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Abstract The main goal of this paper is to design and
develop a new technique and software tool that help
automatic lithofacies segmentation from well logs data.
Lithofacies is a crucial problem in reservoir characterization
and our study intends to prove that techniques like wavelet
transform modulus maxima lines (WTMM) and detrended
fluctuation analysis (DFA) approaches allow geological
lithology segmentation from well logs data. On the one
hand, WTMM prove to be useful for delimitation of each
layer. We based on its sensitivity on the presence of more
than one texture. On the other hand, DFA is used to
enhance the estimation of the roughness coefficient of each
facies. We have used them jointly to segment the lithofacies
of boreholes located in the Algerian Sahara. Obtained
results are encouraging to publish this method because the
principal benefit is economic.
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Introduction

One of the main goals of geophysical studies is to apply
suitable mathematical and statistical techniques to extract

information about the subsurface properties. Well logs are
largely used for characterizing reservoirs in sedimentary
rocks. In fact, it is one of the most important tools for
hydrocarbon research for oil companies. Several parameters
of the rocks can be analyzed and interpreted in terms of
lithology, porosity, density, resistivity, salinity, and the
quantity and the kind of fluids within the pores.

Geophysical well logs often show a complex behavior
which seems to suggest a fractal nature (Pilkington and
Tudoeschuck 1991; Wu et al. 1994). They are geometrical
objects exhibiting an irregular structure at any scale. In fact,
classifying lithofacies boundary from borehole data is a
complex and nonlinear problem. This is due to the fact that
several factors, such as pore fluid, effective pressure, fluid
saturation, pore shape, etc. affect the well log signals and
thereby limit the applicability of linear mathematical
techniques. To classify lithofacies units, it is, therefore,
necessary to search for a suitable nonlinear method, which
could evade these problems.

The scale invariance of properties has led to the well-
known concept of fractals (Mandelbrot 1982). It is commonly
observed that well log measurements exhibit scaling proper-
ties and are usually described and modeled as fractional
Brownian motions (Pilkington and Tudoeschuck 1991; Wu
et al. 1994; Kneib 1982; Bean 1982; Holliger 1982; Turcotte
1997; Shiomi et al. 1997; Dolan et al. 1996; Li 2003).

In previous works (Ouadfeul 2008, 2011), we have
shown that well logs fluctuations in oil exploration display
scaling behavior that has been modeled as self-affine fractal
processes. They are therefore considered as fractional

Brownian motion (fBm), characterized by a fractal k�b

power spectrum model where k is the wavenumber and β is
related to the Hurst exponent (Herrmann 1995). These
processes are monofractal whose complexity is defined by a
single global coefficient, the Hurst parameter H, which is
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closely related to the Hölder degree regularity. Thus,
characterizing scaling behavior amounts to estimating some
power law exponents.

Petrophysical properties and classification of lithofacies
boundaries using the geophysical well log data is quite
important for the oil exploration. Multivariate statistical
methods such as principle component and cluster analyses
and discriminant function analysis have regularly been used
for the study of borehole data. These techniques are,
however, semi-automated and require a large amount of
data, which are costly and not easily available every time.

The wavelet transform modulus maxima lines is a
multifractal analysis type where the mathematical measure
is replaced by the modulus of the continuous wavelet
transform (CWT) and the support of this measure is
replaced by the points of maxima of the modulus of the
CWT (Arneodo and Bacry 1995).

The detrended fluctuation analysis is a statistical method
introduced by Peng et al. (1994) in genetic works, it was
used for estimation of Hurst exponent of DNA nucleotides.

We use in this paper the wavelet transform modulus
maxima lines (WTMM) combined with the detrended
fluctuation analysis (DFA) to establish a technique of
lithofacies segmentation from well logs data.

Principle of the DFA estimator

The DFA is a method for quantifying the correlation
propriety in no-stationary time series based on the compu-
tation of a scaling exponent H by means of a modified root
mean square analysis of a random walk (Peng et al. 1994).

To compute H from a time-series x(i) [i=1,…, N], like
the interval tachogram, the time series is first integrated:

yðkÞ ¼
Xk
i¼1

½xðiÞ �M � ð1Þ

where, M is the average value of the series x(i) and k ranges
between 1 and N.

Next, the integrated series y(k) is divided into boxes of
equal length n and the least-square line fitting the data in
each box, yn(k), is calculated. The integrated time series is
detrended by subtracting the local trend yn(k), and the root
mean square fluctuation of the detrended series, F(n) is
computed:

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

yðkÞ � ynðkÞ½ �2
vuut ð2Þ

F(n) is computed for all time-scales n.
Typically, F(n) increases with n, the "box-size". If log F

(n) increases linearly with log n, then the slope of the line

relating F(n) and n in a log–log scale gives the scaling
exponent H.

where, a ¼ 2:H � 1

If H=0.5 the time-series x(i) is uncorrelated
(white noise).

If H=1.0 the correlation of the time-series is the same of
1/f noise.

If H=1.5 x(i) behaves like Brown noise (random walk)

The wavelet transform modulus maxima lines

The WTMM is a multifractal analysis method based on the
continuous wavelet transform (Arneodo et al. 1988). It is
composed of five steps (Arneodo and Bacry 1995):

a. Calculation of the continuous wavelet transform.
b. Calculation of the local maxima of the modulus of the

CWT.
c. Calculation of the function of partition Z(q, a) where a

is the dilatation and q is a scale factor.
d. Estimation of the spectrum of exponents t(q).
e. Estimation of the spectrum of singularities D(h).

The continuous wavelet transform

Here, we review some of the important properties of
wavelets without any attempt at being complete. What
makes this transform special is that the set of basic
functions, known as wavelets, are chosen to be well-
localized (have compact support) both in space and
frequency (Arneodo and Bacry 1995; Arneodo et al.
1988). Thus, one has some kind of “dual-localization” of
the wavelets. This contrasts the situation met for the Fourier
transform where one only has “mono-localization” meaning
that localization in both position and frequency simulta-
neously is not possible.

The CWT of a function s(z) is given by Grossman and
Morlet (1985) as:

Cs a; bð Þ ¼ 1ffiffiffi
a

p
ðþ1

�1
sðzÞy»ðzÞdz ð3Þ

Each family test function is derived from a single
function =(z) defined to as the analyzing wavelet according
to (Torrésani 1995):

ya;bðzÞ ¼ y
z� b

a

� �
ð4Þ

Where a ∊ R+*is a scale parameter, b ∊ R is the translation
and =* is the complex conjugate of =. The analyzing
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function = (z) is generally chosen to be well localized in
space (or time) and wavenumber. Usually, =(z) is only
required to be of zero mean, but for the particular purpose
of multiscale analysis =(z) is also required to be orthogonal
to some low order polynomials, up to the degree n−1, i.e.,
to have n vanishing moments:

ðþ1

�1
znyðzÞdz ¼ 0 for 0 � n � p� 1 ð5Þ

According to Eq. 5, p order moment of the wavelet
coefficients at scale a reproduce the scaling properties of
the processes. Thus, while filtering out the trends, the
wavelet transform reveals the local characteristics of a
signal and more precisely its singularities.

It can be shown that the wavelet transform can reveal the
local characteristics of s at a point z0. More precisely, we
have the following power–law relation (Herrmann 1995;
Audit et al. 2002):

Csða; z0Þj j � ahðzoÞ; when a ! 0þ ð6Þ

where, h is the Hölder exponent (or singularity strength).
The Hölder exponent can be understood as a global
indicator of the local differentiability of a function s.

The scaling parameter (the so-called Hurst exponent)
estimated when analyzing process by using Fourier trans-
form (Herrmann 1995) is a global measure of self-affine
process, while the singularity strength h can be considered
as a local version (i.e., it describes “local similarities”) of
the Hurst exponent. In the case of monofractal signals,
which are characterized by the same singularity strength
everywhere (h(z)=constant), the Hurst exponent equals h.
Depending on the value of h, the input signal could be
long-range correlated (h>0.5), uncorrelated (h=0.5), or
anticorrelated (h<0.5).

The function of partition of the spectrum of exponents

Positioning of maxima is carried out using the first and the
second derivatives of the modulus of the wavelets coef-
ficients |C(a,b)|.

i.e., |C(a,b)| able a local maximum at the point bi if and
only if:

@ Cða; bÞj j
@b b¼bij ¼ 0 and

@2 Cða; bÞj j
@b2 b¼bij � 0

The function of partition is the sum of the modulus of
the wavelet coefficients on the local maxima, with a power
of order q.

qmax Hinjected Hcalculated

2.0 0.60 0.685±0.010

1.5 0.60 0.664±0.005

1.0 0.60 0.685±0.006

0.5 0.60 0.606±0.002

Table 1 Hurst exponents esti-
mated for each value of qmax

H qmax

0<H≤0.20 0.125

0.20<H≤0.40 0.25

H≥0.40 0.50

Table 2 Optimal parameters
according to roughness
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Fig. 2 WTMM analysis of the signal of Fig. 5. a Modulus of the
wavelet coefficients. b Spectrum of exponents
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For low dilations, the function of partition is dependent

to the spectrum of exponent by: Zðq; aÞ � atðqÞ

By consequences, the spectrum of exponents is obtained
by a simple linear fit of log(Z(q,a)) versus log(a).

The singularities spectrum

Estimation of the spectrum of singularities is based on the
direct Legendre transform of the spectrum of exponents
(Arneodo and Bacry 1995).

DðhÞ ¼ minq qh� tðqÞð Þ ð7Þ

In our algorithm, we use the functions defined in
(Arneodo and Bacry 1995), based on Boltzmann’s weight.

These functions are defined as:

� h � q; að Þ ¼ P
bi;að Þ

bTy S½ � q; bi; að ÞLn Ty S½ � bi; að Þ�� ��
D q; að Þ ¼ P

bi;að Þ
bTy S½ � q; bi; að ÞLn Ty S½ � q; bi; að Þ�� ��

8><
>: ð8Þ

where bT is the Boltzmann weight defined as:

bTy S½ � q; b; að Þ ¼ Ty S½ � bi; að Þ�� ��q=Z q; að Þ
hðqÞ ¼ lim

a 7!0þ
1

LnðaÞ h q; að Þ
DðqÞ ¼ lim

a7!0þ
1

LnðaÞ D q; að Þ

The spectrum of exponents is obtained by the graphical
representation of D(q)versus h(q)for different values of q
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Fig. 3 Flow chart of automatic
segmentation algorithm
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(Arneodo and Bacry 1995). Ty S½ � is the continuous wavelet
transform of the S(z) signal.

Optimization of the processing parameters

Theoretically, the spectrum of exponents of an fBm signal
is a segment of a straight line. It has the following equation
(Arneodo and Bacry 1995):

tðqÞ ¼ qH � 1 ð9Þ

H is the Hurst exponent. This stage consists to
optimizing the processing parameters by WTMM in
order to check this condition. Parameters to be optimized
are:

– The maximum value of the scale factor qmax where the
calculation of the function of partition is carried out on
the interval [−qmax, +qmax].

– Parameters of the analyzing wavelet which is the
complex Morlet wavelet. It has the expression (10):

<ðZÞ ¼ exp �Z2=2
� �� exp i�Ω � Zð Þ

� 1� exp �Ω2=4
� �� exp �Z2=2

� �� � ð10Þ

Several experiments on fBm realizations show that
optimal value of Ω for a better estimation of the coefficients
of Hurst is equal to 4.8.

Processing of an fBm signal with 1,024 samples

We calculate the spectrum of exponents byWTMMof an fBm
signal with 1,024 samples and a Hurst coefficient H=0.60 for
the following values of qmax: 2.0, 1.5, 1.0, and 0.50. Table 1
summarizes all obtained results.

The spectrum of exponents calculated for qmax=0.50
shows that this value is optimal. In fact, the spectrum of
exponent is a segment of straight line; this last is an s
indicator of textures homogeneity. Estimation of the Hurst
exponent is better for this value of qmax.

Remark Many numerical experiences on fBm realizations
of 512 and 256 samples show that qmax=0.50 is the optimal
the value.

Short time series analysis

Our objective is to seek very fine textures; for that, we
have to concentrate our studies on short time series. We
have analyzed sets of signals with 128, 64, and 32
samples. First, we built several fBm realizations with

128 samples with various roughness coefficients; this
last is varied from 0 to 1. A detailed study showed that
optimal values of qmax are related to the Hurst exponents.
Obtained results are summarized in Table 2.

To enhance the estimation, we calculated the Hurst
exponent by DFA, obtained results showed that this
estimator gives better results compared to the WTMM.
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Fig. 4 Application of the algorithm of segmentation on a synthetic
model. a The synthetic model b Obtained segmentation

Table 3 Obtained segmentation of a synthetic model with two
roughness

Layer H injected Depth
injected
(m)

Depth
calculated

H calculated
(WTMM)

H calculated
(DFA)

1 0.40 7.875 7.875 0.363 0.392

2 0.80 7.875 7.875 0.749 0.794
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Same work was made for signals with 64 and 32
samples; we have obtained the following results:

– WTMM analysis showed that the two types of signals
able the same optimal parameters as those obtained for
signals of 128 samples.

– DFA estimate better the Hurst exponent than the
WTMM.

Analysis of physical responses of several textures

The theory developed by Arneodo and Bacry (1995) shows
that:

That is to say the S(t) signal which constitute of a
whole of fBm signals of Hurst exponents H1, H2,
H3.,…, Hn. The spectrum of exponentsτ(q) calculated
by WTMM formalism is depends only on the

maximal and minimal Hurst coefficients. The spec-
trum of exponents consists of two segments of
straight lines of Eq. 11.

tðqÞ ¼ qHmax � 1:::::::::::::::::::::if q � 0ð Þ
qHmin � 1:::::::::::::::::::::if q � 0ð Þ

�
ð11Þ

where, Hmin and Hmax are the maximum and the minimum
of the set of Hurst exponents {H1, H2, H3.,…, Hn}

Application on synthetic data

In order to check our source codes developed in C
language, we have generated a model made up of 04 fBm
realizations with the following Hurst exponents: 0.40, 0.60,
0.70, and 0.80; each signal has 64 samples. The realization
of this model is presented in Fig. 1. We applied a WTMM
analysis to this signal, the modulus of the wavelets

Fig. 5 Geographic location of
the Berkine basin
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coefficients and the spectrum of exponents are represented
in Fig. 2a and b. One can remark that the WTMM method
is sensitive only to the two textures characterized by a
maximum and minimum roughness coefficient.

Automatic segmentation algorithm

Our algorithm of segmentation is based on the sensitivity of
the WTMM of more than one homogeneous texture; this
last phenomenon is expressed by two segments of straight
lines in the spectrum of exponents. Estimation of roughness

coefficient of each texture is enhanced by DFA. The input of
the program of segmentation is composed of two variables:

(a) Threshold of decision of homogeneity of textures,
which it is equal to the difference between the slopes
of the two segments of straight lines calculated for q<
0 and q>0. We indicate by ΔH this variable in the
flow chart and Δz is the sampling interval.

(b) Minimal size where texture is considered homoge-
neous, we indicate by W this length.

The flow chart of the algorithm of segmentation is
presented in Fig. 3.

Fig. 6 Deposits age of the sets
of the basins and the lithostra-
tigraphy of the Triassic province
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Application on synthetic data

We applied this algorithm at a whole of fBm realizations
with different Hurst exponents in order to model geological
diversity. The modeled well log consists of 02 fBm signals,
each signal has 64 samples. Their Hurst exponents are
equals to 0.4 and 0.8.

Figure 4 represents the synthetic model with the
obtained segmentation in the half-plane depth Hurst
exponent. The thickness of each column represents the
thickness of the layer cut-out and its height represents the
value of the Hurst exponent estimated either by WTMM
(black) or by DFA (red). The signal in green is the
normalized fBm process. All details of segmentation are
summarized in Table 3.

One can remark that the proposed segmentation algo-
rithm detects with an excellent precision the limits of each
layer, for estimation of the roughness coefficient, DFA
estimator gives better results compared to the WTMM.

Application on real data

The proposed idea has been applied at the boreholes A and
B located in the Berkine basin (Algeria), it is a vast
Paleozoic formation located in the South East of Algeria
(see Fig. 5). It represents a very important hydrocarbon
field.

Geological context of the berkine basin

The Berkine basin is a vast circular Palaeozoic depression,
where the basement is situated at more than 7,000 m in
depth. Hercynian erosion slightly affected this depression
because only Carboniferous and the Devonian are affected
at their borders. The Mesozoic overburden varied from
2,000 m in southeast to 3,200 m in the northeast. This
depression is an intracratonic basin which has preserved a
sedimentary fill out of more than 6,000 m. It is character-
ized by a complete section of Palaeozoic formations
spanning from the Cambrian to the Upper Carboniferous.
The Mesozoic to Cenozoic buried very important volume
sedimentary material contained in this basin presents an
opportunity for hydrocarbons accumulations. The Triassic
province is the geological target of this study. It is mainly
composed by the clay and sandstone deposits.

Its thickness can reach up to 230 m. The sandstone
deposits constitute very important hydrocarbon reservoirs.

The studied area contains many drillings. However, this
paper will be focused on the A and B boreholes. The main
reservoir, the Lower Triassic clay sandstone labeled TAGI,
is represented by fluvial and eolian deposits. The TAGI
reservoir is characterized by three main levels: upper,

middle, and lower. Each level is subdivided into a total of nine
subunits according to SONATRACH nomenclature (Zeroug et
al. 2007).The lower TAGI is often of a very small thickness. It
is predominantly marked by clay facies, sometimes by
sandstones and alternatively by the clay and sandstone
intercalations, with poor petrophysical characteristics (Fig. 6).

Well logs data processing

We applied this technique of segmentation at the A and B
boreholes located in the Berkine basin; we have processed
the sonic P wave velocity well logs data of the two
boreholes. Figure 7 shows these logs; the sampling interval
is 0.125 m. Segmentation given in the stratigraphic column
is used as a priori information, by consequences we have
cut out each interval of the stratigraphic column. The
various intervals of this last one are detailed in Table 4.
Obtained lithofacies models of the three intervals are
schematized in Fig. 8.

Conclusion

We planned an automatic algorithm of segmentation based
on the sensitivity of the WTMM; the spectrum of exponents
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Fig. 7 Sonic P wave velocity logs of the A and B boreholes. a
Borehole A. b Borehole B
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is an indicator of homogeneities of textures. We construct
the lithofacies of the boreholes A and B located in Algeria

Sahara. Obtained lithofacies are compared with well logs
fluctuations. Obtained results exhibit a big correlation
between the two models.

The aim of this study is to realize a more consistent
lithologic interpretation of logs optimizing the use of the
multifractal analysis resisted by the continuous wavelet
transform. A technique of lithofacies segmentation based
on the wavelet transform modulus maxima lines WTMM
combined with the detrended fluctuation analysis DFA is
developed and successfully applied the well log data of B
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Fig. 8 Lithofacies segmentation of:
Borehole A (a,b,c)                                            Borehole B (d,e,f)
Interval: (a) C1, (b) C2, (c) C3                  Interval: (d) C1, (e) C2, (f) C3

WTMM                         DFA           Normalized signal

Table 4 Intervals of the stratigraphic column

Interval Minimal depth (m) Maximal depth (m)

C1 2,985 3,258

C2 3,258 3,327.5

C3 3,327.5 3,350
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borehole located in Berkine basin in order to classify
lithofacies. It is important to outline that the comparison of
data sets with classification derived from the gamma ray
log is legitimate because the studied interval is a limited
part of the TAGI. Our results suggest an enhanced facies
segmentation which leads an accurate interpretation process
to update the reservoir architecture.

By implementing our method, we have demonstrated
that it is possible to provide an accurate geological
interpretation within a short time in order to take immediate
drilling and completion decisions, but also, in a longer-term
purpose, to update the reservoir model. Because of its
computational efficiency, it is proposed that the present
methods can be further exploited for analyzing large
number of borehole data in other areas of interest.
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