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Abstract Healthcare, conceivably more than any other
area of human endeavour, has the greatest potential to
be affected by artificial intelligence (Al). This potential
has been shown by several reports that demonstrate
equal or superhuman performance in medical tasks
that aim to improve efficiency, diagnosis and progno-
sis. This review focuses on the state of the art of Al
applications in cardiovascular imaging. It provides an
overview of the current applications and studies per-
formed, including the potential value, implications,
limitations and future directions of Al in cardiovascu-
lar imaging.
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It is envisioned that Al will dramatically change the
way doctors practise medicine. In the short term, it
will assist physicians with easy tasks, such as automat-
ing measurements, making predictions based on big
data, and putting clinical findings into an evidence-
based context. In the long term, Al will not only as-
sist doctors, it has the potential to significantly im-
prove access to health and well-being data for pa-
tients and their caretakers. This empowers patients.
From a physician’s perspective, reliable Al assistance
will be available to support clinical decision-making.
Although cardiovascular studies implementing Al are
increasing in number, the applications have only just
started to penetrate contemporary clinical care.
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Introduction

Each year, more and more cardiac imaging investiga-
tions are being performed [52]. This is driven by mul-
tiple factors, such as increased acceptance of imag-
ing, which over the years has played an incremen-
tal role in diagnosis, management and monitoring
treatment outcome. In addition, imaging has become
more widely available, and imaging equipment has
become not only more precise, but also faster and
cheaper. The improved quality and interpretability of
imaging studies has not only led to increased satisfac-
tion for the patient, but could also lead to increased
reassurance of the doctor from a clinical and legal per-
spective. From an economical perspective, the global
increase in healthcare costs is in part related to the in-
creasing number of imaging units present in the hos-
pital and thus the increased number of imaging stud-
ies performed [50]. However, the expansion of imag-
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ing capabilities and subsequent analyses stretches the
limits of productivity of the average imaging special-
ist. Medical artificial intelligence (Al) is a solution for
the standardised evaluation of the increasing num-
ber of medical images. Scientific literature has started
to demonstrate that smart computers utilising Al can
provide guidance and assistance during image acqui-
sition and evaluation. This potentially has a signifi-
cant influence on the physician’s workload.

Why is Al promising for medical imaging?

One definition of Al is ‘the science of making ma-
chines do things that could be considered intelli-
gent when they were performed by human beings’,
although ‘intelligence’ itself could be considered
a poorly defined term [41]. Al applications are in-
creasingly used to solve problems in healthcare and
medicine, as demonstrated by an increasing number
of studies using keywords such as ‘artificial intelli-
gence, or the methodological references ‘machine
learning’ (ML) and ‘deep learning’ (DL) [16]. The
former refers to the development of models where
input variables are predefined, e.g. the use of clinical,
stress-testing and imaging variables for the prediction
of major adverse cardiac events (MACE) [8]. The latter
type of learning is based on the intrinsic discovery
of important features in a multilayered model set-up,
e.g. using echocardiographic images to classify the
view [37].

Al researchers aim to develop and train self-learn-
ing models. These models pursue the identification
of sophisticated relationships between a given input
and corresponding outcome of multiple samples. As
alluded to before, the definition of Al varies between
experts, but they all refer to implementation of a dis-
tinctly human characteristic in models: exploiting
previous experience to increase knowledge on how to
perform a task in order to enhance decision-making
in the future [55].

The notion of applying Al to medical imaging is
fascinating for multiple reasons. First of all, it is be-
coming apparent that image datasets harbour con-
siderably more useful data than a human can typ-
ically process. Secondly, simple tasks, like drawing

Artificial intelligence is able to impact all steps in the imaging chain

contours and subsequent measurements, can be per-
formed by computers more consistently, without in-
terruption and many times faster than by humans.
Although the development of useful ML models will
take time, it is postulated that the implementation of
Al will enable physicians to start working more effi-
ciently [9, 15].

For medical imaging, Al impacts all steps of the
imaging chain (Fig. 1). The first step is decision
support for selection of the appropriate diagnostic
imaging modality. Currently, healthcare is contin-
uously pushing towards evidence-based decision-
making and the use of guidelines. Al-based deci-
sion-support tools can aid in the selection of the
most appropriate imaging test for individual patients.
Furthermore, vendors are currently selling the first
commercial products that implement ML during the
examination of a patient [24, 37]. Following acquisi-
tion, Al is implemented in image reconstruction (e.g.
using low-dose computed tomography, CT, to obtain
an optimal anatomical reconstruction [72]), image
interpretation and diagnosis (e.g. computer-aided
diagnosis of myocardial infarction, MI, in echocardio-
graphy [60]). The final step in the imaging chain is to
identify relevant prognostic and predictive informa-
tion from cardiac imaging (e.g. prediction of adverse
outcome in patients with pulmonary hypertension
(17D).

The concept of personalised medicine is the com-
bination of specific knowledge about an individual
patient’s characteristics in order to tailor the predicted
prognosis, choose treatment based on anticipated re-
sponse or susceptibility for a specific disease [51].
Truly personalised medicine for multiple diseases is
an important goal for the future of healthcare. For
instance, direct application of Al would be very suit-
able for the evaluation of sex and gender differences,
which is an important topic in current cardiovascular
research. To accomplish this goal, different sets of
data in healthcare must be combined: imaging data,
electronic health records, biomarker analysis, genetic
data, and others [54]. Although there have been at-
tempts at combining different data sources, with some
promising results [8, 44, 58], current research in Al has
not yet reached this level of complexity in healthcare.
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Fig. 2 a-c Images obtained from the research performed mans use to classify the image. ¢ The confusion matrices for

by Madani et al. [37]. a 2D representation of the different
echocardiographic views. Different colours represent the dif-
ferent standard echocardiographic views. A deep-learning
model enabled classification, which resulted in the clustering
as can be seen in the plot on the right. b The saliency maps
(occlusion map not shown). The input pixels weighted most
heavily in the neural network’s classification of the original im-
ages (left). The most important pixels (right) make an outline
of relevant structures demonstrating similar patterns that hu-

Most published studies have focused on automated
segmentation, post-processing and computer-aided
diagnosis. Therefore, this review predominantly fo-
cuses on narrow Al projects that could prove useful
in the near future in cardiovascular imaging. We aim
to provide a non-systematic narrative overview of the
early applications and studies of the implementation
of Al in cardiac imaging, categorised by the different
imaging modalities: echocardiography, CT, magnetic
resonance imaging (MRI) and nuclear imaging.

Implementation of Al in cardiovascular imaging

Echocardiography

Echocardiography is the most widely used imag-
ing modality in cardiology [26]. The advantages of
ultrasound are portability, speed and affordability.
However, it is a user-dependent method and inten-
sive training is required in order to achieve accurate
interpretation of the acquired data [21]. AI can aid
in a more standardised analysis of echocardiographic
images, to reduce user dependency. It has already
demonstrated the ability to aid in the analysis of echo
images, allowing the generation of important cardiac

different classifiers. The actual views are represented on the
vertical axes. The horizontal axes represent the classification of
views by a neural network with video classification input (c7),
a neural network with still images as input (c2) and the classifi-
cation performed by a board-certified echocardiographer (c3).
The numbers in the squares represent the percentage of labels
predicted for each category (rounding causes addition to not
always add up to 100) [37]

variables on-the-fly with automated classification of
echocardiographic views (unpublished; DiA Imaging
Analysis/GE Healthcare).

Al has been applied to different steps in the
echocardiographic imaging chain. Firstly, during the
acquisition of echocardiographic images, automated
identification and measurement of the left ventricular
wall has been implemented with an ML-based model.
Performance of this algorithm is comparable to the
traditional 3D echocardiographic methods and car-
diac MRI. However, in a minority of pathologies, e.g.
congenital disorders or disease with small ventric-
ular cavities, the left ventricular myocardium is not
optimally recognised by the implemented algorithm
[64].

Secondly, Al is applied in the post-processing of
echocardiographic images. To facilitate a fully auto-
mated analysis, algorithmic classification of standard
views is essential [31]. Madani et al. showed that a DL
model achieves a similar performance in view clas-
sification to that of a board-certified echocardiogra-
pher (Fig. 2; [37]). Parameters of cardiac function have
been analysed and determined with Al-based models
trained with echocardiographic data. Results showed
that the determination of left ventricular ejection frac-

2

Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist 405




Review Article

tion and longitudinal strain via Al generates similar
results to those with expert visual determination [33].
Also, segmentation of the left and right ventricle is of
interest, with the goal of automating ejection fraction
measurements. The feasibility for the segmentation
of the left ventricle using an Al model trained with
small training sets has been demonstrated. The ac-
curacy of the segmentation increased when the num-
ber of training images used was increased. This re-
sult shows an important characteristic of Al; increas-
ing the amount of input data will usually improve
the model’s performance. However, it should also be
noted that using a more diverse dataset of images typ-
ically provides more generalisable results [13]. A sim-
ilar performance was shown for determination of the
size and function of the right ventricle. The correla-
tion between automated and conventional right ven-
tricular measurements ranged between 0.79 and 0.95
(r-values). However, Bland-Altman analysis showed
that both end-diastolic and end-systolic volumes were
usually overestimated in automated analyses. Fur-
thermore, this method was semi-automated and re-
quired manual tracing of the right ventricular wall in
a single frame [39]. All previously mentioned studies
applied post-processing steps, performed after data
acquisition. Excitingly, on-the-fly echocardiographic
analysis has recently been introduced into the soft-
ware of hand-held ultrasound devices, enabling auto-
mated analysis of variables during acquisition.

In addition to automated analysis, classifying or
diagnosing several cardiac pathologies has been
demonstrated. Moghaddasi and Nourian used three
different classifiers for the detection of mitral regurgi-
tation. A support vector machine provided the most
accurate results for determination of severity (accu-
racy: >99% for every degree of severity), as evaluated
by human interpretation [42]. Automated identifica-
tion of MI has been enhanced with Al using different
input features. Strain rate curves and segmental de-
formation for identification of MI demonstrated an
accuracy of 87% [62]. Another study performed an
analysis of MI using texture descriptors derived from
the discrete wavelet transforms of the ultrasound sig-
nal (accuracy 99.5%) [60]. Narula et al. used speckle-
tracking data to discriminate between an athlete’s
heart and hypertrophic cardiomyopathy with three
different classifiers. The models showed increased
accuracy when different echocardiographic features
were combined compared to single features alone. Al-
though these pathologies are clinically similar, the ML
model may present the opportunity to differentiate
between phenotypes and modify therapy [47]. Similar
echocardiographic data were used to differentiate be-
tween patients with restrictive cardiomyopathy and
constrictive pericarditis. Although differentiation of
these entities using four echocardiographic parame-
ters without Al generates an area under the receiver
operating characteristic curve (AUC) of 0.942, an
associative memory classifier trained with features

from speckle tracking echocardiography in addition
to the four echocardiographic features generated an
improved AUC of 0.962. While similar results were ob-
tained with and without Al, this study demonstrates
that implementation of Al for discrimination of these
entities is feasible [57]. Zhang et al. published a study
that includes segmentation, calculation of several
clinical parameters and diagnosing three different
cardiac pathologies in 14,035 echocardiograms. The
application of Al was shown to be feasible in many
steps along the imaging pathway, e.g. for detection of
disease the AUC varied from 0.85 to 0.93 [73].

Another specific diagnostic domain for the imple-
mentation of Al is the characterisation of the phe-
notype of heart failure with preserved ejection frac-
tion (HFpEF). This disease has a heterogeneous pro-
file and its management is limited by the lack of a true
gold standard definition [67]. In a study on 100 sub-
jects, both HFpEF patients and healthy, but hyperten-
sive and breathless, control subjects, a classifier had
an accuracy of 81% for the classification of patients
with HFpEE This classification was based upon spa-
tial-temporal rest-exercise features, which were partly
determined by ML algorithms. This study shows the
application of Al in diagnosis and post-processing of
imaging, respectively [63]. Shah et al. also used a com-
bination of imaging and clinical variables for classi-
fication and prediction of outcome in patients with
HFpEE This study showed an AUC between 0.70 and
0.76 during validation. Unsupervised phenomapping
of HFpEF patients generated three different pheno-
types with a significant difference in endpoints of car-
diovascular hospitalisation or death. [58]. An unsu-
pervised analysis of a combination of data sources has
also been used in the identification of patients with
heart failure that benefit from cardiac resynchronisa-
tion therapy [14].

In summary, in the short term Al will likely be
implemented in echocardiography for automated
segmentation and analysis of left and right ventricle
contours and automated calculation of volumetric pa-
rameters, thereby reducing the workload of echocar-
diographic technicians. Subsequently, classification
of disease with Al can be achieved, based solely
on echocardiographic images, as well as combining
imaging data with clinical variables, supporting clin-
icians and radiographers on the fly. This will also
enable the generation of new hypotheses and lead
to better diagnostic and prognostic performance in
different cardiovascular pathologies.

Computed tomography

Cardiac CT has made a leap forward in the last decade,
focusing on the visualisation of stenosis in the coro-
nary tree, plaque characteristics, coronary calcifica-
tion and scoring and more recently the modelling of
flow [49]. Promising opportunities for Al in CT are
automated noise reduction, while retaining optimal

406  Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist

2



Review Article

Fig. 3 a-e A stenosis (in-
dicated by the arrowheads)
displayed in different imag-
ing methods. a computed
tomography coronary an-
giography (CTCA). b Cal-
culation of fractional flow
reserve (FFR) with a ma-
chine learning (ML) model.
¢ Calculation of FFR with
computational fluid dynam-
ics (CFD). d Measurement

of the stenosis during inva-
sive coronary angiography.
e From coronary CTCA to
an Al-based 3D model of
the coronary tree, display-
ing the FFR at different loca-
tions along the coronary ar-
teries. (Images reproduced

with permission [15])

imaging quality, and the avoidance of invasive coro-
nary angiography (ICA) for determination of signifi-
cant stenosis [11, 72].

In the context of image acquisition, Wolterink et al.
described and validated a method with which to ob-
tain reduced radiation dose CT images by training
a DL model. Low-dose CT images were used to es-
timate the routine-dose CT images [72]. A similar ap-
proach with a convolutional neural network was used
to determine the calcium score from regular coronary
CT angiography (CTA). This obviated the need for cal-
cium score CT and thereby reduced radiation expo-
sure for the patient [70]. Another application of Al
in CT is post-processing of the images. Zreik et al.
showed that automated segmentation of the left ven-
tricle from coronary CTA with convolutional neural
networks is a feasible and reliable option [36].

A topic that has been extensively studied is the
identification of significant coronary stenosis from
coronary CTA. Significant coronary stenosis is de-
fined as a fractional flow reserve (FFR) <0.8 deter-
mined during ICA. The use of Al replaces the need for
invasive measurements and generates clear models
of local FFR (Fig. 3). Different input features derived
from coronary CTA have been used for modelling:
physiological features [28], quantitative plaque mea-
surements [18], features calculated from different
spatially connected clusters of heart segmentation
[75], and geometric features of the coronary anatomy
[15, 66]. Also features from CT perfusion are being
evaluated for use with Al [25]. Currently, non-invasive
measurements of FFR are performed with compu-
tational fluid dynamics, which is computationally
demanding. Substitution of this method by Al was

shown to be faster and performance was equally good
[15, 28]. Improvement of non-invasive determination
of FFR was obtained by accounting for partial vol-
ume effects with Al. Partial volume effects lead to an
overestimation of the vessel lumen area [23]. This
development leads to an opportunity to decrease the
number of ICAs, while allowing for targeting specific
stenosis during ICA and, thus, decreasing the duration
of the procedure. Automated identification of coro-
nary artery calcium (CAC) has also been subjected
to Al approaches, showing that automated identifica-
tion of CAC in ECG-gated non-contrast-enhanced CT
imaging has an intra-class correlation coefficient of
0.95. This performance is similar to that of a human
expert [71].

A small number of studies have been performed
to determine the diagnostic value of Al in coronary
CTCA. Zreik et al. obtained an accuracy of 0.77 for
the detection and characterisation of coronary plaque.
For the detection of stenosis and determination of the
anatomical significance, an even higher accuracy of
0.80 was obtained, with a dataset of 163 patients [76].
Kolossvary et al. used a more supervised approach
with predefined measurements, so-called radiomics
[1] features, to identify coronary plaques with a nap-
kin-ring sign (NRS). This sign is an independent prog-
nostic marker of MACE. A large number of texture
features, derived from the radiomics set, are able to
differentiate between plaques with and without NRS
[34]. Another study used texture features derived from
calcium score CT as the input in ML models to dis-
criminate between patients with acute or chronic MI
and control subjects. This resulted in an AUC of 0.78
and obviated the need for gadolinium-enhanced MRI
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[38]. However, it has to be noted that manual segmen-
tation of the coronary plaques and the left ventricular
wall was required, creating an extra non-automated
action. This limits the possible implementation in the
cardiologist’s clinical workflow.

Besides automated analysis and diagnostics, prog-
nostic evaluation has been applied in cardiac CT.
Survival analysis was performed in different patient
groups with a cardiovascular risk. In the classifi-
cation of all-cause mortality among patients with
suspected coronary artery disease (CAD), ML mod-
els exhibited a larger AUC (0.79) than the individual
clinical and coronary CTCA metrics (e.g. Framing-
ham risk score: 0.61, segment stenosis score: 0.64,
segment involvement score: 0.64, Duke index: 0.62)
[44]. A similar prognostic model was developed using
coronary CTCA features derived from the stenosis.
This model generated a risk score for all-cause death
and non-fatal MI during a follow-up of >3 years and
resulted in an AUC of 0.771. This AUC was higher
than for each of the individual conventional coronary
CTCA variables [53].

Results of Al-based models are promising for car-
diac CT; more specifically there is a great future for
coronary CTCA, mainly due to the non-invasive na-
ture of CT imaging, which is relatively user-indepen-
dent and fast. Reducing the radiation dose is a rel-
evant application of Al for patients, but preserving
spatial resolution is important to make appropriate
diagnostic and possibly prognostic decisions. Another
purpose of Al in coronary CTCA is reducing the need
for ICA by expanding the informational value of the di-
agnostic images. Given the number of studies that ap-
ply Al in CT, this field is expanding and starting to in-
corporate other data sources in the analysis. This cre-
ates valuable models and brings us closer to a world
of personalised medicine.

Magnetic resonance imaging

Cardiac MRI is a field that comprises the imaging
of many aspects of the heart: anatomical imaging,
contractile function, flow imaging, perfusion imaging
and, importantly, myocardial characterisation [22].
However, given the many opportunities that cardiac
MRI offers with regard to Al applications and the
technological methods used in MRI, radiographers
that have experience and knowledge of physics and
cardiac anatomy are integral to image acquisition and
analysis. As a consequence, the quality of cardiac MR
images is not only user dependent, but also patient,
scanner and vendor dependent.

Automated segmentation of cardiac structures and
infarct tissue have been the main topic of interest in
cardiac MRI thus far. Several studies have been pub-
lished on the automated segmentation of cine images
[5, 10, 48, 65, 74] and automated calculation of car-
diac parameters from MRI [7, 61]. Multiple software
programs are available that perform automated seg-
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Fig. 4 Comparison of processing times of segmentation of
the aortic valve in cardiovascular magnetic resonance phase
contrast imaging. Automated segmentation used a neural net-
work approach, trained with 150 segmentations. Validation
was done in a cohort of 190 segmentations. Automated seg-
mentation times were obtained with GPU acceleration. How-
ever, also without GPU acceleration, the average segmenta-
tion time was 19.04s. (Images obtained from Bratt et al. [10])

mentation based upon Al. Algorithms for automated
segmentation of enhancement on late gadolinium
enhancement imaging were summarised and tested
by Karim et al.,, whose study showed that Al algo-
rithms provided greater accuracy than fixed-model
approaches [30]. Beyond performance, the reduction
in time is a particularly important characteristic of
automated Al-based segmentation, as can be seen in
Fig. 4; [10]. Baessler et al. used ML models to se-
lect the most important texture features, derived from
cine images, to differentiate between patients with MI
and control subjects. The use of two texture features
in multiple logistic regression generated an AUC of
0.92 [6]. Implementation of this model in a clinical
setting precludes the need for gadolinium-enhanced
cardiac MRI, potentially expanding the eligible pa-
tient population and reducing costs. All these studies
suggest the feasibility of simplifying further analysis
of myocardial tissue in large cardiac MRI datasets. An
interesting approach by Snaauw et al. demonstrated
to possiblity of so-called end-to-end classifcation of
disease on cardiac MR images, without the need for
annotation [59].

Two studies have been reported that perform pre-
dictive modelling with cardiac MRI data. First, prin-
cipal component analysis was used to determine
survival in patients with pulmonary hypertension. In-
put for the analysis was the three-dimensional cardiac
motion of the right ventricle. This method showed
an AUC of a time-dependent receiver operating char-
acteristic analysis of 0.73 for the inclusion of 3D-MR
features in the model, besides clinical, functional and
regular MR features and features derived from right-
sided heart catheterisation (otherwise: AUC 0.60).
Median follow-up time was 4.0 years [17]. A second
predictive model examined the deterioration of left
ventricular function in patients with a repaired tetral-
ogy of Fallot. This study indicated that ML models
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can be useful for planning early intervention in pa-
tients at high risk (AUC: 0.87 for major deterioration).
Follow-up duration had a median of 2.7 years [56].

To conclude, due to major disadvantages that com-
promise inter- and intra-patient comparability in
MRI, the application of diagnostic and prognostic
Al in MRI is more challenging than in other imag-
ing modalities. In the short term, the use of Al in
cardiac MRI will therefore be primarily focusing on
automated segmentation and calculation of variables.
There are vendors who have incorporated this into
their software. Nonetheless, efforts to increase the
use of Al for diagnostics and prognostics in CMR
continue, with the key challenge of overcoming the
between-study comparability of MR images. Methods
are being developed and currently further optimised
and standardised.

Nuclear imaging

Nuclear imaging of the heart is used to assess per-
fusion defects within the myocardial wall. Myocar-
dial perfusion single-photon emission computed to-
mography (SPECT) and positron emission tomogra-
phy (PET) are methods for cardiac nuclear imaging,
although the latter is rarely used in clinical practice
due to its costliness, among other reasons. Whereas
PET is based on the simultaneous detection of two op-
posite annihilation photons, SPECT uses gamma rays
emitted by a radioactive tracer to reconstruct tissue
with uptake. Both nuclear imaging methods can be
combined with MRI or CT, which has shown to im-
prove their clinical value, although cardiac PET-MRI
has only just started to be used in larger centres [12,
32].

The automated analysis of SPECT is a growing
field of interest for research. Normal and abnormal
myocardium in CAD can be classified with Al-based
models, with performance reported to be similar to
the visual analysis of SPECT images [19]. Also, the de-
tection of locations with abnormal myocardium has
been investigated. An artificial neural network (ANN),
trained with expert interpretations of SPECT images,
improved the identification of stress (AUC: 0.92), rest
defects (AUC: 0.97) and stress-induced ischaemia
(AUC: 0.97) compared to conventional scoring; the
AUC of the summed stress score, summed difference
score and the summed rest score was 0.82, 0.75 and
0.91, respectively [45]. Another study by this group
compared an improved version of the ANN to the
older version, showing that retraining of the model
improved the identification of ischaemia. The AUC
increased to 0.96 [46].

The accuracy of SPECT can be boosted by the in-
tegration of clinical data and quantitative imaging
features in an ML model. The diagnostic accuracy in
the detection of obstructive CAD was improved with
an ML model with quantitative and clinical features.
This model generated a marginally better result than

a model with solely clinical features (accuracy: 79.4%
vs 75.7%). The performance of the model was sim-
ilar to the visual analysis of one experienced reader
(78.5%) and better than another (73.5%).[3]. Also,
Betancur et al. examined the automated prediction
of obstructive CAD. DL models were trained with the
raw and quantitative perfusion polar maps. Al-based
models showed a higher AUC (0.80) for prediction of
CAD than the current clinical method (0.78) in 1638
subjects.[9]. Another study showed utility in aiding
decision-making for cardiac interventions. SPECT
data, merged with functional and clinical features,
were used to predict the necessity for revascularisa-
tion. The results of this study showed that an ML
approach (AUC: 0.81) was comparable to or better
than two experienced readers (AUC: 0.81 and 0.72) in
the prediction of the need for revascularisation [4].

MACE were also studied in 2619 patients who were
referred for myocardial perfusion imaging. This risk
analysis was based upon an ML model that combined
clinical information with myocardial perfusion SPECT
data. This model showed a higher AUC than a model
with solely imaging features (AUC: 0.81 vs 0.78) [8].
Another study by Haro Alonso et al. compared an ML
model with baseline logistic regression (LR) for the
prediction of cardiac death. Patients were selected if
they had undergone myocardial perfusion SPECT and
imaging parameters were used for modelling. The
study showed that baseline LR (AUC: 0.77) was out-
performed by all ML models, with the support vector
machine generating the highest AUC (0.83) [2]. ML
models have also been used in cardiac PET. However,
in this case PET variables were used as the output clas-
sification, using demographic, clinical and functional
variables as input. ML models were superior to LR
for the identification of myocardial ischaemia, based
upon PET images, and selection of patients at risk for
MACE [29].

To conclude, short-term applications for Al in
nuclear imaging are predominantly focused on au-
tomated detection of perfusion defects in the myo-
cardial wall. Because nuclear imaging can be easily
combined with CT or MRI, this enables enhanced
fusion of multiple data sources in addition to clinical
data. Such methods have been shown to improve
the performance of diagnostic and predictive models.
However, in the long term, the high radiation expo-
sure during nuclear imaging remains a limitation in
the cardiac clinic, and hence also to the penetration
of Al into this imaging modality.

Conclusions and future directions

Cardiovascular imaging has shown remarkable ad-
vancements in the last few decades, leading to de-
tailed imaging of not only structural, but also physio-
logical and even molecular characteristics of the car-
diovascular system. The advancement of Al creates
opportunities in healthcare to obtain more sophisti-
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cated information from imaging, and to find patterns
in available data sources that are too complex for
the human brain. Intuitively, it is more a question of
when, rather than if, Al technology will offer signif-
icant help for the cardiologist, and in particular the
imaging specialist. Applications are already being im-
plemented in the clinical workflow based on research
that shows equal or better performance than analysis
by the physician or conventional (semi-)automated
methods, with the aim of reducing the workload of
the physician and enhancing decision-making.

The use of Al in cardiac CT applies to many steps
of the imaging chain, whereas the application of Al
in cardiac MRI has so far primarily focused on auto-
mated segmentation of anatomical structures of the
heart. In addition, nuclear imaging and echocardiog-
raphy have used predictive and prognostic modelling.
Nevertheless, the implementation of Al faces sig-
nificant challenges. There are efforts underway to
improve the comparability of imaging modes. Auto-
mated segmentation or extraction of imaging features
is likely to be ‘solved’ first, and this will help to stan-
dardise and accelerate the analysis of large datasets.

Despite promising results, the implementation of
Al in contemporary cardiovascular healthcare has
been limited to date [27, 40]. Several reasons con-
tribute to this observation. First, regulatory bodies,
like the American Food and Drug Administration,
have difficulty with the regulation and approval of
software based on Al [68]. This delays the allotting of
certification marks and the introduction of products
on the consumer market. Second, the added value of
Al in clinical care remains to be determined and es-
tablished. No studies have been performed that show
that the implementation of Al indeed leads to higher
quality of care, lower healthcare costs or improved
patient outcomes [54]. Furthermore, due to the ‘black
box’ used in many ML models and the dependency
on input data for the performance of a model, it is
difficult to replicate or explain experiments. Repeat-
ing studies and validating designed ML models will be
important before routine implementation in clinical
practice [20]. This requires sharing of data and model
settings, which is uncommon in clinical research; also
patient privacy and compliance with regulations re-
garding patient data are critical considerations. Third,
physicians are not yet prepared for the implementa-
tion of Al in the daily clinical setting. Trust in these
new technologies has to be built, supported by ef-
forts towards transparency and explainability [35].
Fourth, the datasets used in the described studies are
commonly relatively small. A large range of different
patients must be included in studies to develop ap-
propriate models. Diversity in ethnicity, gender and
age must be guaranteed to build widely applicable
models. This includes the data used during training,
validation and testing of the model. Furthermore,
a standardised method for storing or extraction of
information in the electronic health record should be

developed. The use of free text should be reduced to
enhance data analysis and application of Al.

There is also an opportunity for future research
to focus on the implementation of data from multi-
ple sources in ML models, including biomarkers, ge-
nomics, proteomics and metabolomics [54]. This can
improve predictive value of ML models and create per-
sonalised healthcare for patients. Text mining and im-
provement of the predictive value of free text analysis
are being explored [43, 69], but standardised reporting
can clearly facilitate the implementation of Al world-
wide. The implementation of multiple sources in ML
models can also contribute in deciding whether to re-
fer a patient for cardiac imaging, e.g. immediate ther-
apeutic decision-making based on CT data without
the need for ICA [66].

Current Al technology is considered to be ‘narrow’,
meaning it is good at one particular task, and it is only
as good as the dataset that trained it. Al has made
remarkable progress, and despite a clear peak of po-
tentially inflated expectations, the number of trans-
lational studies that implement so-called narrow Al
is slowly growing, with some results already showing
performance that is equal to or better than that of con-
ventional methods (e.g. [44]) or expert analysis (e.g.
[3]). It will take more than a few decades before we
are able to achieve so-called general, human-like Al.
It will undoubtedly take time for the adoption of such
methods in daily clinical practice, where decisions are
complex. Moreover practice is relatively conservative
in the face of ethical and medicolegal considerations
[35].

Physicians need to realise that Al is a tool that will
not replace many tasks in the short term, but will
likely enhance diagnostic and decision-making capac-
ity. Human performance will be augmented, and it
is likely this will improve the outcome of patients
through better diagnosis, fewer errors and significant
time-saving that could help us create more productive
patient-doctor interactions.
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