009; Praveena et al. 2011). In-
deed, the large and complicated data matrix results from
surface water monitoring programs will lead to difficul-
ty in interpretation and evaluation of the observed
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quality data. Thus, the analysis of such complex data
requires statistical techniques, especially chemometric studies
(multivariate statistical techniques) to assess the water quality
with respect to sustainability (Simeonov et al. 2004; Singh et
al. 2004).Multivariate statistical techniques are powerful tools
for analyzing a large number of datasets, classifying similarity
and assessing the impact of humans on the water quality and
ecosystem conditions (Shrestha and Kazama 2007; Praveena
et al. 2011). This technique has been widely applied to a
variety of environmental applications, which suggests its ver-
satility in handling various types of data (Shrestha and
Kazama 2007; Praveena et al. 2008; Krishna et al. 2009).
There are comparable studies including the evaluation of
temporal/spatial variations and the interpretation of water
quality on the surface water (Shrestha and Kazama 2007;
Hussain et al. 2008; Kazi et al. 2009; Krishna et al. 2009;
Najar and Khan 2012; Varol et al. 2012) and groundwater
(Aris et al. 2007; Krishna et al. 2009; Aris et al. 2012). Hence,
it can be considered that the multivariate technique provides a
valuable way for the reliable management of water resources
through the identification of the possible sources that influ-
ence the water system (Kazi et al. 2009).

Hierarchical cluster analysis (HCA) and principal com-
ponent analysis (PCA) have been frequently applied to
analyze the similarities among the sampling sites and source
apportionment of pollution parameters in surface water
(Akbal et al. 2011; Aris et al. 2012). HCA coupled with
PCA is a powerful pattern recognition technique. HCA can
be used to explain the interrelations among variables or
sampling sites (Reghunath et al. 2002; Singh et al. 2005)
and group the objects of interest into clusters based on the
similarity within a class and dissimilarities among different
classes (Bu et al. 2010; Praveena et al. 2011). In compari-
son, PCA is frequently employed in hydrochemical studies,
geology and hydrogeology applications (Akbal et al. 2011;
Najar and Khan 2012). It is a dimension-reduction technique
that provides information on the most significant parameters
with a simpler representation of the data, as well as a
reduction in the memory required and faster classification
(Shrestha and Kazama 2007). The potential factors or sour-
ces that affect water systems can be identified by reducing
the dimensionality of the dataset (Davis 1986; Huang et al.
2011; Praveena et al. 2011). The objective of this study is to
investigate the spatial variations in surface water quality and
to identify the potential sources of pollution of the Langat
River. Chemometric methods (HCA and PCA) were used to
evaluate the information concerning the similarities between
the sampling stations and to ascertain the contribution of the
potential factors or pollution sources among 29 parameters
at 30 different sampling points of the Langat River. Based
on the information obtained, a holistic interpretation of the
results and the use of selected parameters as source tracers
for contamination were enhanced.

Materials and methods

Site descriptions

The Langat River Basin occupies the south and southeastern
parts of the state of Selangor in Malaysia (Fig. 1). The basin
lies between latitudes 2° 40′ 152″N to 3° 16′ 15″N and
longitudes 101° 19′ 20″E to 102° 1′ 10″E with a total catch-
ment area of approximately 1,815 km2. The basin can be
divided into three areas: the mountainous area, the hilly area,
and the lowland area (DOA 1995). The main river course is
141 km long. The river flows from the high hills in the north
towards the plains and turns westward towards the coast of the
state of Selangor (Mokhtar et al. 2009). The major tributaries
are the Semenyih River, the Labu River, and theMantin River.
The Langat River is essential to the Selangor population and
serves as one of the most important freshwater ecosystems in
Selangor. Besides providing potable water, Langat River also
supplies water for manufacturing and agricultural production.
There are two major impoundments (Langat Dam and Seme-
nyih Dam) that supply water to the entire basin. The source of
the Langat River is on the Pahang–Selangor border where the
hilly terrain reaches up to 1,500 m above the mean sea level.
The basin consists of two estuaries, one is located on the
northeastern side and the river water flows into the Lumut
Strait while the other is on the southern side and flows directly
into the Strait of Malacca (Mokhtar et al. 2009). Water sam-
ples were collected from different sampling sites covering
from Dengkil to these two estuaries.

The Langat River receives an annual rainfall of 1,500 to
2,900 mm. The basin experiences an average temperature of
32 °C throughout the year with a relative humidity of
approximately 80 %. The basin is underlain by schist, phyl-
lite, and granite rock formation of Permian age. The bedrock
in the mountainous area includes Permian igneous rocks,
Pre-Devonian schist, and phyllite of the Howthornden For-
mation (Gobbett and Hutchison 1973). The bedrock in the
hilly area is predominantly Permo-Carboniferous meta-
sandstone, consisting of mainly quartzite and slates of
Kajang Formation and Kenny Hill Formation (Gobbett and
Hutchison 1973; Taha 2003). The lowland area is of Qua-
ternary deposits of Beruas, Gula, and Simpang Formations.
These formations overlie the sedimentary bedrock of the
Kenny Hill Formation and Kajang Hill Formation and grow
progressively younger and thicker toward the coast (Gobbett
and Hutchison 1973). The Quaternary deposits are made up
of marine and continental deposits, which consist of gravel,
sand, clay, and silt (JICA and MGDM 2002; Taha 2003).

Field sampling and preservation

The sampling was carried out in the rainy season (December
2010). The intense rainfall during the rainy season erodes
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the topsoil and carries the accumulated pollutants by surface
runoff before draining into the river. Consequently, the
elevated concentrations of certain pollutants are more likely
to be evident in the rainy season. Triplicate water samples
were collected from 30 sampling stations and were homog-
enized. During sampling, the pre-cleaned polyethylene bot-
tles that were used were normalized by rinsing thoroughly
with the river water to be collected and filled with running
water facing the direction of the flow. In order to prevent the
occurrence of biochemical and surface reaction of the water
samples during transportation and storage, each sample

bottle was fully filled with the water sample without entrap-
ping air bubbles. Each bottle was labeled with its
corresponding sampling station and time of sampling. The
collected samples were kept at 4 °C to minimize the micro-
bial activity in the water (APHA 2005). Generally, water
samples containing colloidal or suspended particulate mate-
rial could interfere with the metal analysis. The samples
were immediately filtered with 0.45 μm cellulose acetate
membrane filter (Whatman Milipores, Clifton, NJ) after
being transported to the laboratory. This procedure is crucial
to prevent the occurrence of clogging during analysis with
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Fig. 1 Map of sampling stations in Langat River
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spectrometry instruments and to obtain the dissolved ions
for metal analysis (APHA 2005). Then, samples were acid-
ified with HNO3 to pH <2 in order to prevent precipitation
of the components, such as metal oxides and hydroxides,
and to retard any biological activities (APHA 2005).

Water analyses

Multiparameter probes (SevenGo pro probe and SevenGo
Duo pro probe, Mettler Toledo AG, Switzerland) were used
to conduct in situ measurement of electrical conductivity
(EC), total dissolved solids (TDS), salinity, redox potential
(Eh), and pH. The temperature and dissolved oxygen (DO)
were measured using a YSI 52-dissolved oxygen meter (YSI
Inc., Yellow Springs, Ohio). All probes were calibrated prior
to sampling. Bicarbonate (titration method using 0.02 N
HCl) and chloride ions (argentometric method using
0.0141 N AgNO3) were analyzed on site using unfiltered
samples (APHA 2005). Meanwhile, the filtered samples
were separated into two polyethylene bottles. The first bottle
was for subsequent analysis of sulfate (SurfaVer 4 HACH
method) and nitrate (NitraVer 5 HACH method) and the
second bottle was for the determination of cations (Ca, Na,
Mg, and K) and metals (27Al, 75As, 138Ba, 9Be, 111Cd, 59Co,
63Cu, 52Cr, 57Fe, 55Mn, 60Ni, 208Pb, 80Se, and 66Zn). The
cations (Ca, Na, Mg, and K) were analyzed by flame atomic
absorption spectrometry (FAAS, Shimadzu AA6800) while
the trace metals were analyzed by inductive couple plasma
mass spectrometry (ICP-MS, ELAN DRC-e, Perkin Elmer).

Quality control and quality assurance were applied on
samples and data collected in order to ensure the overall
precision and accuracy of the data. Sampling, preservation,
and transportation of the water samples to the laboratory
were based on the Standard Method for Water and Waste-
water Analysis (APHA 2005). All the reagents used were of
analytical grade or equivalent and free from any contami-
nants. All the laboratory apparatus was pre-cleaned with
5 % (v/v) concentrated nitric acid (HNO3) and then rinsed
with distilled water (APHA 2005). This procedure is crucial
to ensure that any contaminants and traces of cleaning
reagent were removed before the analysis (APHA 2005).
Polyethylene bottles (free from material that may contain
metals) were used for collecting the water samples in order
to avoid and minimize interference for heavy metal analysis
(APHA 2005). The accuracy of the result was also deter-
mined by performing triplicate samples (n03) with relative
standard deviation. Blanks and calibration standards were
used throughout the FAAS and ICP-MS analyses. Standard
solutions were prepared using stock standard solutions with
Milli-Q water (water resistivity >18.2 Mohms·cm at 25 °C;
Millipore, MA, USA). Blanks were determined for back-
ground correction. The concentration of trace metals were
expressed as micrograms per liter and milligrams per liter

for cations. The accuracy of the ICP-MS performance was
assessed by external standards, which were prepared by
diluting the ICP Multi-Element Mixed Standard III (Perkin
Elmer) into a series of concentrations with the same acid
mixture used for sample dissolution. The recoveries of trace
elements ranged from 95 to 105 % (±5 %), as shown in
Table 1.

Data analyses

All statistical analyses were performed using the PASW
Statistics 18 (formerly known as SPSS Statistics 18, or
SPSS Base). ANOVA was applied to test the significant
difference for all water quality variables among stations.
A post hoc test was performed using the least signifi-
cant difference test with a degree of significance at
0.05. The chemometric approach was performed through
HCA and PCA (Singh et al. 2004; Praveena et al.
2011). HCA was first applied to the spatial variations
among the stations, followed by the use of PCA to
extract, and distinguish the potential factors or sources
of pollution contributing to the variations of the water
quality measures.

Hierarchical cluster analysis

In this study, HCA was used to investigate the group-
ings of the sampling points. This is the most common
approach in which clusters are formed sequentially. This
approach classifies variables or cases/observations into
classes (clusters) on the basis of similarities within a
class and dissimilarities between different classes from the
dataset with respect to the predetermined characteristics

Table 1 Percentage recoveries of trace metals by ICP-MS

Metals Recovery (%) Detection limit ranges (ppt)

Al 100.28 1–10

Ba 99.01 <0.1–1

Cd 102.05 1–10

Cu 101.87 1–10

Fe 98.46 1–10

Pb 102.12 <0.1–1

Mn 97.57 1–10

Zn 101.97 1–10

Co 100.53 1–10

Be 103.08 1–10

As 102.29 1–10

Cr 101.53 1–10

Ni 101.72 1–10

Se 103.43 10–100
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(Boyacioglu and Boyacioglu 2008; Praveena et al.
2011). It is a useful technique to investigate spatial
and temporal variations (Singh et al. 2005; Praveena et
al. 2011). HCA was performed on the river water qual-
ity data to group similar sampling points within the
Langat River. The squared Euclidean was applied as a
distance matrix and Ward’s method as a linkage method
(Singh et al. 2005). Ward’s clustering procedure is ac-
knowledged to be the best method (Reghunath et al.
2002). It was used for the calculation in HCA since it
yields a larger proportion of correct classified observa-
tions than other methods. The result of a hierarchical
clustering procedure can be displayed graphically using
a tree diagram, also known as a dendrogram. A den-
drogram distinguishes groups of high similarity that
have small distances between clusters while the dissim-
ilarity between groups is represented by the maximum
of all possible distances between clusters. A dendrogram
shows a picture of the group and their proximity with a

dramatic reduction in the dimensionality of the original
data (Shrestha and Kazama 2007; Alkarkhi et al. 2009a,
b). Moreover, previous studies also showed the reliably
of HCA in the classification of water quality and as a
guide for future sampling strategies (Singh et al. 2004;
Shrestha and Kazama 2007; Alkarkhi et al. 2009a, b;
Praveena et al. 2011).

Principal component analysis

Osman et al. (2012) stated that PCA is an exploratory,
multivariate, statistical technique that can be used to
examine data variability. It is a useful technique
employed to find the optimal ways of combining vari-
ables into a small number of subsets. PCA attempts to
explain the variance of a large set of intercorrelated
variables by transforming them into a smaller set of
independent variables and reduce the complexity of data
into principal components (Singh et al. 2004, 2005). In

Table 2 Descriptive analysis for
selected water matrices at Langat
River (n090)

NA not available, Eh redox
potential, Temp temperature, EC
electrical conductivity, Sal
salinity, DO dissolved oxygen,
TDS total dissolved solids, SD
standard deviation, CV
coefficient of variance

Unit Minimum Maximum Range Mean±SD CV

pH – 4.79 7.48 2.69 6.67±0.53 7.95

Eh mV −17.60 150.60 168.20 32.95±33.17 100.68

Temp °C 26.80 29.90 3.10 28.27±1.03 3.63

EC mS/cm 0.09 37.40 37.32 14.55±16.18 111.16

Sal ppt 0.05 23.70 23.65 9.07±10.18 112.17

DO mg/L 1.50 5.40 3.90 3.25±1.14 35.18

TDS mg/L 42.40 18,720.00 18,677.60 7,287.71±8,101.91 111.17

Na mg/L 5.21 11,183.00 11,177.79 4,022.32±4,543.16 112.95

Ca mg/L 2.55 356.15 353.60 134.18±151.52 112.92

K mg/L 0.56 171.95 171.39 47.68±61.56 129.11

Mg mg/L 0.70 1,230.70 1,230.00 452.24±508.22 112.38

HCO3 mg/L 9.76 139.08 129.32 61.92±45.19 72.98

Cl mg/L 10.00 8,347.41 8,337.41 3,001.39±3,409.88 113.61

NO3 mg/L 0.50 12.10 11.60 3.25±2.97 91.22

SO4 mg/L 2.00 1,325.00 1,323.00 508.78±570.22 112.08

Al μg/L 1.15 5,191.70 5,190.56 290.07±817.50 281.83

Ba μg/L <0.005 30.71 30.71 7.14±7.32 102.57

Cd μg/L <0.01 0.53 0.53 0.11±0.12 103.79

Cu μg/L 0.57 81.02 80.45 28.16±29.70 105.49

Fe μg/L 81.79 807.15 725.36 312.60±156.74 50.14

Pb μg/L <0.005 6.99 6.99 1.07±1.64 153.25

Mn μg/L <0.005 640.07 640.07 87.14±119.60 137.26

Zn μg/L 0.95 65.06 64.11 15.21±14.29 93.94

Co μg/L 0.06 6.22 6.17 0.64±1.14 180.15

Be μg/L <0.05 1.10 1.10 0.13±0.23 176.29

As μg/L 0.08 24.71 24.63 8.54±9.15 107.03

Cr μg/L 0.32 4.67 4.35 1.13±0.91 80.03

Ni μg/L 0.80 24.72 23.92 7.29±6.75 92.56

Se μg/L <0.10 265.00 265.00 87.86±101.31 115.31
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this study, PCA was applied in datasets that had been pre-
clustered by extracting the eigenvalues and eigenvectors from
a square matrix produced by multiplying data matrix. The
most significant components were extracted to reduce the
contribution of variables with minimum significance. Then,
the obtained components were further subjected to varimax
rotation to generate varimax factors and maximize the differ-
ences between the variables, thus facilitating easy interpreta-
tion of the data. A principal component provides information
on the most meaningful parameters, which describes a whole
dataset, affording data reduction with a minimum loss of the
original information (Shrestha and Kazama 2007). The com-
ponents are ordered in such a way that the first PC explains
most of the variance in the data, and each subsequent one
accounts for the largest proportion of variability that has not

been accounted for by its predecessors. This is to clearly
differentiate potential factors or pollution sources contributing
to the variation of water quality.

Results and discussion

Table 2 shows the descriptive statistics for the selected
physicochemical parameters, major ions, and trace metal
concentrations. The coefficients of variance (CV) for all
variables were above 50 % except for the pH and tempera-
ture. The CV was calculated based on the sum value of
standard deviation from each studied metal divided by its
mean value. The high CV indicated a high variation between
sampling stations. In addition, one-way ANOVA analysis

Group 1 

Group 2 

Fig. 2 Dendrogram showing
hierarchical cluster analysis
between stations
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also proved that the studied variables varied significantly
among the stations (p<0.05).

Hierarchical cluster analysis

In this study, HCA was applied to detect similarities
between the sampling stations. A total of 29 variables
which included physicochemical parameters (tempera-
ture, EC, TDS, salinity, DO, pH, and Eh), major ions
(HCO3, Cl, SO4, NO3, Ca, Na, K, and Mg), and trace
metals (Al, Ba, Be, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se,
and Zn) were first subjected to HCA. The dendrogram
of the locations of different sites along the study area
applied for water datasets are presented in Fig. 2. It
shows that the 30 sampling stations can be grouped into
two clusters (namely group 1 and group 2). The results
indicate the potential contributing sources, which are
attributed to both natural and anthropogenic origin.
Group 1 accounts for sampling stations LY 1 to LY
14, which are mainly located in the vicinity of agricul-
tural land and the Strait of Malacca (Fig. 1). The
movement of seawater during the tidal flow has signif-
icantly contributed to the high load of salinity, EC,
TDS, and also additional ions notably K, Mg, and Na
within downstream of the Langat River. Thus, LY 1 to
LY 14 were grouped under the same cluster and can be
denoted as a group being governed by seawater intru-
sion. Group 2 consisted of sampling stations LY 15 to
LY 30, which are mainly located in the eastern part of
the study area. This area has experienced urbanization and
the land use pattern is predominantly that of urban activities
and agricultural fields (DOA 1995; JICA and MGDM 2002;
Juahir et al. 2011; Osman et al. 2012; Fig. 1). The sampling

stations are mainly located further inland from the estuary and
in close proximity to the major pollution sources, such as
industrial and domestic discharge. As such, sampling stations
from group 2 receive minimal impact from seawater intrusion
compared to group 1. In addition, the differences between
group 1 and group 2 can likewise be substantiated by the
changes in water type from Na-Cl facies (LY 1 to LY 14) to
Ca-HCO3 facies (LY 15 to LY 30) (downstream to upstream),
as depicted in Fig. 3.

Principal component analysis

The PCAwas applied on the water quality dataset to identify
the spatial sources of pollution within group 1 and group 2
in the Langat River (Tables 3 and 4). In reference to the
eigenvalues (greater than 1), four components were
extracted in group 1 and explained 85 % of the total vari-
ance (Table 3), whereas group 2 extracted six components
with a total variance of 88 % (Table 4). Comparable load-
ings were observed in group 1 and group 2.

In Table 3 (group 1), PC 1 accounted for 35 % of the total
variance. This component showed high loading of EC,
salinity, TDS, Ca, HCO3, SO4, Na, Mg, temperature, DO,
Eh, pH, K, NO3, and As (Table 3). EC, salinity, and TDS are
commonly regarded as indicator for the presence of dis-
solved ions including inorganic salt and organic matter in
water (Reza and Singh 2010). Generally, the EC and TDS
increases as the dissolved ions increase. Similarly, as the
dissolved salt concentration increases, the salinity will also
increase (Connell and Miller 1984; Elder 1988). Such a
statement is also supported by the strong positive compo-
nent loadings for EC, salinity, and TDS in PC 1 (Table 3).
Meanwhile, the high loadings for the major ions (Ca, Na,

(a) (b)

Fig. 3 Ternary plots for a cations and b anions of water samples in Langat River
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Mg, K, HCO3, SO4, and NO3) in PC 1 may be explained by
the mixing condition between freshwater (river) and seawa-
ter (Aris et al. 2007; Praveena et al. 2011; Aris et al. 2012).
In addition, forest and agriculture are regarded as the pri-
mary landuse found in the sampling locations and were
included within group 1 (DOA 1995; Juahir et al. 2011;
Fig. 1). Taking this into consideration, the observed high
loading of As and NO3 in PC 1 also implies the possible
contribution from agricultural land. Furthermore, farm
draining during the rainy season led pollution of the river
caused by the by-products from the agricultural applications

(Diagomanolin et al. 2004; Shokrzadeh and Saeedi Saravi
2009). Such relatively high loadings strongly indicate that
the river water in group 1 is primarily controlled by seawater
intrusion and agricultural discharges. PC 2, with a total
variance of 23.17 %, consists of Co, Be, Al, Mn, Ba, Ni, Zn,
and Fe (Table 3). This component was primarily contributed
by trace metals. The elements especially Al, Mn, Ni, Zn, and
Fe have been constantly released into the environment
through weathering processes (Alloway 1995). The high con-
centrations of Al, Fe, and Mn in the Langat River are due to
the composition of sediments, which is predominantly con-
trolled by its lithology. Ferralsols (oxisols and ultisols), which
are rich in Al and Fe, are acidic and highly weathered
(Alloway 1995). During the rainy season, intense rainfall
erodes the topsoil and carries these elements into the river.
In this case, this component can be attributed to rock weath-
ering. Meanwhile, the Fe, Al, and Mn oxides have a profound
effect in controlling the adsorption and flocculation of other
elements in the sediment (Alloway 1995). PC 3, with a total
variance of 10 %, consists of Pb, Cl, Cd, and Cr (Table 3).
Negative loadings of Pb and positive loading of Cl, Cd, and Cr
suggest the occurrence of ion competition between these
element binding sites (Campbel and Stokes 1985). Further-
more, Abdullah and Royle (1974) observed that an increase in
salinity caused a decrease in concentrations of Zn, Cu, Fe and
Cd, whereas a reverse trend was observed in for Pb and Zn.
PC 4 with a total variance of 8 % consists of Se and Cu
(Table 3). This component was deemed to be attributed to
the pig farming activities (UPUM 2002; Lee et al. 2006).
Copper sulfate is normally added to the animal feed as an
additive to control certain diseases (Sarmani et al. 1992). The
by-products from pig food contributed to the elevated Cu to
the river via the effluent discharged (Sarmani et al. 1992;
UPUM 2002; Lee et al. 2006; Juahir et al. 2011).

Group 2 comprised sampling stations LY 15 to LY 30. In
Table 4 (group 2), PC 1, with a total variance of 35 %,
consists of salinity, EC, TDS, Mg, Na, Se, Cu, Cl, Ni, SO4,
and Cr. The component loadings are comparable with PC 1
in group 1. The similar loading in EC, salinity, TDS, and
major ions indicates that the seawater intrusion still influ-
ence the hydrochemistry of the study area. Meanwhile, the
high loading of Se and Cu in PC 1 may be attributed to the
extraction of selenium dioxide from residues obtained dur-
ing the purification of copper (Langner 2000; Hait et al.
2009). In addition, the fluctuation in flow between freshwa-
ter and seawater causes elevated salt concentration, which,
consequently, increases the competition between the cations
and the trace metals for binding sites in the particulates
(Connell and Miller 1984; Elder 1988). The cations, being
more prominent, drive the trace metals into the overlying
water column. As a result, metals may be desorbed from the
sediment thereby increasing their concentrations (Connell
and Miller 1984; Elder 1988). PC 2, with a total variance of

Table 3 Component loadings of river water quality variables on
varimax rotated matrix for group 1

Component

PC 1 PC 2 PC 3 PC 4

Electrical conductivity 0.94 −0.04 0.21 0.18

Salinity 0.94 −0.04 0.21 0.19

Total dissolved solids 0.94 −0.05 0.21 0.19

Ca 0.93 −0.33 0.06 0.05

HCO3 0.83 −0.46 −0.02 −0.07

SO4 0.80 −0.50 −0.22 −0.04

Na 0.79 −0.03 0.08 0.40

Mg 0.75 −0.22 0.44 0.40

Temperature 0.72 0.39 0.29 −0.03

Dissolved oxygen 0.72 0.37 0.15 0.35

Eh −0.72 0.62 0.19 0.17

pH 0.72 −0.62 −0.19 −0.17

K 0.69 −0.34 0.45 0.34

NO3 −0.65 −0.07 −0.12 −0.31

As 0.63 0.41 0.54 0.31

Co −0.12 0.98 −0.05 −0.10

Be −0.17 0.96 0.03 −0.12

Al −0.25 0.95 0.11 0.05

Mn −0.13 0.95 −0.13 −0.18

Ba −0.16 0.94 −0.17 −0.21

Ni 0.27 0.90 0.14 0.21

Zn −0.26 0.86 −0.07 −0.11

Fe 0.34 0.79 −0.06 −0.15

Pb 0.12 0.43 −0.78 0.04

Cl 0.15 −0.13 0.69 0.64

Cd 0.16 0.05 0.57 −0.08

Cr 0.36 0.20 0.55 0.11

Se 0.18 −0.09 −0.11 0.68

Cu 0.40 −0.28 0.18 0.62

Initial eigenvalue 10.21 9.04 2.93 2.38

Percent of variance 35.22 31.17 10.09 8.21

Cumulative percent 35.22 66.39 76.48 84.68

The values in italics are factor loadings above 0.50 that taken after
varimax rotation was performed
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25 %, consists of Pb, Be, Zn, Fe, Co, Al, As, Mn, and
HCO3 (Table 4). The metals, including Pb, Be, Zn, Fe,
Co, and Al, may be attributed to industrial activity,
which is deemed to be closely related to the steelmak-
ing industries (Shazili et al. 2006). In fact, the largest
steelmaking industry in Malaysia is located in proximity
to the upstream area (Sarmani 1989; Mokhtar et al.
2009) thus explaining the high loadings of these ele-
ments in PC 2. The high loading of Pb is related to the
heavy shipping traffic and antifouling paints used (Goh
and Chou 1997; Shazili et al. 2006; Berandah et al.
2010). Furthermore, intensive dredging, reclamation,
construction, and shipping activities which disturb the
river currents will lead to re-suspension of the sediment-
bind trace elements in the environment, and, probably,

in the soluble forms readily absorbed by aquatic organ-
isms (Zulkifli et al. 2010). PC 3, which accounted for
12 % of total variance, consists of pH, Eh, K, and
temperature (Table 4). This component illustrates the influ-
ence of pH, Eh, and temperature on the quality of the river
water. PC 4, PC 5, and PC 6, which explain about 6, 5, and
4 % of the total variance, respectively, have a strong positive
loading on temperature as well as Ba, DO, Cd, Ca, and NO3.
The presence of Ba and Cd may be attributed to industrial
activity, which is deemed to be closely related to metal finish-
ing processes such as electroplating, etching, and preparation
ofmetal components (Shazili et al. 2006). The NO3 is possibly
derived from geologic deposits, organic matter decomposi-
tion, untreated wastewater input, agricultural runoff, and at-
mospheric input (Alkarkhi et al. 2009a).

Table 4 Component loadings of
river water quality variables on
varimax rotated matrix for
group 2

The values in italics are factor
loadings above 0.50 that taken
after varimax rotation was
performed

Component

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Salinity 0.98 0.14 0.05 0.00 0.04 0.00

Electrical conductivity 0.97 0.14 0.07 0.04 0.09 0.04

Total dissolved solids 0.97 0.14 0.07 0.04 0.09 0.04

Mg 0.96 0.15 0.20 −0.01 0.05 0.05

Na 0.95 0.18 −0.08 0.04 0.10 0.04

Se 0.84 0.24 0.36 −0.01 0.10 0.22

Cu 0.81 0.44 0.06 0.13 −0.18 −0.08

Cl 0.81 −0.07 0.31 −0.18 −0.06 −0.18

Ni 0.80 0.36 0.35 0.12 0.04 −0.14

SO4 0.70 0.22 0.41 −0.41 0.01 0.17

Cr 0.66 0.62 0.05 0.10 −0.16 −0.11

Pb −0.04 0.92 0.05 0.02 −0.19 −0.04

Be 0.18 0.91 0.19 −0.08 −0.09 −0.01

Zn 0.36 0.86 −0.16 0.05 −0.13 0.03

Fe −0.06 0.85 0.18 0.20 0.11 −0.03

Co 0.22 0.84 0.28 −0.03 0.16 0.01

Al 0.40 0.82 −0.06 0.15 −0.09 −0.01

As 0.36 0.79 0.38 −0.04 0.05 0.00

Mn 0.22 0.65 0.28 −0.08 0.39 0.24

HCO3 −0.52 −0.55 0.22 −0.12 0.16 −0.11

pH −0.39 −0.10 −0.84 −0.02 0.00 0.06

Eh 0.46 0.09 0.83 0.00 0.03 −0.07

K 0.26 −0.25 −0.80 0.20 0.14 −0.16

Temperature 0.62 0.16 0.64 −0.07 0.17 0.21

Ba −0.14 0.38 0.14 0.72 0.27 0.06

Dissolved oxygen 0.03 −0.10 −0.14 0.70 −0.10 −0.10

Cd 0.47 0.48 −0.15 0.58 −0.15 0.15

Ca 0.12 −0.14 −0.06 0.00 0.94 0.02

NO3 0.03 −0.03 0.06 −0.05 0.03 0.97

Initial eigenvalue 10.16 7.31 3.55 1.73 1.43 1.29

Percent of variance 35.04 25.20 12.24 5.96 4.95 4.43

Cumulative percent 35.04 60.24 72.48 78.44 83.39 87.82
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Conclusion

The present study has applied the chemometric approach to
investigate the spatial variation and identify the pollution
sources in the Langat River, Malaysia. The HCA rendered
the sampling stations into two clusters. Cluster 1 (LY 1 to
LY 14) was heavily affected by seawater while cluster 2 (LY
15 to LY 30) mainly corresponded to the agricultural and
industrial activities. The cluster results suggested that cer-
tain stations should be given a high priority if remediation
efforts are to be undertaken. PCA identified several intrinsic
factors responsible for river pollution, either from natural or
anthropogenic inputs. Group 1 extracted four components
with a total variance of 85 %, while group 2 extracted six
components with a total variance of 88 %. The results sug-
gested that seawater intrusion, agricultural pollution, industri-
al pollution, and geological weathering were potential
pollution sources for both groups. In conclusion, this study
highlights the usefulness of chemometric approach in delin-
eating factors that govern the spatial variability of hydrochem-
istry in a tropical river. It is evident that the chemometric
approach is useful in providing a reliable classification on
the basis of pollution status and identification of pollution
sources. Such effort provides holistic information for effective
river basin management and makes it possible to design a
future spatial sampling strategy in an optimal manner.
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