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Abstract Compound broad-crested weir is a typical hy-
draulic structure that provides flow control and measure-
ments at different flow depths. Compound broad-crested
weir mainly consists of two sections; first, relatively small
inner rectangular section for measuring low flows, and a
wide rectangular section at higher flow depths. In this paper,
series of laboratory experiments was performed to investi-
gate the potential effects of length of crest in flow direction,
and step height of broad-crested weir of rectangular com-
pound cross-section on the discharge coefficient. For this
purpose, 15 different physical models of broad-crested weirs
with rectangular compound cross-sections were tested for a
wide range of discharge values. The results of examination
for computing discharge coefficient were yielded by using
multiple regression equations based on the dimensional
analysis. Then, the results obtained were also compared
with genetic programming (GP) and artificial neural net-
work (ANN) techniques to investigate the applicability,
ability, and accuracy of these procedures. Comparison of
results from the GP and ANN procedures clearly indicates
that the ANN technique is less efficient in comparison with
the GP algorithm, for the determination of discharge coeffi-
cient. To examine the accuracy of the results yielded from
the GP and ANN procedures, two performance indicators
(determination coefficient (R2) and root mean square error

(RMSE)) were used. The comparison test of results clearly
shows that the implementation of GP technique sound sat-
isfactory regarding the performance indicators (R200.952
and RMSE00.065) with less deviation from the numerical
values.

Keywords Broad-crested weir . Compound . Discharge
coefficient . Genetic programming (GP) . Artificial neural
network (ANN) . Soft computing

Introduction

The techniques used in making discharge measurements at
gauging stations (in rivers, canals, etc.) are important. The use
of portable instrument like kinds of weirs, flumes, floats, and
volumetric tank are common. The US Geological Survey
makes thousands of stream flow measurements each year.
Discharges measured range from a trickle in ditch to a flood
on the Amazon. Several methods are used (Rantz 2005).

A weir is a simple device for discharge measurement and
flow control in open channels, such as canals and flumes.
Many researchers have studied the head–discharge relations
for flows over sharp-crested weirs and broad-crested weirs
with a simple cross-section shape, such as rectangular, tri-
angular, trapezoidal, truncated triangular, and others (French
1987; Ranga Raju 1993; Boiten and Pitlo 1982). Some
useful empirical discharge equations for these weirs have
been proposed. Compound broad-crested weir is an over-
flow structure, used for hydraulic engineering applications.
Broad-crested weir may consist of various cross-sections
depending on the flow requirements. There is a unique
relationship between the unit discharge (the flow rate per
unit width) and the upstream water depth relatively
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measured to weir crest, which is exploited for the purpose of
flow measurement (Boiten 2002).

The recent works (Gonzalez and Chanson 2007) mainly
focused on hydraulic behavior, flow conditions, and the dis-
charge coefficient for different types of weirs. Ramamurthy et
al. (1988) carried out a set of laboratory experiments to
investigate the effect of upstream weir rounding.

Hager and Schwalt (1994) performed a set of laboratory
experiments to investigate the flow characteristics of broad-
crested weir with a sharp upstream corner. Based on the
recent work (Sarker and Rhodes 2004), rectangular broad-
crested weir with measurements of free-surface profile over
a laboratory-scale, was performed and compared with nu-
merical procedures by aiding computer software. According
to their study (Sarker and Rhodes 2004), for a given value of
flow rate (or discharge), the upstream water depth was
sufficiently predicted then the rapidly varied flow over the
crest and a stationary wave profile in the supercritical flow
downstream were also observed. Gonzalez and Chanson
(2007) conducted experiments for a near fully scaled
broad-crested weir and a comprehensive analysis of veloc-
ity/pressure measurements were implemented for various
configurations. They (Gonzalez and Chanson 2007)
reported that the results showed the rapid flow distribution
at the upstream end of weir while an overhanging crest
design may affect the flow field.

Azimi and Rajaratnam (2009) presented a comprehensive
analysis for flow over weirs of finite crest length with square
edged or rounded entrance. According to their work (Azimi
and Rajaratnam (2009)), a robust correlation was observed
for the discharge coefficient (Cd) while the Weber number is
greater than 1, then a good correlation was observed for the
Cd for a weir with rounded entrance. Bilhan et al. (2010)
performed two different artificial neural network (ANN)
techniques to lateral outflow over rectangular-side weirs
located on a straight channel. They (Bilhan et al. 2010)
reported that the ANN technique could be employed suc-
cessfully for the determination of discharge coefficient.
According to their work, the feed-forward neural network
(FFNN) model is found to be better than the radial basis
neural network.

To date, the application of genetic programming (GP) in
hydraulic engineering has been limited. The artificial intel-
ligence techniques used by Salmasi et al. (2011) include
artificial neural networks and genetic programming; to pre-
dict friction factor in pipes (f) by systematically changing
the values of Reynolds numbers, Re, and relative roughness,
e/D, and solving the Colebrook–White equation for the
value of f by using the successive substitution method.
The implementation of GP offers another explicit formula-
tion for the friction factor. Estimation of energy dissipation
of flows on stepped chutes, carried out by Salmasi (2010)
using ANN. Azamathulla et al. (2008; 2010) apply linear

genetic programming to scour below submerged pipeline. In
another study, Azmathulla and Ghani (2009) used genetic
programming for longitudinal dispersion coefficients in
streams. Model tree approach for estimation of critical sub-
mergence for horizontal intakes in open channel flows was
used by Ayoubloo et al. (2004).

The aim of this paper is to predict the discharge coeffi-
cient of compound broad-crested weir, by using the conven-
tional regression-based equations and two different soft-
computing techniques (GP and ANN). Among the alterna-
tive algorithms, the applicability, ability, and accuracy of the
GP and ANN procedures were also examined by using
various performance indicators. Comparison of results from
the GP and ANN procedures clearly shows the ANN tech-
nique is less efficient in comparison with the GP algorithm
while the GP algorithm yields sufficiently accurate results
for the determination of discharge coefficient (Cd).

Artificial neural network model

A neural network is a powerful data modeling tool that is
able to capture and represent complex input/output relation-
ships. The motivation for the development of neural net-
work technology stemmed from the desire to develop an
artificial system that could perform “intelligent” tasks sim-
ilar to those performed by the human brain. Neural networks
resemble the human brain in the following two ways:

1. A neural network acquires knowledge through learning.
2. A neural network’s knowledge is stored within inter-

neuron connection strengths known as synaptic weights.

The true power and advantage of neural networks lies in
their ability to represent both linear and nonlinear relation-
ships and in their ability to learn these relationships directly
from the data being modeled. Traditional linear models are
simply inadequate when it comes to modeling data that
contains nonlinear characteristics.

The most common neural network model is the multilay-
er perceptron (MLP). This type of neural network is known
as a supervised network because it requires a desired output
in order to learn. The goal of this type of network is to create
a model that correctly maps the input to the output using
historical data so that the model can then be used to produce
the output when the desired output is unknown. A graphical
representation of an MLP is shown in Fig. 1. Block diagram
of a two hidden layer multilayer perceptron. The inputs are
fed into the input layer and get multiplied by interconnec-
tion weights as they are passed from the input layer to the
first hidden layer. Within the first hidden layer, they get
summed then processed by a nonlinear function (usually
the hyperbolic tangent). As the processed data leaves the
first hidden layer, again it gets multiplied by interconnection
weights, then summed and processed by the second hidden
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layer. Finally, the data is multiplied by interconnection
weights then processed one last time within the output layer
to produce the neural network output (Fig. 1).

The MLP and many other neural networks learn using an
algorithm called back propagation. With back propagation,
the input data is repeatedly presented to the neural network.
With each presentation, the output of the neural network is
compared to the desired output and an error is computed. This
error is then fed back (back propagated) to the neural network
and used to adjust the weights such that the error decreases
with each iteration and the neural model gets closer and closer
to producing the desired output. This process is known as
“training”. Then we can analyze the outputs of model.

For implementation of the ANN technique, among the total
195 data sets, 156 sets (of about 80% of total) were randomly
selected as “training data”, while the remaining 39 sets (of
about 20% of total) were employed for “testing data”. The
values of discharge coefficient were predicted in two cases,
first regarding the dimensionless parameter,H1/L (H10yc+V

2/
2g0 total energy head above the weir (m) and L0weir crest
length (m)), then regarding both the dimensionless parame-
ters, H1/L and H1/p (p0weir height). The best prediction for
ANN procedures is determined by trial-and-error procedure in
which momentum coefficient assumed to be 0.8 and number
of iteration was 100,000.

Genetic programming

Genetic programming, a branch of the genetic algorithm, is a
method for learning the most “fit” computer programs by
means of artificial evolution (Johari et al. 2006). The GP
optimizes both the coefficients and constants in a function
and the function type itself. A possible function is determined
by given mathematical operators, such as +, −, ×, sin, exp, etc.
Each function implicitly includes an assignment to a variable,
which facilitates the use of multiple program outputs in GP,

whereas in tree-based GP those side effects need to be incor-
porated explicitly. The GP encodes a function as a tree with
nodes and branches, and then optimizes functions based on
natural principles. The GP procedure is similar to that of a
genetic algorithm, which generates solutions as a parent popu-
lation, and then improves solutions by selection, crossover, and
mutation processes. The general procedure and primary com-
ponents of GP are briefly described as follows (Koza 1992).

I. Generate initial parent population.
II. Evaluate fitness of all alternatives.
III. Select two parent alternatives for reproduction accord-

ing to their fitness. Those with higher fitness are
assigned greater probabilities to mate.

IV. Crossover to reproduce offspring and determine
whether mutation occurs.

V. Repeat steps 3–4 until the pre-determined population
size is attained.

VI. Use the offspring population as a new generation and
return to step 2 unless the stop criterion is met.

The main advantage of GP for the modeling process is its
ability to produce models that build an understandable structure,
i.e., a formula or equation. Thus, for “data rich, theory poor”
instances, GP may offer advantages over other techniques since
GP can self-modify, through the genetic loop, a population of
function trees in order to finally generate an “optimal” and
physically interpretable model (Muttil and Chau 2006).

The fitness of GP algorithm is evaluated by the following
expression (Eq. 1):

f ¼
Xj¼N

j¼1
Xj � Yj
�� �� ð1Þ

where Xj0value returned by a chromosome for the fitness
case j and Yj0expected value for the fitness case j. This
configuration has been tested for the proposed GP model and
has been found sufficient (Azamathulla et al. 2008; 2010).

Fig. 1 Structure of artificial neural network
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Methodology

Discharge coefficient (Cd)

Typical flow characteristics above a broad-crested weir can be
represented by Fig. 2. As shown in this figure, H10yc+V

2/
2g0total energy head above the weir (m), H10maximum
water level at the upstream weir (m), P and L0weir height
(m) and crest length in flow direction, respectively, yc0critical
flow depth above the weir (m), and V2/2g0kinetic head (m).

Regarding Fig. 2, the discharge above the weir is evalu-
ated from the following expression

q ¼ 2=3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þg H1ð Þ3

q
ð2Þ

where q0discharge per unit width (unit discharge) (m3/s/m),
and g0acceleration due to gravity (m s−2).

Experimental observations indicate the unit discharge–
total head (q–H1) relationship slightly differs from Eq. 2,
depending on the weir geometry flow conditions. Therefore,
Eq. 2 can be rearranged by inserting the discharge coeffi-
cient (Cd) into Eq. 2, as follows:

q ¼ Cdð2=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þg H1ð Þ3

q
ð3Þ

where Cd0discharge coefficient which is a function of the
weir height (P), length of weir crest (L), crest width (b),
upstream corner shape, and upstream total head (H1).Final-
ly, the total discharge, Q, is computed from:

Q ¼ 1:704Cd b H1ð Þ3=2 ð4Þ
where Q0 total discharge (m3s−1) and b0crest width (m).

Experimental setup

The experiments were carried out in the hydraulic laboratory
of Tabriz University in Iran. The experimental measure-
ments were performed in a horizontal rectangular channel
with 250 mm width and 700 mm height; the length of

channel is 12 m with the front side of glass and the bottom
and back side of black PVC.

For observations, 15 physical models of broad-crested
weirs with height P010, 13, and 16 cm; crest length L030,
35, and 40 cm; width b06, 8, and 12 cm; and step height of
model cross-section was z09 cm, were used. These models
were located at 5 m, from the downstream of inlet. The
upstream corners of all models rounded with the radius of
curvature are r1, r2, and r3. The required dimensions of 15
physical models tested, are synthesized in Table 1. Definition
sketch of 15 physical models tested in the theoretical analysis
(plan view and longitudinal profile) is shown in Fig. 3.

The tail water submergence was adjusted by a flap gate
located at the channel end with length 12 m from the inlet
section. The discharge was measured with a 53° notch to the
nearest 0.1 mm in head. Surface profiles were observed with
a precise point gauge (±0.1 mm).

The main objective of this experimental investigation is to
determine the potential effects of width of the lower weir crest
(b), and step height of broad-crested weir of rectangular com-
pound cross-section (z) on the value of discharge coefficient

Fig. 2 Flow characteristics above a broad-crested weir
Fig. 3 Definition sketch of models used in theoretical analysis: plan
view (up); longitudinal profile A-A (down)

Table 1 Models used for experiments

Parameter L Bup b r1 r2 r3 P Z
(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

Value 30, 35,
and 40

25 6, 8,
and 12

5 5 6.5–9.5 10, 13,
and 16

9
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(Cd). The observed values from the experiments were per-
formed by comparing the Cd values on different physical
models with varying values of b and constant values of
remaining parameters, z, P, and L (please see Table 5).

Results

The values ofCd for three widths of lower weir crest were also
plotted as a function of H1/L, while keeping the constant
values of parameters, z, p, and L, and shown in Figs. 4 and 5.

Regression analysis

For testing and evaluation of results, the following equations
(Eqs. 5 and 6) were derived for linear and nonlinear regres-
sion, respectively:

Cd ¼ aþ b
H1

L

� �
þ c

H1

p

� �
ð5Þ

Cd ¼ a
H1

L

� �b H1

p

� �c

ð6Þ

Equations 5 and 6 can be formed in the following expres-
sions from the Statistical Package for Social Science (SPSS)
software version 17.

Cd ¼ 0:748þ 0:343
H1

L

� �
þ 0:005

H1

p

� �
R2 ¼ 0:887 ð7Þ

Cd ¼ 1:021
H1

L

� �0:134 H1

p

� �0:012

R2 ¼ 0:947 ð8Þ

Equations 7 and 8 clearly indicates that Eq. 8 for nonlin-
ear regression is more efficient in comparison with Eq. 7 for
linear regression analysis.

ANN modeling with two input parameters (H1/L and H1/p)

The development of any ANN model involves three basic
steps: the generation of data required for training, the training
of the ANN model, and the evaluation of the ANN configura-
tion leading to the selection of an optimal configuration. The
ANN software program employed was Qnet2000. Qnet is a
back propagation neural modeling system that is designed to
exploit the ever-increasing power of PC hardware and operat-
ing systems (Qnet 2000).

The procedure used for the development of our ANN
model is outlined below:

1. The parameters used for preparing the input data file are
H1/L, H1/P, and Cd. These parameters resulting in a total
of 195 input data points.

2. Several ANN models were then trained and tested with
the information about each inputs and the generated
corresponding value of discharge coefficient (Cd) as
the output.

3. The trained ANN models were then used to predict the
values of Cd based on known input values.

4. The optimum ANN model which produces the best
results based on some preset measures was then selected
and validated using a larger dataset.

For implementation of the ANN technique, among the total
195 data sets, 156 sets (of about 80% of total) were randomly
selected as “training data”, while the remaining 39 sets (of
about 20% of total) were employed for “testing data”. Among
various ANN configurations, the optimal ANN algorithm was
selected with regarding their performances in accuracy of the
prediction. In the analysis two performance indicators
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Fig. 5 Cd versus H1/L for varying p and constant z, b, and L values
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(determination coefficient (R2) and root mean square error
(RMSE)) are presented as follow:

R2 ¼
P

xyffiffiffiffiffiffiffiffiffiffiP
x2

p P
y2

 !2

ð9Þ

RMSE ¼
P

X � Yð Þ2
n

" #1=2
ð10Þ

Table 2 shows the values of two performance indicators
(R2 and RMSE) for various ANN configurations, regarding
both training and testing phases. As shown in Table 2, among
all configurations, the maximum values of the R2 and RMSE
for testing phase are observed as 0.927 and 0.0446, which was
performed by hype secant/sigmoid function of ANN architec-
ture with five hidden nodes. Three layers FFNN architecture
of two input variables is shown in Fig. 6.

The comparison test of results indicates the relative effect
of the dimensionless parameters H1/p and H1/L on the

discharge coefficient are 31.8% and 69.2%, respectively.
The values of RMSE are determined as 0.0562 and
0.0446, for training and testing phases, respectively. The
performance of the ANN algorithm regarding the observed
values is shown in Fig. 7.

ANN modeling with one input parameter (H1/L)

For the alternative design case, the input parameter is selected
as the dimensionless parameter H1/L. Table 3 shows the
values of two performance indicators (R2 and RMSE) for
various ANN configurations, with regarding both training
and testing phases. As shown in Table 3, among all config-
urations, the maximum values of the R2 and RMSE for testing
phase are observed as 0.916 and 0.0482, which was performed
by sigmoid function of ANN architecture with four hidden
nodes. Three-layer FFNN architecture of one input variable is
shown in Fig. 8. The performance of the ANN algorithm
regarding the observed values is also shown in Fig. 9.

Fig. 6 Three-layer feed-forward artificial neural network architecture
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Fig. 7 Observation data of experiment versus simulated data by ANN
with two input parameters (H1/L and H1/p)

Table 2 Different design of
neural network for two input
parameters

Transfer function/
layer

No. of hidden
layers

No. of neurons/layer Training Test

RMSE R2 RMSE R2

Sigmoid, sigmoid 1 3 0.05006 0.9036 0.06683 0.8899

Sigmoid, sigmoid 1 4 0.05082 0.9102 0.06154 0.8600

Sigmoid, sigmoid 1 5 0.05402 0.8982 0.05462 0.9014

Sigmoid, sigmoid 1 6 0.05183 0.8971 0.06363 0.8836

Sigmoid, sigmoid 1 7 0.05518 0.8914 0.05325 0.9041

Gaussian, sigmoid 1 5 0.04274 0.9391 0.06557 0.8325

Hyperbolic, tangent 1 5 0.05418 0.8915 0.05538 0.9036

Sigmoid, hype secant 1 5 0.05028 0.9103 0.06688 0.8444

Hype secant, sigmoid 1 5 0.05619 0.8899 0.04461 0.9271

Hyperbolic, secant 1 5 0.05596 0.8955 0.04813 0.9141
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Genetic programming results

In the GP algorithm, four basic arithmetic operators (+, −, ×, /)
and some basic mathematical functions (ln(x), log(x), ex, …)
were used. The best functional setting and default parameters
used in the GP modeling are listed in Table 4.

The equilibrium discharge coefficient can be defined as a
function of its independent parameters, by the following
expressions:

Cd ¼ 0:741þ 0:372 ðH1=LÞ
R2 ¼ 0:887;RMSE ¼ 0:108

ð11Þ

Cd ¼ 0:6435þ ðH1=LÞ � 0:778 ðH1=LÞ2
R 2 ¼ 0:952; RMSE ¼ 0:065

ð12Þ

It should be noted that the relative effect of the
dimensionless parameter, H1/p on the discharge coeffi-
cient, is not regarded for the GP algorithm (linear and
nonlinear equations). Correlation coefficients used for
linear regression and linear GP technique are the same
form; whereas correlation coefficient of nonlinear GP
algorithm is higher than nonlinear regression.

From the comparison test of regression equations (linear
and nonlinear) and GP algorithm, it was observed that the
dimensionless parameter, H1/L is the prior parameter effect-
ing on the values of discharge coefficient. Figures 10 and 11
represent the variations of observed data with simulated data
for linear and nonlinear modes, respectively.

Summary and conclusion

The paper presents series of laboratory experiments to in-
vestigate the potential effects of length of crest in flow
direction, and step height of broad-crested weir of rectangu-
lar compound cross-section on the discharge coefficient
(Cd). For this purpose, 15 different physical models of
broad-crested weirs with rectangular compound cross-
sections were examined for a wide range of discharge val-
ues. The results of examination for computing discharge
coefficient were yielded by using multiple regression equa-
tions based on the dimensional analysis; then, the results
obtained were also compared with genetic programming and

Table 3 Design of neural net-
work for case of one parameter Transfer function No. of hidden

layers
No. of neurons/layer Training Test

RMSE R2 RMSE R2

Sigmoid 1 2 0.0597 0.8798 0.0588 0.8643

Sigmoid 1 3 0.0563 0.8911 0.0614 0.8614

Sigmoid 1 4 0.0615 0.8703 0.0482 0.9164

Sigmoid 1 5 0.0572 0.8859 0.0609 0.8720

Gaussian, sigmoid 1 4 0.0602 0.8776 0.0574 0.8750

Hyper secant, sigmoid 1 4 0.0588 0.8718 0.0544 0.9092

Hyper tangent, sigmoid 1 4 0.0597 0.8817 0.0511 0.8955

Hyperbolic tangent 1 4 0.0565 0.8909 0.0655 0.8538

Hyperbolic secant 1 4 0.0560 0.8825 0.0608 0.8866

Fig. 8 Three-layer feed-forward ANN architecture for one input
variable
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Fig. 9 Experimental data against simulated data by ANN with one
input parameter (H1/L)
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artificial neural network techniques to investigate applica-
bility, ability, and accuracy of these procedures. Comparison
of results from the GP and ANN procedures clearly indi-
cates that the ANN technique is less efficient in comparison
with the GP algorithm for the determination of discharge
coefficient.

The ANN model with two independent parameters
involves a neural network with one hidden layer and five
neurons in that layer. The trained network was able to
predict the response with R2 and RMSE, 0.9271 and
0.0446, respectively (Table 2). The testing performance of
the proposed GP model revealed a high generalization ca-
pacity with R200.952 and RMSE00.065. This study shows
that Cd is more sensitive to weir H1/L than H1/p in com-
pound broad-crested weirs (Eqs. 11 and 12).

The observations claim that the developed GP model can
be efficiently used to accurately predict the discharge coef-
ficient in comparison with the alternative ANN procedure
and the conventional regression techniques.

Appendix

Table 5 Data generation from experiments

Row H1/p H1/L Cd

1 0.3276 0.131 0.7101

2 0.3864 0.1546 0.7382

3 0.4446 0.1778 0.7577

4 0.5072 0.2029 0.7698

5 0.5447 0.2179 0.7904

6 0.6055 0.2422 0.8168

7 0.6635 0.2654 0.8856

8 0.7267 0.2907 0.9062

9 0.7889 0.3156 0.8887

10 0.9169 0.3668 0.8985

11 1.0452 0.4181 0.9197

12 1.1772 0.4709 0.9269

13 1.3072 0.5229 0.9516

14 0.4575 0.1487 0.7722

15 0.4968 0.1615 0.7755

16 0.5901 0.1918 0.8041

17 0.6375 0.2072 0.8033

18 0.7092 0.2305 0.8218

19 0.8147 0.2648 0.92

20 0.8895 0.2891 0.9353

. . . .

. . . .

. . . .

180 2.0031 0.5723 0.9385

181 2.2436 0.641 0.9483

182 2.4353 0.6958 0.9716

183 0.5606 0.1869 0.7897

184 0.6716 0.2239 0.8068

185 0.7756 0.2585 0.8223

186 0.8566 0.2855 0.8331
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Fig. 11 Experimental data against simulated data by GP (nonlinear)

Table 4 Parameters of optimized GP model

Parameter Description of parameter Setting of parameter

p1 Function set +, −, ×, /

p2 Population size 500

p3 Mutation frequency (%) 96

p4 Crossover frequency (%) 50

p5 Number of replication 10

p6 Block mutation rate (%) 30

p7 Instruction mutation rate (%) 30

p8 Instruction data mutation rate
(%)

40

p9 Homologous crossover (%) 95

p10 Program size Initial 64, maximum 256
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Fig. 10 Experimental data versus simulated data by GP (linear)
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Table 5 (continued)

Row H1/p H1/L Cd

187 0.9296 0.3099 0.8442

188 1.1692 0.3897 0.9408

189 1.2767 0.4256 0.9239

190 1.3543 0.4514 0.9354

191 1.5711 0.5237 0.9376

192 1.8034 0.6011 0.9505

193 2.0615 0.6872 0.9667

194 2.26 0.7533 0.9642

195 2.4812 0.8271 0.97
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