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Abstract Landslide susceptibility and hazard assessments
are the most important steps in landslide risk mapping. The
main objective of this study was to investigate and compare
the results of two artificial neural network (ANN) algorithms,
i.e., multilayer perceptron (MLP) and radial basic function
(RBF) for spatial prediction of landslide susceptibility in Vaz
Watershed, Iran. At first, landslide locations were identified
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by aerial photographs and field surveys, and a total of 136
landside locations were constructed from various sources.
Then the landslide inventory map was randomly split into a
training dataset 70 % (95 landslide locations) for training the
ANN model and the remaining 30 % (41 landslides locations)
was used for validation purpose. Nine landslide conditioning
factors such as slope, slope aspect, altitude, land use, litholo-
gy, distance from rivers, distance from roads, distance from
faults, and rainfall were constructed in geographical informa-
tion system. In this study, both MLP and RBF algorithms were
used in artificial neural network model. The results showed
that MLP with Broyden—Fletcher—Goldfarb—Shanno learning
algorithm is more efficient than RBF in landslide susceptibil-
ity mapping for the study area. Finally the landslide suscepti-
bility maps were validated using the validation data (i.e., 30 %
landslide location data that was not used during the model
construction) using area under the curve (AUC) method. The
success rate curve showed that the area under the curve for
RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %)
accuracy, respectively. Similarly, the validation result showed
that the area under the curve for MLP and RBF models were
0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The
results of this study showed that landslide susceptibility map-
ping in the Vaz Watershed of Iran using the ANN approach is
viable and can be used for land use planning.

Keywords Landslide - Susceptibility - Artificial neural

networks - Geographic Information Systems (GIS) - Vaz
Watershed - Iran

Introduction

Landslides represents approximately 9 % of the natural
disasters occurred during the 1990s worldwide (Gomez
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and Kavzoglu 2005). This trend is expected to continue in the
coming decades due to increasing urbanization and develop-
ment, continuing deforestation and an increase in regional
precipitation in landslide-prone areas due to changing climatic
patterns (Yilmaz 2009a). Several factors play role in the
occurrence of landslides. Primary causes of landslides could
include a wide range of factors like slope, lithology, distance
from roads (Dahal et al. 2008), land use and human activity
(Zézere et al. 1999). The identification of landslide-prone
areas is essential for safer strategic planning for future devel-
opmental activities in the region. Therefore, landslide hazard
assessment of an area is extremely important (Varnes 1984).
Over the decades, landslide susceptibility and hazard assess-
ment are in use (Fell et al. 2008). The landslide susceptibility
modeling broadly falls into two main groups: qualitative and
quantitative approaches. Generally, a qualitative approach is
based on the subjective judgment of an expert or a group of
experts, whereas the quantitative approach is based on math-
ematically rigorous objective methodologies (Neaupane and
Achet 2004). During the recent decades, the use of landslide
susceptibility and hazard maps for land use planning has
increased significantly. These maps rank different sections of
land surface according to the degree of actual or potential
landslide hazard; thus, planners are able to choose favorable
sites for urban and rural development. In recent years, the use
of geographical information system (GIS) for landslide sus-
ceptibility modeling has been increasingly used. It is because
of the development of commercial systems and the quick
access to data obtained through global positioning systems
and remote sensing techniques. Moreover, GIS is an excellent
and useful tool for the spatial analysis of a multidimensional
phenomenon such as landslide susceptibility mapping (Van
Westen et al. 2003). Over the last decades, a number of
different methods for landslide susceptibility mapping have
been used and suggested. The process of creating these maps
includes several qualitative or quantitative approaches
(Soeters and Van Wsten 1994; Aleotti and Chowdhury
1999). Early attempts defined susceptibility classes by over-
laying lithological and morphological slope attributes on land-
slide inventories (Nilsen et al. 1979). Many studies have been
carried out on landslide hazard evaluation using GIS; for
example, Guzzetti et al. (1999) summarized several landslide
hazard evaluation studies. Recently, there have been studies
on landslide susceptibility mapping using GIS, and many of
these studies have applied probabilistic-based models
(Gokceoglu et al. 2005; Lee and Sambath 2006; Akgun and
Bulut 2007; Akgun et al. 2008; Akgun and Turk 2010;
Pradhan et al. 2010; Pradhan and Youssef 2010; Yilmaz
2010a; Akgun 2011; Pourghasemi et al. 2012a, b, e). Logistic
regression model, one of the most widely used statistical
models, has also been employed for the purpose of landslide
susceptibility mapping (Can et al. 2005; Duman et al. 2006;
Gorsevski et al. 2006; Lee and Evangelista 2006; Nefeslioglu
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et al. 2008; Yilmaz 2009b; 2010b; Pradhan 2010; Chauhan et
al. 2010; Bai et al. 2010; Pradhan 2011a, b; Akgun et al. 2011;
Felicisimo et al. 2012; Lee et al. 2012; Oh et al. 2012). Data
mining using fuzzy logic (Ercanoglu and Gokceoglu 2002,
2004; Champati Ray et al. 2007; Kanungo et al. 2008;
Pradhan 2010; Akgun et al. 2012; Pourghasemi et al.
2012c), artificial neural networks (Ermini et al. 2005; Yilmaz
2009a; 2010a; Pradhan and Pirasteh 2010; Caniani et al. 2008;
Pradhan and Lee 2010a, b, ¢; Pradhan and Buchroithner 2010;
Akgun etal. 2011b; Song etal. 2012; Lee etal. 2012; Bui etal.
2012a), decision tree (Wan 2009; Saito et al. 2009; Akgun and
Turk 2010; Nefeslioglu et al. 2010; Yeon et al. 2010;
Gorsevski and Jankowski 2010), spatial multicriteria evalua-
tion (Pourghasemi et al. 2012d), evidential belief functions
(Althuwaynee et al. 2012; Bui et al. 2012b), support vector
machine (Yao et al. 2008; Yilmaz 2010b; Marjanovic et al.
2011; Xu et al. 2012) and neuro-fuzzy (Kanungo et al. 2006;
Lee et al. 2009; Pradhan and Lee 2010a; Vahidnia et al. 2010;
Oh and Pradhan 2011; Sezer et al. 2011; Bui et al. 2011)
models have also been applied using GIS. Preparation of land-
slide hazard assessment maps requires an evaluation of the
relationships between various terrain conditions and landslide
inventories. Therefore, an objective procedure is often desired
to quantitatively support the landslide studies (Chauhan et al.
2010).

As it can be seen in the aforementioned literature, artifi-
cial neural networks have been widely used in landslide
susceptibility assessment. An artificial neural network
(ANN) is composed of a set of nodes and a number of
interconnected processing elements. ANNs use learning
algorithms to model knowledge and save this knowledge
in weighted connections, mimicking the function of a
human brain (Pradhan and Lee 2010b). They are considered
as heuristic algorithms in the sense that they can learn from
experience via samples and are subsequently applied to
recognize new unseen data (Kavzoglu and Mather 2000).
The parallel distribution of information within the ANNs
provides the capacity to model complicated, nonlinear, in-
terrelated processes. This ultimately allows ANNs to model
environmental systems without prior specification of the
algebraic relationships between variables (Lek et al. 1999).
The main difference between the present study and the
approaches described in the aforementioned publications is
that multilayer perceptron (MLP) and radial basic function
(RBF) algorithms were applied and their results were com-
pared for landslide susceptibility at Vaz Watershed of
Mazandaran Province, Iran.

Study area characteristics

Vaz Watershed is located in the south of Mazandaran
Province, northern Iran where most landslides have
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occurred, in the mountainous and forest region. The area is
located between 52° 01’ to 53° 12’ E longitude and latitude
36° 25' to 36° 14’ N covering with an area of 1,420 km?.
The general topography of the area is highlands with ele-
vations ranging from 240 to 3,590 m a.s.1 and slopes varying
between flat and >60° (Fig. 1). The bedrock in this region
mainly consists of limestone with dolomite, siltstone, sand-
stone, marl and conglomerate (source: geology survey of
Iran, (GSI)). The majority of the area is covered by Rﬁ (thick
bedded to massive dolomitic limestone, dolomite and lime-
stone) and R3J g (shale, sandstone, siltstone, carbonaceous
shale and quartzite) lithological units (85.91 %). The land
use of the study area mainly comprises forest with variant

range of coverage from low to dense, poor range, medium
range, good range, orchard and settlement areas. The
climate in the study area is Mediterranean with a mean
annual precipitation of 968 mm and occurs in the form of
snow during the winter. The climate is mostly affected by
altitude with amount of precipitation decreasing with an
increasing altitude.

There are 136 landslide locations in the study area. Some
of the landslides are presumably very old in age. Most of the
landslides are shallow rotational with a few translational.
However, during the analyses performed in the present
study, only rotational failure is considered and translational
slides were eliminated because its occurrence is rare. The
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Fig. 1 Location map of the study area (landslide location map with hill shaded map of the study area)
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minimum and maximum size of landslides is 20 and
3,000 m?, respectively. Some field photographs showing
some recent landslides are shown in Fig. 2. Very old land-
slides are mostly relict or dormant and are partially con-
cealed by forest and the intensive farming activity. In
addition to the landslides, it is possible to observe various
types of erosional features (i.e., rill erosion, bank erosion,
gully erosion and surface erosion) in the study area. The Vaz
River which is the main river system in the study area
consists of alluvial fans and terraces, alluvial sheets and
locally undivided lake deposits.

Thematic data preparation

Various thematic data layers representing landslide condi-
tioning factors, such as slope, slope aspect, altitude, land
use, lithology, distance from rivers, distance from roads,
distance from fault and rainfall, were prepared. A total of
136 landslides were mapped in the study area at 1:25,000
scale (Fig. 1). The modes of failure for the landslides iden-
tified in the study area were determined according to the
landslide classification system proposed by Varnes (1978).

In order to develop a method for the assessment of landslide
susceptibility, determination of the conditioning factors for
the landslides is crucial (Ercanoglu and Gokceoglu 2002). In
fact, the regional landslide assessments should be practical
and applicable for the study area. For that reason, the input
parameters should be representative, reliable and obtained
easily. The landslide conditioning factors were transformed
into a vector-type spatial database using the GIS. For the
digital elevation model (DEM) creation, 20 m interval con-
tours and survey base points showing the elevation values
was extracted from the 1:50,000-scale topographic maps.
Using this DEM, slope, slope aspect and altitude were
produced (Fig. 3a—c). In the present study, substantial atten-
tion has been given for slope conditions. Slope configura-
tion and steepness play an important role in conjunction
with lithology. The slope map was reclassified into five
classes: (1) <5 %, (2) 5-15 %, (3) 15-30 %, (4) 30-60 %
and (5) >60 % (Fig. 3a). The slope aspects are grouped into
nine classes (Fig. 3b): flat (—1°), north (337.5-360°,
0-22.5°), north—east (22.5-67.5°), east (67.5-112.5°),
south—east (112.5-157.5°), south (157.5-202.5°), south—
west (202.5-247.5°), west (247.5-292.5°) and north—west
(292.5-337.5°). Altitude is also a significant landslide

Fig. 2 Field photographs showing some recent landslides in Vaz
Watershed area: a this picture is taken at 1,915 ma.s.l. at X, 604459
and ¥, 4016165 near to a river; b taken at 1,375 ma.s.l. at X, 598280
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and Y, 4019760in the forest area and away from the road; c taken at
729 ma.s.l. at X, 598859 and Y, 4023650 showing very steep slope
between the river and road
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conditioning factor because it is controlled by several geo-
logic and geomorphological processes (Gritzner et al. 2001;
Dai and Lee 2002; Ayalew et al. 2005). The altitude map is
prepared from the 20x20 m digital elevation model and
grouped into 12 classes (Fig. 2c).

In addition, the distance from rivers and roads was cal-
culated using the topographic database. The river and road
buffer was calculated at 100 m intervals as shown in Fig. 4a,
b, respectively. Using the geology database, the types of
lithology were extracted, and the distances of faults were
calculated. The lithology map was obtained from a

605000 608000

1:100,000-scale geological map (Fig. 5), and distance from
faults map was calculated in 100 m intervals (Fig. 6). The
land use data were classified by using a Landsat Enhanced
Thematic Mapper satellite image acquired on 2006 was used
employing a supervised classification method and was ver-
ified by field survey. There are six land use classes identi-
fied, such as poor range, medium range, good range,
orchard, forest and settlement area extracted for land use
mapping (Fig. 7). All the above-mentioned landslide condi-
tioning factors were converted to a raster grid with 20x20 m
pixel for application of artificial neural network models.
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Fig. 4 Topographical parameter maps of the study area: a distances from rivers; b distances from roads

Finally, the precipitation map was prepared using the rainfall
data (Fig. 8) using the data received from four rainfall
stations for the years 1975 to 2010 (annual mean rainfall).

Artificial neural networks

ANNSs are generic nonlinear function approximation algo-
rithms s that has been extensively used for problems like
pattern recognition and classification (Palani et al. 2008;
Kawabata and Bandibas 2009). The categorization of a
terrain into ordinal zones of landslide susceptibility may
also be regarded as a classification problem. Thus, the
ANN outputs may be considered as the degree of the mem-
bership of each terrain unit with regard to the occurrence of
landslide (Ermini et al. 2005). The higher the membership
value indicates the more susceptible is the terrain unit to the
occurrence of landslide and vice versa. Moreover, since
ANN can process input data at varied measurement scales
and units, such as continuous, categorical and binary data, it
appears to be an appropriate approach for landslide suscep-
tibility assessment mapping (Garrett 1994).

The backpropagation artificial neural networks are the most
widely used type of networks (Negnevitsky 2002) because of
their flexibility and adaptability in modeling a wide spectrum
of problems in many application areas (Basheer and Hajmeer
2000). When developing an artificial neural network, the data
are commonly partitioned into at least two subsets such as
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training and test data. It is expected that the training data
include all the data belonging to the problem domain. Cer-
tainly, this subset is used in the training stage of the model
development to update the weights of the network. On the
other hand, the test data should be different from those used in
the training stage. The main purpose of this subset is to check
the network performance using untrained data, and to confirm
its accuracy. No exact mathematical rule to determine the
required minimum size of these subsets exists. However, some
suggestions for the portions of these samplings are encoun-
tered in the literature (Basheer and Hajmeer 2000). Consider-
ing these suggestions, it is revealed that approximately 80 %
of whole data are commonly enough to train the network, and
the rest of it is usually handled to test the final architecture of
the model (Baum and Haussler 1989; Nelson and Illingworth
1990; Haykin 1994; Masters 1994; Dowla and Rogers 1995;
Looney 1996; Swingler 1996). In a paper, Looney (1996)
recommends 65 % of the parent database be used for training,
25 % for testing and 10 % for validation, whereas Swingler
(1996) proposed 20 % for testing and Nelson and Illingworth
(1990) suggested 20-30 % data for training.

The MLP was trained with the backpropagation algo-
rithm (BPA), the most frequently used neural network meth-
od, and was adopted in this study (Fig. 9). The MLP with
the BPA was trained using a set of examples of associated
input and output values (Pradhan and Lee 2010b).

MLP is perhaps the most popular and most widely used
ANN, which consists of two layers, input and output, and
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Fig. 5 The lithology map of the study area

one or more hidden layers between these two layers. The
hidden layers are introduced to increase the network’s abil-
ity to model complex functions (Paola and Schowengerdt
1995). Each layer in a network contains sufficient number of
neurons depending upon the application. The input layer is
passive and merely receives the data (e.g., the data pertain-
ing to various causative factors). Unlike the input layer, both
hidden and output layers actively process the data. The
output layer produces the neural network’s results.

Thus, the number of neurons in the input and output
layers are typically fixed by the type of application. The
number of hidden layers and their neurons are typically
determined by trial and error (Gong 1996). There are three
stages involved in ANN data processing for a classification
problem: the training stage, the weight determination stage,
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and the classification stage. The training process is initiated
by assigning arbitrary initial connection weights which are
constantly updated until an acceptable training accuracy is
reached. The adjusted weights obtained from the trained
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network were subsequently used to process the testing data
in order to evaluate the generalization capability and accu-
racy of the network. The performance of the networks is
evaluated by determining both training and testing data
accuracies in terms of percent correct and overall classifica-
tion accuracy (Congalton 1991). Training data from input
neurons are processed through hidden neurons to generate
an output in the output neuron. The input that a single
neuron j in the first hidden layer (HA), received from the
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Hidden neurons
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Fig. 9 Architecture of neural network model for Vaz Watershed
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neurons (7) in its preceding input layer, may be expressed as
(Pradhan and Lee 2010a, b):

t
net; = Z WiiD; (1)
i=1

Where w;; represents the connection weight between input
neuron i and hidden neuron j, p; is the data at the input
neuron { and ¢ is the number of input neurons. The output
value produced at the hidden neuron j, p;, is the transfer
function, f, evaluated as the sum produced within neuron j,
net;. So, the transfer function f'can be expressed as (Pradhan
and Lee 2010a, b):

1
=1 (net) = =g (2)

The function f is usually a nonlinear sigmoid function
that is applied to the weighted sum of the input data before
the data are processed to the next layer. Similarly, the neural
network output value, p;, at the output neuron o, is obtained
using Egs. (1) and (2).

Similarly, another algorithm is RBF which emerged as a
variant of artificial neural network in late 1980s. However,
their roots are entrenched in much older pattern recognition
techniques, as for example, potential functions, clustering,
functional approximation, strict interpolation and mixture
models. RBFs are embedded in a two-layer neural network,
where each hidden unit implements a radial-activated function.
The output units implement a weighted sum of hidden unit
outputs. The input into an RBF network is nonlinear while the
output is linear. Their excellent approximation capabilities
have been studied in. Due to their nonlinear approximation
properties, RBF networks are able to model complex map-
pings, which perceptron neural networks can model by means
of multiple intermediary layers (Haykin 1994).

On the other hand, the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) algorithm is a quasi-Newton algorithm for
numerical optimization. Quasi-Newton algorithms compute
an approximation for Hessian matrix as a function of the
gradient. Hence, the computation complexity is lesser than
the direct Newton’s method for numerical optimization. BFGS
algorithm is the most successful quasi-Newton algorithm
found so far. Even though it requires more computation in
each iteration than simple gradient descent method, it generally
converges in less iteration (Wijesinghe and Dias 2008).

Application of ANN to landslide susceptibility mapping

When developing an artificial neural network, the data are
commonly partitioned into at least two subsets such as
training and validation data. Before running the artificial
neural network program, the training site should be selected
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(Nefeslioglu et al. 2008; Caniani et al. 2008). In this study,
the landslide-prone (occurrence) area and the landslide-not-
prone area were selected as training sites. Cells from each of
the two classes were randomly selected as training cells,
with 136 cells denoting areas where landslide occurred.
Among the 136 cases of landslide occurrences, 95 cases
(70 %) were selected for calibrating the ANN and the
remaining 41 cases (30 %) were used for validation testing.
Data normalization as one of frequently standard data pre-
process in the development of ANN models. It is recom-
mended to linearly scale each attribute to the range [0.1,
0.9], [-1, +1], or [0, 1]. In the modeling process, the data set
of nine variables was scaled to the range between 0.1 and
0.9 by following Eq. 3:

X — X
N; =08 — 2 0.1 3
(Xmax_Xmin) * ( )

where, N; is the normalized value, X; is the original data and
Xmin and X,,.x, respectively, the minimum and maximum
value of X; (Pradhan and Lee 2010b).

Subsequently, after normalizing the data for nine land-
slide conditioning factors, the presence or absence of land-
slides is defined with codes 0 and 1. The distribution of the
training pixels is shown in Table 1. Once the ANN, MLP
and RBF models were successfully trained in the training
phase, the connection weights of the two models were used
to calculate the landslide susceptibility indexes (LSI) for all
the pixels in the study area as shown in Figs. 10 and 11.

In order to obtain landslide susceptibility map, the LSI
values were reclassified into different susceptibility classes.
There are many classification methods available such as
quantiles, natural breaks, equal intervals and standard devi-
ations (Ayalew and Yamagishi 2005). Generally, the selec-
tion of classification methods may depend on the histogram
of landslide susceptibility indexes. The LSIs were classified
(Falaschi et al. 2009; Bednarik et al. 2010; Constantin et al.
2010; Erner et al. 2010; Pourghasemi et al. 2012c) into five
classes based on natural break classification scheme (None,
low, moderate, high and very high) (Figs. 10 and 11).

Results and discussion

Landslides are natural phenomena which often have detri-
mental consequences. Landslide hazards can be systemati-
cally assessed by using different factors and methods. In this
study, landslide susceptibility maps have been constructed
using the relationship between landslide locations and caus-
ative factors. The artificial neural network model was
applied by employing both MLP and RBF algorithms to
study the influence of different factors on landslide occur-
rence, and subsequently landslide susceptibility maps were
constructed. In this study, both MLP and RBF methods

results showed a total of five artificial neural networks,
among which four related to the MPL method and the fifth
one is related to the RBF. The distributions of the training
samples are given in Table 1. The first MLP was used by
employing 9 input layers, 14 hidden layers and 1 output
layer; the second used 9 input layers, 3 hidden layers and 1
output layer; the third used 9 input layers, 10 hidden layers
and 1 output layer; and the fourth used 9 input layers, 6
hidden layers and loutput layer. Table 2 shows (train per-
fect) 9 input layers, 14 hidden layers and 1 output layer that
has been used during the training phase. Further, to compare
the performance of the BFGS function and gradient descent
using various learning rate (0.1 to 0.9), it was found that
landslide susceptibility assessment using gradient descent
learning rate of 0.9 is a better approach in landslide suscep-
tibility assessment. The neural network analysis was per-
formed using the gradient descent by employing nine input
layers, eight hidden layers and one output layer (Table 3).

According to the landslide susceptibility map produced
from the gradient descent 0.9 function methods, 2.61 and
5.31 % of the total area are found under no and low land-
slide susceptibility classes. Areas covering moderate, high
and very high susceptibility zones represent 22.77, 39.15
and 30.16 % of the total area, respectively. Based on the
landslide susceptibility map produced by the MLP function
method, 38.65 % of the total area is found under no (0.39)
and low (38.26) landslide susceptibility classes. Similarly,
areas encompassing moderate, high and very high suscepti-
bility zones represent 47.48, 11.28 and 2.59 % of the total
area, respectively.

Relationship between landslide and landslide conditioning
factors

The results of spatial relationship between landslide and
conditioning factors using frequency ratio model is shown
in Table 1. In Table 1, slope percentage classes showed that
>60 % of the classes have higher frequency ratio value. As
the slope increases, the shear stress in the soil or other
unconsolidated material generally increases. Gentle slopes
are expected to have a low frequency of landslides because
of the generally lower shear stresses associated with low
gradients. Steep natural slopes resulting from outcropping
bedrock, however, may not be susceptible to shallow land-
slides. In the case of slope aspect, most of the landslides
occurred in east and south—east facing. In the case of alti-
tude, both 900-1,200 m classes have 29.67 % of landslide
probability and frequency ratio value of 2.70. Results
showed that the frequency ratio values decreased with the
altitude addition in the study area (Table 1). Assessment of
distance from rivers and roads showed that distance
of >400 m of rivers and 0-100 m of roads have high
correlation with landslide occurrence. Investigation of
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Table 1 Distribution of the training pixels

Factor Class Vaz watershed
Landslide not occurred Landslide occurred Frequency ratio
Count Ratio (%) Count Ratio (%)
Slope (%) 0-5 156 0.46 0 0 0
6-15 762 2.26 3 3.30 1.46
16-30 6,716 19.94 20 21.98 1.10
31-60 18,990 56.37 29 31.87 0.57
60< 7,065 20.97 39 42.86 2.04
Slope aspect North 6,339 18.84 9 9.89 0.53
East 4,728 14.05 25 27.47 1.96
South 2,237 6.65 5 5.49 0.83
West 3,163 9.40 3 3.30 0.35
North—East 6,589 19.58 18 19.78 1.01
North—West 5,228 15.54 14 15.38 0.99
South—East 3,042 9.04 14 15.38 1.70
South—West 2,325 6.91 3.30 0.48
Altitude (m) <300 39 0.12 0 0
300-600 1,974 5.87 9.89 1.69
600900 2,990 8.89 17 18.68 2.10
900-1,200 3,700 11.00 27 29.67 2.70
1,200-1,500 4,001 11.89 10 10.99 0.92
1,500-1,800 4,417 13.13 16 17.58 1.34
1,800-2,100 4,350 12.93 4 4.40 0.34
2,100-2,400 4,035 11.99 0 0 0
2,400-2,700 3,950 11.74 8 8.79 0.75
2,700-3,000 2,820 8.38 0 0 0
3,000-3,300 1,236 3.67 0 0 0
3,300< 131 0.39 0 0 0
Distance from rivers (m) 0-100 19,389 57.62 69 75.82 1.32
100-200 10,038 29.83 10 10.99 0.37
200-300 3,106 9.23 5 5.49 0.60
300400 902 2.68 2 2.20 0.82
>400 215 0.64 5 5.49 8.60
Distance from roads (m) 0-100 5,133 15.25 36 39.56 2.59
100-200 5,898 17.53 11 12.09 0.69
200-300 5,609 16.68 9 9.89 0.59
300400 5,147 15.30 8 8.79 0.57
>400 11,863 35.25 27 29.67 0.84
Lithology Q2 45 0.13 0 0 0
o 44 0.13 0 0 0
P, 41 0.12 0 0 0
R2 16,684 49.52 53 58.24 1.18
RiJ s 12,260 36.39 19 20.88 0.57
Ou 151 0.45 0 0 0
R! 2,197 6.52 12 13.19 2.02
Ky 2,083 6.18 7 7.69 1.24
MM 184 0.55 0 0 0
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Table 1 (continued)

Factor Class Vaz watershed
Landslide not occurred Landslide occurred Frequency ratio
Count Ratio (%) Count Ratio (%)
Distance from faults (m) 0-100 1,880 5.59 4 4.40 0.79
100-200 2,430 7.22 6 6.59 091
200-300 2,461 7.31 6 6.59 0.90
300400 2,728 8.11 5 5.49 0.68
>400 24,154 71.77 70 76.92 1.07
Land use Forest 18,990 56.47 68 74.73 1.32
Orchard 506 1.50 2.20 1.46
Settlement 390 1.16 2.20 1.89
Good range 4,989 14.8 12 13.19 0.89
Medium range 6,502 19.34 7 7.69 0.40
Poor range 2,249 6.69 0 0
Rainfall (mm) <500 357 1.06 0 0 0
500-600 7,003 20.81 7 7.69 0.37
600-700 7,832 23.28 16 17.58 0.76
700-800 13,029 38.72 46 50.55 1.31
800-900 5,424 16.12 22 24.18 1.50
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Fig. 10 Landslide susceptibility map using MLP-ANN model

Fig. 11 Landslide susceptibility map using RBF-ANN model

@ Springer



2884

Arab J Geosci (2013) 6:2873-2888

Table 2 Output layers from the Statistica Software

Index Net. name Training. perfect Test perfect Training error Training Error Hidden Output
algorithm function activation activation

1 MLP 9-14-1 0.5911 0.5916 0.01 BFGS SOS Logistic Identity

2 MLP 9-3-1 0.4477 0.4446 0.01 BFGS SOS Logistic Identity

3 MLP 9-10-1 0.5338 0.529 0.01 BFGS SOS Tanh Identity

4 MLP 9-6-1 0.4465 0.44 0.01 BFGS SOS Exponential Identity

5 RBF 9-12-1 —0.026 —0.0303 935.86 RBFT SOS Gaussian Identity

lithological conditions showed that R! consisting of thin
bedded marly limestone with worm traces, calcareous shale
has higher value of frequency ratio (2.02). In the case
distance to faults, the distance >400 m has weight of 1.07.
In the case of land use, higher frequency ratio value was for
settlement area (1.89). This result referred to anthropogenic
(human-caused) interferences such as land use change. In
the case of rainfall, we observed frequency ratio increased
with the rainfall addition.

Validation of landslide susceptibility maps

Using the success rate- and prediction rate methods, the
results of the two landslide susceptibility maps were vali-
dated by comparing them with the existing landslide loca-
tions (Chung and Fabbri 2003). The success rate results
were obtained based on a comparison of the landslide grid
cells in the training dataset (95 landslide grid cells) with the
two landslide susceptibility maps. The success rate meas-
ures how the landslide analysis results fit the training data-
set. This method first divides the area of landslide
susceptibility map in equal classes, ranging from the highest
to the lowest LSI values. Then, the numbers of landslide
grid cells occurred in each class were calculated and a
cumulative curve was plotted. The success rate curves of
the two landslide susceptibility map obtained from MLP and
RBF models are shown in Fig. 12. The result shows that

Table 3 Gradient descent algorithm analysis

MLP has the slightly highest area under the curve (AUC)
value (0.9193), followed by RBF (0.9085). It indicates that
the capabilities for correctly classifying the areas with exist-
ing landslides are slightly better for the MLP model than the
RBF model.

Because the success rate method used the training dataset
that has already been used for training the neural network
models, therefore strictly speaking, the success rate method
may not be a suitable method for the prediction capacity
assessment of the landslide models (Lee et al. 2007,
Pourghasemi et al. 2012c). The prediction rate can explain
how well the landslide models and landslide conditioning
factors predict landslides (Pradhan and Lee 2010a; Chung
and Fabbri 2003). In this study, the prediction rate results were
obtained by using the receiver operating characteristics (ROC)
method; the results of the two landslide susceptibility maps
(produced by MLP and RBF models) were validated by com-
paring them with the landslide locations (41 landslide grid
cells) which were not used during the training of the models
(Chung and Fabbri 2003). The AUC of the two landslide
susceptibility map obtained from MLP and RBF models are
shown in Fig. 13. If the AUC is equal to 1, it indicates perfect
prediction accuracy (Pradhan and Lee 2010a). ROC plot as-
sessment results show that in the susceptibility map using MLP
model, the AUC was 0.881 and the prediction accuracy was
88.10 %. In the susceptibility map using RBF model, the AUC
was 0.8724 and the prediction accuracy was 87.24 %.

Index Net. name Training perfect Test perfect Training error Training Error Output Learning
algorithm function activation rate
1 MLP 9-8-1 —0.001997 0.007916 0.001022 GD SOS Identity 0.1
2 MLP 9-8-1 0.003144 0.010948 0.001022 GD SOS Identity 0.2
3 MLP 9-8-1 —0.004723 0.010073 0.001022 GD SOS Identity 0.3
4 MLP 9-8-1 —0.000412 0.010346 0.001023 G.D SOS Identity 0.4
5 MLP 9-8-1 0.020897 0.017329 0.001023 G.D SOS Identity 0.5
6 MLP 9-8-1 —0.008060 0.003067 0.001022 G.D SOS Identity 0.6
7 MLP 9-8-1 —0.004010 —0.006877 0.467051 G.D SOS Identity 0.7
8 MLP 9-8-1 0.007288 0.003455 0.499470 G.D SOS Identity 0.8
9 MLP 9-8-1 0.024331 0.023502 0.489666 G.D SOS Identity 0.9
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Fig. 12 Success rate curve for the landslide susceptibility maps pro-
duced by a MLP and b RBF models

Conclusions

The preparation of landslide susceptibility maps is one of
great interest to planning agencies for preliminary hazard
studies, especially when a regulatory planning policy is to
be implemented. In the present study, artificial neural net-
work approach by MLP and RBF algorithms were applied
for the landslide susceptibility mapping at Vaz area in Iran.
A landslide inventory map was created through multiple
field investigations and aerial photo interpretation. Among
the landslide-related factors, slope percentage, slope aspect,
altitude, distance from rivers, distance from roads, lithology,
distance from faults, land use and rainfall were used for
landslide susceptibility mapping. In order to verify the
results, the success rate and prediction rate were used. The
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Fig. 13 ROC curve for the landslide susceptibility maps produced by
a MLP and b RBF models

susceptibility maps produced by MLP and RBF models are
shown in Figs. 10 and 11 and comprise five landslide
susceptibility classes, such as no, low, moderate, high and
very high. The areal extents of these sub-classes for MLP
model were found to be 0.39, 38.26, 47.48, 11.28 and
2.59 %, respectively, whereas in landslide susceptibility
map produced based on RBF, 2.61 % of the study area has
no susceptibility and the low, moderate, high and very high
susceptibility zones from 5.31, 22.77, 39.15 and 30.16 % of
the study area, respectively.

The validation results show that the MLP and BFGS
function with 9 input layers, 14 hidden layer and 1 output
layers has slightly better predication accuracy of 0.86 %
(88.10-87.24 %) than the RBF model. The most commonly
used algorithms are multilayer feed-forward artificial neural
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network (MLP) and radial basis function network (RBFN).
The RBFN is traditionally used for strict interpolation prob-
lem in multidimensional space and has similar capabilities
with MLP neural network which solves any function ap-
proximation problem (Park and Sandberg 1993; Yilmaz et
al. 2011). Yilmaz et al. (2011) presented the potential bene-
fits of soft computing models extend beyond the high com-
putation rates. Higher performances of the soft computing
models were sourced from greater degree of robustness and
fault tolerance than traditional statistical models because
there are many more processing neurons, each with primar-
ily local connections. The performance comparison also
showed that the soft computing techniques are good tools
for minimizing the uncertainties, and their use will also may
provide new approaches and methodologies and minimize
the potential inconsistency of correlations. For the conclu-
sion, the authors can conclude that the results of these
models have shown reasonable prediction accuracy in land-
slide susceptibility mapping in the study area.
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