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Abstract Grade estimation is very important in designing
open pits. In the process of grade estimation, underestimation
can result in loss of economic ore, whereas overestimation
would unnecessarily increase stripping ratio. Normally,
kriging method, which suffers from underestimation and/or
overestimation due to smoothing effect, is used for grade
estimation. To overcome drawbacks of the kriging method,
more efficient techniques such as conditional simulation can
be applied. In this paper, utilizing sequential Gaussian
conditional simulation, grade models were constructed for
Sungun copper deposit situated in the North West of Iran.
According to the obtained results, it was observed that
conditional simulation can effectively cope with the weakness
of kriging method. Also, it was observed that as compared to
the kriging method, grade distribution, resulted from the
conditional simulation, is almost identical to that of the real
exploration data. Accordingly, using conditional simulation,
the amount of mineable ore was significantly increased, and
also, average net present value as the mines’ most important
economic indicator was improved by 40%.

Keywords Grade estimation . Krigin method . Conditional
simulation . Sungun mine

Introduction

The ultimate pit limit, which defines the shape of a mine
at the end of its life, is important for determining mine
layout and net present value (NPV). Establishment of a
precise grade model for deposit is one of first attempts
during determination of the ultimate pit limit. The
significance of the grade estimation is well acknowledged
in the literature. According to Dominy et al. (2002), from
1983 to 1987, the majority of the gold mines did not reach
to the predicted production goals in the preliminary years
and initially estimated grades was achieved only in few
mines. Studies performed by Knoll (1989) and Clow
(1991) on the gold mines of Canada showed that just few
number of the mine were operating according to the
original mine design. A study performed by Baker and
Giacomo (1998) on Australia mines indicated that out of
48 mining projects, 9 achieved 20% less and 13 realized
20% more reserves than what forecasted initially. These
cases are in the agreement with results obtained from a
survey conducted by the World Bank in which it is seen
that most of the mining projects in Canada and USA have
been faced with severe financial loss due to inaccurate ore
and reserve estimation (Vallee 2000).

In the conventional grade modeling (David 1977,
1988), undesirable events such as underestimating and/or
overestimating due to smoothing effect may occur, which
in turn can decrease spatial variability. In this condition,
application of smoothing method in the grade modeling is
not recommended (Deustech and Journel 1998; Sinclair
and Blackwell 2004; Webster and Oliver 2007). To
overcome drawbacks of the conventional method and
especially to consider uncertainty during ore grade
estimation, rather newly applied methods such as condi-
tional simulation may be very useful (Dimitrakopoulos
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1990; Journel 1992; Armstrong and Dowd 1994). In the
conditional simulation technique, Mont Carlo method is
used to evaluate grade estimation (Snowden et al. 2002).
This technique uses geostatisical parameters to construct
number of grade distribution realizations with equal
probablity (Deustech and Journel 1998; Chiles and
Delfiner 1999). Ravenscroft (1992); Dimitrakopoulos
(1998); Smith and Dimitrakopoulos (1999) used conditional
simulation for entertaining grade uncertainty in to various
related aspects of ore body modeling in open pit mining such
as production scheduling. Kumral and Dowd (2001) used the
same technique annealing method for short-term scheduling.
In another investigation, Dimitrakopoulos et al. (2002)
applied conditional simulation and showed that planning
with a single kriged ore body model may cause remarkable
deviation from the project targets. In an additional research,

Dimitrakopoulos et al. (2007) proposed a new approach in
which different deposit simulations (models) were compared,
and the best one was selected. Moreover, Menabde et al.
(2007); Ramazan and Dimitrakopoulos (2007) utilized the
integrated conditional simulation and stochastic integer
programming for the NPV maximization. Furthermore,
Whittle and Bozorgebrahimi (2007) presented hybrids pits
for incorporating conditional simulation method in to the
generation of the ultimate pit. Many other studies have been
given in the literature regarding application of conditional
simulation (Magri et al. 2003; Leite and Dimitrakopoulos
2007; Vizi 2008; Harrison et al. 2009; Asghari et al. 2009).

In this paper, in the first step using Datamine software
(Studio 3 Help 2007) geological block model was constructed
for Sungun copper mine and implemented in the geostatistical
analysis by conditional simulation. Thereafter, considering

Fig. 1 Fundamental steps in
SGS algorithm (Webster and
Oliver 2007)
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Zone Number of
samples

Average
grade (%)

Std Min (%) Max (%) Kurtosis Skewness

Leach 2,881 0.11562 0.37339 0 7 104.32 8.57

Supergene 1,914 0.7196 0.6069 0 3.6 1.66 1.15

Hypogene 11,219 0.44279 0.38278 0 2.408 0.11 0.74

Table 1 Statistical parameters
of the exploration data
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economic block model, the open pit parameters including
average grade, minable reserve, waste tonnage, and net
present value were determined using the NPV scheduler
software(NPV Scheduler Help 2007) for both the methods.

Simulation background

Unlike kriging method, conditional simulation generates
grade models that do not suffer from the smoothing
effect and therefore can be utilized for investigating
intrinsic uncertainty related to the estimated attributes
such as ore grades (Dimitrakopoulos 1998). In the
conditional simulation, there are various approaches to
be used in the simulation process; however, sequential
Gaussian simulation (SGS) is the easiest method to
simulate a multivariate field. In the sequential conditional
simulation, each entity is simulated sequentially based on
its normal conditional cumulative distribution. In this
sequential method, conditional state is generated by using
the original data as well as the simulated data in the
previous stages that are situated in the neighborhood
locations (Webster and Oliver 2007). The fundamental
steps in SGS algorithm are depicted in Fig. 1:

Case study

Sungun copper deposit located in a mountainous region is
situated 75 km northwest of Ahar, in the East Azerbaijan
Province, between 46°43′E longitudes and 38°42′N latitudes
with average altitude of 2,000 m above the sea level. This
region is placed on progeny belt of Alps–Himalayan and has a
wet climate with moderate to cold temperature. Sungun
copper deposit is a porphyry-type and sulfuric minerals of
copper are replaced in a semi-deep porphyryMonzonite mass.
The Monzonite mass is surrounded by upper cretaceous
limestones and tertiary volcanic andesite–latite.

In this paper, part of the Sungun deposit having
sufficient exploration information was considered as the
study area. The information includes 111 boreholes (16,014
samples) with azimuths of 0–317° and dips of 10–90°. The
grade information obtained from the boreholes contains
copper assays in all of the porphyry zones, i.e., leach,

supergene, and hypogene. Statistical parameters of the
distributions are given in Table 1.

Geostatistical analysis

To start geostatistical analysis, it is necessary to perform a
preliminary statistical analysis comprising compositing,

Table 3 Specifications of the spherical models

Structure Parameters Zone

Leach Supergene Hypogene

1 Model Spherical Spherical Spherical

Nugget effect (%)2 0.007 0.096 0.192

Sill (%)2 0.701 0.772 0.71

Range (m) 29.7 54.7 89.3

2 Model Spherical Spherical Spherical

Nugget effect (%)2 0.007 0.096 0.192

Sill (%)2 0.924 0.872 1.02

Range (m) 209.7 135.5 181.9

Table 4 Optimum parameters for ordinary kriging

Zone Range
(m)

Minimum
number of
points used
for estimation

Maximum
number of
points used For
estimation

Discretization

Leach 140 3 30 27

Supergene 91 3 30 27

Hypogene 127.3 3 30 27

Table 5 Statistical parameters after estimation process

Zone Average
grade(%)

Std Min
(%)

Max
(%)

Kurtosis Skewness

Leach 0.07138 0.054241 0.006 0.396 4.29 1.7

Supergene 0.69515 0.28292 0.006 2.349 1.11 0.67

Hypogene 0.42876 0.22718 0.003 1.298 −0.64 0.14

Table 2 Statistical parameters of the exploration data after compositing

Zone Number
of samples

Average
grade (%)

Std Min (%) Max (%) Kurtosis Skewness

Leach 963 0.07876 0.12168 0.001 0.464 3.76 2.18

Supergene 628 0.7157 0.55 0.002 2.757 0.99 0.98

Hypogene 3,625 0.44508 0.35582 0.001 2.042 −0.28 0.57
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recognizing outlier data, finding out trends, and if necessary,
conversion of abnormal to normal distributions (Deustech and
Journel 1998). Carrying out statistical analysis, it was found
that 6.25 m composite length is appropriate for the analysis.
Dorfel test was performed to distinguish the outlier data,
which showed no outliers in the supergene and hypogene
zones, whereas in the leach zone, a threshold of 0.464 was
obtained (Table 2). Also no specific trend for grade was
distinguished. In the last step, normal standard distribution
can be introduced.

Normally, to find out probable spatial coherence in the
data, variography is fulfilled. To produce a 3D variogram,
the composite length of 6.25 m was uniformly applied.
Trying various lag distance, it was found that a lag of 50 m
gives the best fit for spherical model applicable in porphyry
zones. Observing the obtained variograms, neither regional
nor geometric anisotropy was detected. Specifications of
the spherical models are given in Table 3.

With the help of variography results, block ordinary
kriging was performed to assign a grade to each block. For
this, block dimensions of 12.5×25×25 m were chosen
according to exploration information. Using a trial and error
mechanism, the optimum parameters for ordinary kriging was
determined (Table 4). Also, Table 5 gives parameters of
estimation blocks frequency distribution. From Table 5, it is
seen that as compared to the original data, standard deviation
for various zones is decreased due to smoothing effect.

Conditional simulation

Sequential Gaussian conditional simulation is the most
efficient method in obtaining grade distribution (Deustech
and Journel 1998). To obtain a reliable result from applying
this simulation technique, 50 realizations of the deposit seems
to be sufficient (Dimitrakopoulos et al. 2002). It should be
noted that statistical features of the conditional simulation
outputs would be very similar to that of the original data.
Figures 2 and 3 show close matching of the statistical
parameters, variograms, and covariograms of the realizations
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and the original data, respectively, for the hypogene zone.
Moreover, grade distribution curve obtained from kriging and
conditional simulation for this zone is shown in Fig. 4. As it
can also be inferred from this figure, due to smoothing effect
variance of the kriging estimations, is much less than variance
existed in the original data and simulated realizations. The
same trend was observed in the other porphyry zones (i.e.,
Leach and Supergene).

Determining final pit limit using LG algorithm

To determine final pit limit, Lerches and Grossman (LG)
algorithm was adopted. For this, in the first step, consid-
ering economic parameters given in Table 6 (Pars Olang
Engineering Consultant 2002), economic block models
were prepared incorporating grades obtained from the
kriging and conditional simulation realizations. Then, using
LG algorithm final pit limit for each case was identified,
and accordingly, parameters including ore tonnage, waste
tonnage, average grade, and static NPV, were calculated
(Fig. 5). Moreover, in Table 7, details of the final pits of
both the conventional kriging method and conditional
simulations are presented. As it can be inferred from
Table 7 and Fig. 5, the pits resulted from conditional
simulation gives more ore recovery as compared to the pit
obtained from kriging method. However, higher ore
recovery cannot be considered as the solitary economic
index for selecting the optimum pit, and final decision is
made according to the achievable NPV. From NPV point of
view, the pits resulted from conditional simulation provide
higher NPV (123 M$) as compared to the kriging method-
based pit NPV (73 M$).
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Fig. 5 Pit parameters obtained from kriging method (solid bar) and conditional simulations

Table 6 Required information in making economic block model

Parameter Quantity

Ore production 7 Mt
Year

Overall wall slope 37°

Density 2.4

Cutoff grade 0.25%

Recovery 90%

Mining cost 2:1 S
Oreton

Milling cost 2:36 S
Oreton

Smelting& refining cost 45 S
Concentrate ton

Copper value 2004 S
ton

Discount rate 12%
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Conclusion

In this paper, superiority of conditional simulation over
conventional kriging method was investigated in grade
estimation. Destructive smoothing effect of the kriging
method is the main cause of the kriging grade estimation
inaccuracy. Using sequential Gaussian conditional simula-
tion technique, 50 realizations of the ore body were
constructed, which proved high conformity of the condi-
tional simulation grade distribution to that of the original
data. Accordingly, the pit obtained from conditional
simulation has more mineable ore as compared to the
kriging-based pit. Also, average NPV of the conditional
simulation-based pits is significantly (123 M$) higher than
that of kriging method NPV (73 M$).
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method and conditional simulations
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model

SGS models
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