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Abstract
The knowledge of passenger flows between each origin–destination (OD) pair is a 
main requirement in public transport for service planning, design, operation, and 
monitoring, and is represented by OD matrices. Although they can be determined 
by traditional approaches (e.g., surveys, ride-check counts, and/or smartcard-
based methods), the availability of new technologies and the proliferation of port-
able devices triggers an emerging interest in building OD matrices from the apps 
of bus operators. This research proposes the first framework for the estimation of 
OD matrices on transit networks by processing smartphone app call detail records 
(SACDRs). The framework is experimentally tested on a sample of 30 workdays 
of an Italian bus operator. The results are represented by easy-to-read control dash-
boards based on maps, which help quantify and visualise the OD matrices in the 
metropolitan area of Cagliari (Italy). The experimentation shows that the framework 
can properly estimate the number of trips for both origin and destination w.r.t. OD 
matrices built from household surveys: the mean absolute error is on average lower 
than five movements for 90% of the origins and 85% of the destinations.
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GIS  Geographic information system
IPF  Iterative proportional fitting
ITS  Intelligent transportation system
MAC  Media access control
MCMC  Markov chain Monte Carlo
OD  Origin–destination
PTC  Public transport company
RFID  Radio-frequency identification
SACDR  Smartphone-app call details record
TAZ  Traffic analysis zone

1 Introduction

Passenger flows are crucial components of the transit service for service planning, 
design (e.g. modifications and creation of routes), economical evaluation (e.g., cost 
benefit analysis), operation control (e.g. skip stopping and deadheading) and moni-
toring (e.g. checking a posteriori if a service is well provided), as well as the use of 
user-oriented measures of service effectiveness in public transport companies (PTCs) 
(Barabino et al. 2014; Olivo et al. 2019; Liu et al. 2022; Ventura et al. 2022; De Aloe 
et al. 2023).

The passenger flows between each origin–destination (OD) pair are described by 
OD matrices (e.g., Phithakkitnukoon et al. 2010). Their rows represent the possible 
origins of the trips and their columns the possible destinations. Each entry repre-
sents the number of passengers travelling from each origin to each destination in a 
considered timespan. In public transport, OD matrices can be built either at route 
or network level. At the route level, they describe passenger flows from boarding 
to alighting stops/stations on the route at hand. At the network level, stops or sta-
tions are clustered into traffic analysis zones (TAZs) and OD matrices describe flows 
between TAZs.

The estimation of OD passenger demand has been a challenging topic for several 
decades. It can be addressed by (i) on-board survey and/or ride-check count-based 
methods, (ii) smartcard-based methods and (iii) portable device-based methods.

On-board surveys are labor-intensive, time consuming, and expensive, whereas 
counting boarding and alighting passengers at each stop is easier and cheaper.1 
Moreover, on-board surveys could be people-biased and difficult to integrate with 
exogenous data sources, such as weather and traffic (Ge et al. 2021). Many methods 
were proposed to estimate OD passenger flows from these counts through a ‘seed’ 
matrix, which is usually developed from a classical survey (Simon and Furth 1985; 
Furth and Navick 1992; Navick and Furth 1994; Tamin 1997; Blum et al. 2010).

Recently, the spread of automatic vehicle location (AVL) and automatic fare col-
lection (AFC) systems enabled the observation of the service and can be adopted 
for tracking vehicles and estimating passenger demand. These tools are endogenous 

1 The number of boarding and alighting passengers contains indirect information of OD, because at a bus 
stop, these counts totaled the sum of OD flows originating from and destined to that bus stop, respectively.
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sources of large amounts of data and can support the generation of OD matrices 
using disaggregated data-driven methods (Zhang et al. 2007; Zhao et al. 2007; Tré-
panier et al. 2007; Rahbee 2008; Seaborn et al. 2009; Chu and Chapleau 2010; Wang 
et al. 2011; Munizaga and Palma 2012; Ge et al. 2021; Zúñiga et al. 2021). Although 
AFC systems return high-granularity data, none has been completely success-
ful, because they do not account for fare evaders (Barabino et al. 2020, 2023). The 
recent proliferation of portable devices, such as mobile phones, smartphones, and 
tablets, presents new opportunities and challenges for collecting exogenous ridership 
data and tracking their movements throughout the network. Thus, data-driven meth-
ods such as Wi-Fi signals, large cell-phone data and apps have been proposed (Car-
rel et al. 2015; Chaudhary et al. 2016; Demissie et al. 2016; Mishalani et al. 2016; 
Håkegård et al. 2018; Tu et al. 2019; Nitti et al. 2020; Jee et al. 2023). Research on 
Wi-Fi signals has focused on detecting passengers (Håkegård et al. 2018; Tu et al. 
2019) and counting on-board passengers (Mishalani et al. 2016; Nitti et al. 2020). 
Moreover, other studies have focused on determining passenger demand (by mobile 
phone call records of telco-operators, Demissie et al. 2016) or travel mode (by track-
ing voluntary passengers using customized apps, Carrel et al. 2015; Chaudhary et al. 
2016). However, the necessity of gathering data from telco-operators and the need 
for passenger consent may limit the spread of these methods. For instance, Carrel 
et al. (2015) adopted an interesting app that helps voluntary passengers build a travel 
diary during their trips. However, the diary is too ‘sensible’ and, in the case in San 
Francisco city, only a low percentage of the demand was tracked according to APTA 
(2021).

Conversely, several PTCs nowadays implement their own apps that help passen-
gers gather information about the estimated real arrival time of AVL-equipped vehi-
cles at each stop/station (e.g. ATM in Milan and RATP in Paris). These apps can be 
queried by inputting the route and the stop/station of interest to gather information 
about the next real arrival time of a vehicle. Therefore, they are endogenous data 
sources and can offer insights into the trips of passengers at a low cost with limited 
privacy issues when passengers are not tracked. However, to the best of our knowl-
edge, no study has explored the use of smartphone-app call detail records (SACDRs) 
data to build OD matrices in public transport.

This study aims to cover this gap. Specifically, this study presents a framework to 
infer OD movements and derive the corresponding matrix at the network level. The 
framework is experimentally tested using 9.6 + millions SACDR data provided by a 
bus operator, to demonstrate its viability in a real case study.

This study aims to contribute to both theory and practice. From a methodological 
perspective, the framework sheds light on an emerging research area, which has not 
been fully explored and presents several intermediate algorithms to handle SACDR 
data and build OD matrices. In addition, scholars could benefit from this study, as it 
offers a new way for estimating flows in public transport using emerging technolo-
gies. From a practical perspective, this study provides a different tool for passenger 
demand estimation in public transport.

The remaining paper is organised as follows. Section 2 summarises the relevant 
literature on OD matrices in public transportation. Section 3 presents the proposed 
framework for building an OD matrix. Section 4 presents the experimental results 
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for the overall network of a medium-sized Italian PTC. Finally, Sect. 5 presents the 
conclusions and research perspectives.

2  Literature review

2.1  Survey‑based and/or ride‑check methods

The classical way for building OD matrices usually consists of surveys on passen-
gers and/or boarding and alighting count data by manual ride checks or APC.

OD matrices can be estimated at the network level for all transport modes by 
classical household travel surveys. Next, the trip distribution and modal choice mod-
els help estimate OD transit matrices (Ortuzar and Willumsen 2011). Other stud-
ies adjusted the estimation of OD transit matrices by boarding and alighting counts 
(Tamin 1997; Blum et al. 2010). For instance, Blum et al. (2010) estimated passen-
ger demand by incorporating both household travel surveys and boarding–alighting 
data by a hybrid heuristic algorithm.

The OD matrices can also be estimated at the trip level. In this case, one can 
perform on-board travel surveys on a representative sample of transit rides and/or 
use ride check surveys (i.e., data on boarding and alighting passengers) on routes 
to build a new matrix or update existing matrices. Ride checks are easier to imple-
ment than on-board surveys. Transit trip surveys may help derive an a priori (‘seed’ 
or base) matrix. Next, data on boarding and alighting passengers are used to adjust, 
expand, and generate full matrices according to methods such as distance-based, bi-
proportional, and similar iterative methods (Ben-Akiva et al. 1985; Furth and Navick 
1992; Navick and Furth 1994; McCord et  al. 2010; Mishalani et  al. 2011). For 
instance, the iterative proportional fitting (IPF) method updates a seed OD matrix 
until the marginal row and column totals of the updated OD matrix satisfy the given 
boarding and alighting counts, respectively. Moreover, the IPF is straightforward to 
implement, computationally efficient and performs well in empirical studies.

Other methods use recursive approaches that do not require a seed (on-board) 
matrix, which can be inferred by boarding and alighting data only. However, a null 
base matrix is given. A null base implies that each feasible OD is equally likely to be 
travelled by the passenger (Simon and Furth 1985; McCord et al. 2010; Mishalani 
et al. 2011; Li and Cassidy 2007). For instance, Simon and Furth (1985) concluded 
that, despite this method being applicable for estimating route OD matrices for exist-
ing routes, special attention should be paid in the case of complex routes. Neverthe-
less, as in the case of a seed matrix, the IPF may be adopted to iteratively generate 
an OD-improved matrix.

Other research refined the methods for estimating the OD matrix using more 
complex algorithms and statistical properties. Specifically, recent studies considered 
the distribution of boarding and alighting data. Hazelton (2010) developed a Markov 
chain Monte Carlo sampler to infer OD movement matrices based on passenger 
counts. Ji et al. (2015a) proposed a method to recursively generate OD movement 
matrices from the first alighting stop to the last stop of a bus route using a Gibbs 
sampler-based Markov chain Monte Carlo method. Ji et  al. (2015b) proposed an 
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expectation maximisation (EM) model that incorporated the OD matrix of the prob-
ability of trips from APC data and on-board OD flow survey data over the feasible 
OD flow matrices for each bus trip satisfying the APC counts. The heuristic solution 
to the model offered a better estimation than the IPF method when a null base or a 
poor on-board survey base were available. Moreover, the estimates are of similar 
quality to those of IPF when a large sample is adopted.

Most of these studies concluded that the integration of APC data with on-board 
survey information results in a better OD matrix estimation than that derived from 
an on-board survey alone or using a null matrix. However, even if the classical 
survey-based modelling is adopted, it presents some drawbacks: (1) Extensive clas-
sical surveys are undertaken every 5–10 years because they are costly and require 
laborious data processing and frequent updating. Hence, a priori OD matrices are 
probably outdated and not eagerly adopted by PTCs, because they cannot incorpo-
rate operational and specific considerations for some case studies. (2) Travel surveys 
usually suffer from large imprecisions in terms of coverage, spatial and temporal 
scale (Furth and Navick 1992). An example is the case of nonrespondent passen-
gers following patterns that differ from those responding (e.g., standing passengers 
and short-trip passengers). (3) Methods using boarding and alighting passenger data 
require at least one seed matrix (a predefined or a null matrix) for the initialization.

2.2  Smartcard‑based methods

A more recent way leverages automated data collection to build OD matrices with-
out a seed or null matrix. The collection of high-resolution disaggregated data on 
passengers may be performed by AFC systems (Pelletier et al. 2011). They record 
the number of smart cards (i.e., tickets and/or passes) validated at specific points of 
the route either off board (e.g., at the gates of subways) or on board (e.g., in ticket 
machines on board buses). AFC systems are advantageous when radio frequency 
identification (RFID) technology is incorporated in the tickets (Rossetti and Turitto 
2000; Oberli et  al. 2010; Gonzalez et  al. 2020) or in fully gated transit systems, 
because in these cases the origin and destination of each passenger are recorded.

However, AFC systems have some drawbacks. First, in most non-fully gated tran-
sit systems, data on transfer stops are not available because passengers are required 
to tap in only at the departure bus stop. Second, in many worldwide transit systems, 
pass holders are not required to tap in/out their tickets. Therefore, the incomplete-
ness of stop/station information in such systems makes the trip determination a chal-
lenging issue. Third, AFC systems often coexist with other forms of tickets such as 
paper tickets and can result in incomplete data.

Other studies combined AFC data and AVL and/or GPS data and sometimes used 
APC for validation, to better infer boarding and alighting locations and times, thus 
providing a more accurate estimation of OD matrices (Zhao et  al. 2007; Seaborn 
et al. 2009; Wang et al. 2011; Munizaga and Palma 2012). For instance, Zhao et al. 
(2007) developed a method for inferring passenger trip OD matrices in an integrated 
rail-bus transit system. This method combined AFC data to estimate the boarding-
only of passengers and AVL data to determine the location of buses. Moreover, 
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owing to the only use of boarding information, they assumed that the stop where 
passengers board on a trip was where they alighted on the previous trip. Other stud-
ies on rail systems combined AFC with GIS data to estimate passenger demand 
(Rahbee 2008; Chu and Chapleau 2010).

Although all these methods are very valuable, some passengers may evade the 
fare because they may not carry the cards, buy tickets, or have invalid ones (Bara-
bino et al. 2020). Although Munizaga et al. (2020) proposed a framework to correct 
errors in OD matrices due to fare evasion, its application worldwide would be tricky. 
Indeed, reliable smart card data require: (i) full smartcard transactions, where no 
other means of payment exist; (ii) a mode that has no evasion so that it does not have 
to be corrected, which is very uncommon; (iii) an OD survey conducted specifically 
on the zero-evasion mode, which can be used to correct partial fare evasion, even if 
this is less likely.

2.3  Portable device‑based methods

The third way is emerging and rapidly evolving, as it is based on mobile devices 
(e.g., smartphones and tablets) as exogenous data sources. It outperforms both previ-
ous methods in terms of investment and maintenance costs because PTCs can avoid 
surveying passengers and/or installing many sensors (e.g., counting sensors), as 
these costs are “switched” to passengers.

Portable device-based methods help indirectly collect the data of passengers, 
because these data are on their devices. Although some passengers may carry more 
than one device (or anything), this is not a strong limitation, because some adjust-
ment factors can be calibrated to improve the accuracy of scaling for inferring disag-
gregated origins and destinations. According to several statistics on some interna-
tional reports, modern mobile devices have become essential to people’s daily lives 
(Drosouli et  al. 2021). They reported that 81% of the world’s population owns a 
smartphone, and smartphone adoption among adults aged older than 50 years has 
increased from 62% (2017) to 79% (2019); the number of smartphones in use is 
growing by 5.6% each year.

Three main ways were considered for the estimation of OD flows from portable 
devices: (1) large-scale cell phone networks, (2) Wi-Fi technology, and (3) apps.

The use of a large-scale cell phone helps collect data on both the origin and des-
tination when the device is connected to the cellular network. This is achieved by 
exploring Call Detail Records (CDRs), that may include a call, which is made or 
received (both at the beginning and end of it); a short message, which is sent or 
received; or when the user is connected to the Internet (e.g. to browse the web), 
which is adopted in the estimation of individual mobility (Caceres et  al. 2008; 
Gonzalez et al. 2008; Calabrese et al. 2011; Deville et al. 2014; Iqbal et al. 2014). 
Conversely, to the best of our knowledge, only Demissie et al. (2016) presented a 
methodology to infer the origin and destination in public transport. Their method 
extracted the relevant origins and destinations of inhabitants to build OD matrices by 
CDR data provided by telco-operators. Although the large-scale cell phone method 
uses anonymous locations to avoid privacy issues, it presents some drawbacks. First, 
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it requires the participation of the telco-operator owning the infrastructure and, thus, 
the data, to be successfully applied. Second, some passengers may travel without a 
mobile phone; therefore, this demand cannot be estimated.

The use of Wi-Fi is a recent method for inferring passenger demand because 
mobile devices may be tracked by sniffing Wi-Fi traffic. This method relies on the 
identification of the media access control (MAC) address associated with a Wi-Fi 
signal. Origin and destination may be inferred once the device is connected to the 
Wi-Fi network, even if the passenger does not use the network (Tu et al. 2019; Liu 
et  al. 2013). Mishalani et  al. (2016) noticed that aggregated OD movements of 
multiple buses had better estimations than the disaggregated ones. Håkegård et al. 
(2018) observed that the integration of statistical models to estimate trip-level OD 
movements can estimate passenger loads close to those computed by APC data. Tu 
et al. (2019) presented a system that can infer both the origin and destination of pas-
sengers by fusing the network events generated by Wi-Fi devices (activated by pas-
sengers), AFC system and bus GPS information. Finally, Nitti et al. (2020) proposed 
iABACUS—a Wi-Fi based system that tracks anonymously passengers throughout 
their journey on buses and can return a simple OD matrix—while addressing the 
randomization of MAC addresses recently introduced by Google, Apple, and Micro-
soft (Myrvoll et al. 2017).

Although leveraging Wi-Fi technology is an interesting approach for building OD 
matrices, it presents some disadvantages. First, passengers might have turned off the 
Wi-Fi to minimise battery consumption (Tu et  al. 2019; Nitti et  al. 2020). There-
fore, passenger demand may be underestimated. Second, the Wi-Fi access points are 
increasing rapidly, and several buses are expected to be equipped in the future. How-
ever, the number of people connected to Wi-Fi networks remains low. For instance, 
in Dordrecht (the Netherlands), the number of people connected to Wi-Fi networks 
ranged from 31 to 49% (Kyritsis 2017).

Apps may represent emerging ways for estimating passenger demand because the 
movement of the passenger may be followed. Recent research has shown how app-
based systems help collect passenger data: (i) by tracking the individual location of 
passengers with high frequency (Carrel et al. 2015), (ii) providing information on 
on-board passengers (Chaudhary et al. 2016) and (iii) combining types of transpor-
tation (Lu et al. 2017). Carrel et al. (2015) proposed a system capable of tracking the 
use of transit by passengers at a disaggregated level by matching location data from 
smartphone apps and AVL data. Moreover, they were able to identify the passen-
gers off or on board. Conversely, participatory sensing was used by Chaudhary et al. 
(2016) and Lu et al. (2017). The former proposed a cost-effective method to collect 
data on crowding by using a specific app integrated with GPS. The latter tracked the 
overall passengers’ journey using different transportation choices once the app was 
installed.

However, if smartphone apps are adopted for tracking passengers, they must con-
sent to install the app and, if no incentive is provided, little data could be collected. 
Conversely, if apps provide services (e.g., consulting information such as the real 
arrival time of a transit vehicle at a selected stop/station), passengers may not be 
reluctant to install and use the app, thus resulting in a large amount of data collected. 
No study investigated OD movement estimation by apps.
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2.4  Summary of the past literature

Tables 1, 2 and 3 provide a comprehensive overview of all studies on the three ways 
for building OD matrices. Each reference in the tables reports the following attrib-
utes: authors (year); type of data; location of study (city/country); methodology and 
a quick summary of content and conclusions. Each table is sorted by year.

2.5  Gaps in the literature

All studies provided evidence that OD movements in public transport can be derived 
in several ways, even though it may be at different levels of detail. However, the 
related literature indicates some gaps, which are summarised hereafter.

First, classical survey-based methods are expensive in terms of time and money 
and can result in large inaccuracies in both space and time scales.

Second, smartcard-based methods result in more accurate data. However, sup-
port, maintenance, recharge network infrastructure and sensors in the vehicle may 
involve costs that are not negligible for PTCs. For instance, RFID technology incor-
porated in smart cards could be an interesting and viable solution, as shown by 
Oberli et al. (2010) and Gonzalez et al. (2020). However, hardware (e.g., antennas, 
controller system, sensors) should be installed on board in each vehicle and may be 
too expensive for PTCs. In addition, fare evasion cannot be detected.

Third, mobile device methods using large-scale cell phones require the participa-
tion of telephonic operators to collect data; thus, they can generate a high coverage 
error. Wi-Fi networks are not yet widespread in public transport.

Therefore, it is of interest to propose new methods for inferring OD matrices 
by leveraging the capability of apps. This study proposes the first method in this 
research area.

3  Methodological framework

In this section, a framework is presented to prepare and screen SACDRs, recon-
struct the journey of passengers, infer the destination, build the OD matrix, repre-
sent detailed results over all TAZs and periods, and validate the estimates. Specif-
ically, SACDRs data are processed to return an OD matrix at the network (TAZ) 
level. The rows of the matrix represent the origin TAZs, the columns the destina-
tion TAZs and each entry contains the number of trips for each origin–destination 
pair. The framework is summarised in the flowchart shown in Fig. 1, that adopts 
the notation recommended by the American National Standards Institute (ANSI) 
(Chapin 1970). The procedure is split in several steps, denoted by a dashed line, 
and are described in what follows.
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3.1  Data type, preparation, and screening (STEPS from 1 to 3)

Consider a set of archived SACDRs, i.e., a database containing app call records 
(or queries) of passengers on routes and stops/stations of the network in the con-
sidered reference period (e.g., month, week). Although several app architectures 

Fig. 1  Flowchart of the proposed methodology
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may exist with specific attributes, in this study the relevant attributes of each 
record are the call (query) code, date, route code, stop/station code, stop/station 
coordinates, user code (i.e., alphanumeric, and anonymous code generated when 
the passenger downloads the app) and the timestamp (i.e., the time when the pas-
senger queries the app).

The first three steps pre-process the app data to reconstruct the journey of the 
passenger. Since all passengers can consult the app several times before their trip, 
one should remove redundant calls to bus stops and routes and consider a unique 
initial origin for their trip in a day. This is done by three data screening algo-
rithms (procedures) to:

1. Remove redundant user calls on the same route and at the same bus stop/station 
(STEP 1).

2. Remove redundant user calls at the same bus stop/station of multiple routes, which 
are useful to join the destination (STEP 2).

3. Remove redundant user calls on different routes serving different stops/stations, 
which are useful to start a trip toward the destination (STEP 3).

These algorithms will be presented according to this notation. Let:

• U be the set of passengers using the app, R the set of routes and F the set of 
stops/stations.

• M0 be the set of SACDRs in the transit network and M0(u) the subset of SACDRs 
generated by passenger u ∈ U.

• M1 be the subset of records of M0 returned at the end of the first screening algo-
rithm (STEP 1) and M1(u) the subset of SACDRs of passenger u ∈ U in this 
stage.

• M2 be the subset of records of M1 returned at the end of the second screening 
algorithm (STEP 2) and M2(u) the subset of SACDRs of passenger u ∈ U in this 
stage.

• M3 be the subset of records of  M2 returned at the end of the third screening algo-
rithm (STEP 3) and M3(u) the subset of SACDRs of passenger u ∈ U in this stage.

The relevant attributes of the i-th SACDR are: call code ici , date di , route code 
ri , bus stop code fi , coordinates Xfi

 and Yfi , user code ui , timestamp (or time occur-
rence) toi.

3.1.1  First data screening procedure (STEP 1)

Sort M0 in increasing order according to di , ui and toi . Assume that passenger u ∈ U 
boards route r ∈ R at stop/station f ∈ F . All passengers can query the app several 
times on stop/station f ∈ F and route r ∈ R to know the expected (real) vehicle 
arrival time, to time their arrival at f ∈ F a few moments before the vehicle arrives.
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All queries of each passenger are recorded in the SACDRs database. Since pas-
senger u ∈ U can board only one route r ∈ R at one stop/station f ∈ F , only one of 
their queries must be selected for inferring the origin of the trip.

The first screening algorithm selects the most recent timestamp toi of passenger 
u ∈ U to remove ambiguity among all their calls on route r ∈ R at the same stop/sta-
tion f ∈ F . More formally, for each passenger u ∈ U querying for v times bus stop 
f ∈ F and route r ∈ R, the algorithm selects the j-th record from M0(u) such that:

Next, the v-1 disregarded records are removed from M0(u) and the new list M1(u) 
is derived.

For instance, as shown in Fig. 2, passenger u ∈ U queries stop/station f ∈ F of 
route r ∈ R on day d at timestamps to1 < toj < tov. Three calls are included in the 
database, but only tov is selected according to (1).

3.1.2  Second data screening procedure (STEP 2)

M1(u) lists the records of app calls at each stop/station f ∈ F and/or route r ∈ R for 
each passenger u ∈ U . Two or more routes may arrive at stop/station f ∈ F to reach 
the same destination. Therefore, passenger u ∈ U may query the app more than once 
on these different routes. Because passenger u ∈ U can only board on a route for a 
trip, the second screening algorithm helps remove the ambiguity among different 
routes serving stop/station f ∈ F.

The actual route boarded cannot be known because the app does not provide this 
information. However, this is not a drawback because we aim to estimate the final 
OD matrix at the network level. The second screening algorithm selects the most 
recent timestamp among the different routes at the same stop/station f ∈ F. More 
formally, for each passenger u ∈ U who queries all useful routes r ∈ R at stop/sta-
tion f ∈ F for q times, this procedure selects the j-th record in M1(u) such that:

Next, the q − 1 disregarded records are removed from M1(u) and the new list 
M2(u) is derived.

(1)toj = max
(
to1,… , tov

)

(2)toj = max
(
to1,… , toq

)

Fig. 2  Example of multiple calls to the smartphone app. The call selected is shown in orange
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3.1.3  Third data screening (STEP 3)

M2(u) lists records that contain single app calls at each stop/station f ∈ F and route 
r ∈ R for passenger u ∈ U . However, there may be more than one pair of buses and 
routes which are useful to join the destination. For example, one could take route 
r ∈ R at stop/station f ∈ F or route w ∈ R at stop/station g ∈ F . Therefore, each 
passenger u ∈ U may consult the app by querying the expected (real) bus arrival 
times of route r ∈ R at stop/station f ∈ F and route w ∈ R at stop/station g ∈ F , 
respectively, to select (and reach) the most convenient path for their trip.

This situation results in two or more calls to the app by passenger u ∈ U . Since 
they can board only one route at one stop/station, the third screening algorithm 
removes the ambiguity among these calls. It works as follows.

If one knows the location of the passenger querying the app, it can be adopted 
to estimate the distance from the bus stops of interest. If the maximum acceptable 
walking distance is δ, one could assume that the passenger opts for the closest bus 
stop. However, this assumption does not hold in this framework, because passengers 
are not tracked by the app. The only known distances are those between queried 
bus stops. If these distances are beyond a threshold depending on δ, the queries of 
the customer to these bus stops are removed, else the queries of the passenger are 
processed, and the most recent query identifies the selected bus stop. A reasonable 
value of the threshold can be computed in the case of passengers located at distance 
δ from both bus stops f ∈ F and g ∈ F , i.e., the threshold can be set to 2δ.

More formally, the distance distfg between stops/stations f  and g is taken. If distfg 
is larger than 2δ, the queries of user u ∈ U are disregarded, else all q time occur-
rences of user u ∈ U at bus stops f ∈ F and g ∈ F are taken, sorted in ascending 
order and the last value (i.e., the maximum) is selected to define the departure bus 
stop. If tof  denotes the latest time occurrence associated with the query at bus stop f, 
this procedure can be described as follows for each user u:

Equation  (3) selects the last queried stop/station and route, which may not be 
used by passenger u because these data cannot be gathered from the app. However, 
this is not a drawback because the final OD matrix will be obtained at the network 
level, and both stops/stations f and g are close to each other. Therefore, either bus 
stop f ∈ F or bus stop g ∈ F may approximate the origin of the trip.

Next, the z − 1 records disregarded are removed from M2(u) and the new list 
M3(u) is derived.

Notably, even if the former description focused only on two routes and two stops/
stations, the third data screening algorithm can be generalised for multiple routes 

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

if (0 ≤ distfg ≤ 2�)

{if tof = max(to1,… , toz)

return the record containing f

else

return the record containing g

else

remove the records containing f and g from the M2(u)
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and stations. In this case, because passengers are supposed to board only one route 
at a time, it is sufficient to take all pairs of stops/stations (and routes) of interest and 
repeat the previous screening.

The pseudo code of the Data screening algorithm is reported hereafter:
Algorithm 1  Data Screening // Screen SACDR to remove anomalies in data 

For        each i ∈ M0(u) do // first data screening
if (di = di+1 and ri = ri+1 and fi = fi+1) and (toi+1> toi) 

return M1(u)= M0(u) – {i}  // return M0(u) without record i
else

return M1(u)= M0(u) – { i+1} // return M0(u) without record i+1
end if

end for
update M1(u) // return M1(u)⊆ M0(u)

For each i ∈ M1(u) do // second data screening 
if (di = di+1 and fi = fi+1) and ri i+1 and (toi+1> toi)

return M2(u)= M1(u) – {i} // return M1(u) without record i
else

return M2(u)= M1(u) – { i+1} // return M1(u) without record i+1
end if

end for
update M2(u) // return M2(u)⊆ M1(u)

For each i ∈ M2(u) do // third data screening 
if (di = di+1) and (fi i+1 and ri i+1)

if 0 ≤
+1

≤ 2

if = ( 1 , … , )

return M3(u)= M2(u) – {i+1}   // return M2(u) without record i+1
else

return M3(u)= M2(u) – { i} // return M2(u) without record i
else

return M3(u)= M2(u) – {i} – { i+1} // return M2(u) without records i and  i+1
end if

end if
end if

end for
update M3(u) // return M3(u) M2(u)

3.2  Journey reconstruction (STEP 4)

At the end of the data preparation and screening stage, M3(u) lists records that con-
tain single app calls at each bus stop f ∈ F , route r ∈ R and passenger u ∈ U. M3(u) 
is sorted in increasing order w.r.t. d , u and to.

Since each record represents a call made before boarding a bus and a journey 
could be rebuilt from the sequence of calls, a new attribute can be added to indicate 
the progressive stop/station number queried by passenger u ∈ U . It is denoted by 
POi , if it is associated with the i-th call of passenger u and let PO(u) be a vector with 
entries POi. Therefore, each passenger u ∈ U can be associated with a journey con-
sisting of a sequence of the called stops/stations, where each segment of the journey 
starts.
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The pseudo code of the Journey reconstruction algorithm is as follows:

Algorithm 2  Journey reconstruction // sort for the times of occurrence to rebuild 
the journey of a passenger

For each i∈ M3(u) do // examine each call done by each user
Sort (toi)

Initialize POi = 1

While {(POi <= |M3(u)|)
Increase POi+1 = PO i +1}

End while
end for
update M3(u)  = (M3(u) | [PO(u)]) // the new attribute PO(u) is added to M3

3.3  Inferring possible destinations (STEP 5)

The records in M3(u) represent the pre-processed calls of passenger u ∈ U before 
boarding a bus. At this stage, they define the sequence of bus stops boarded in the 
passenger’s journey. Since there is no app call on alighting bus stops, the destination 
bus stops (through possible transfers) are not known and must be estimated for each 
passenger u ∈ U from their journey M3(u) . The following procedure is proposed for 
this estimation:

 (i) If there is only a record in M3(u), we cannot determine an alighting location, 
because passenger u ∈ U could alight at each bus stop.

 (ii) If there are multiple records in M3(u) , a destination bus stop can be detected 
among those after the first one.

In case (i), the record is disregarded. Because we are interested in building a daily 
OD matrix for public transportation, this choice is not a strong drawback, because at 
the passenger’s return home using some other ways (e.g., by car or bus when passen-
gers and vehicles arrive simultaneously, thus avoiding passenger u having to query 
the app).

In case (ii), the first bus stop in M3(u) is labelled as the origin of the trip. Next, let 
h be the index of stop/station after the first one in M3(u) . For each pair of consecu-
tive stops/stations, the difference DTOu between their timestamps is computed for 
each passenger u ∈ U and the maximum value is selected:

The bus stop associated with this maximum value is taken as the alighting loca-
tion and is supposed to be the destination.

Figure 3 shows the possible destinations among bus stops f1 , f2, f3 and f4 for pas-
senger u . In Fig. 3, passenger u ∈ U queries the app from their origin by imputing 
the boarding route r at bus stop f1 in the origin TAZ at timestamps to1. Moreover, 
passenger u ∈ U queries the app at boarding bus stops f2 at to2 , f3 at to3 and f4 at to4 

(4)DTOu = max
h

(
toh − toh−1

)
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such that to1 < to2 < to3 < to4, but one does not know the alighting bus-stops a1, a2, 
a3 and a4 of these four trip segments. According to Eq. (4),

If DTOu = to3 − to2, f3 is set to be the departure bus stop of the reverse trip seg-
ment from the destination to the origin. Moreover, f3 is set to be the alighting bus 
stop of the former trip segment and belongs to the destination TAZ (i.e., f3 = a2 ). 
Moreover, we assume that passengers end the last trip of that day at the stop where 
they boarded at the beginning of the journey (i.e., f1 = a4).

The pseudo code of the Inferring the destination algorithm is as follows:

Algorithm 3  Inferring the destination// Inferring origin and destination

Define Ou=origin bus stop among the i calls in M3(u), Du=destination bus stop among the i calls in M3(u)

For each i ∈ M3(u) do
if max{POi} = 1 // if there is 1 record only for passenger u

return M3(u) = M3(u) – {i} // remove record i from M3(u)
else 

Ou = { ∈ : POi =1}// }/ / selection of the departure bus stop
While {(POi <=|M3(u)|)

DTO = max (toi-toi-1) // compute the maximum value between to and  to-1
Du = { ∈ : POi =POi(DTO)} // selection of the destination bus stop 

end while
end if

end for
update M3(u)

(5)DTOu = max
(
to2 − to1;to3 − to2;to4 − to3

)

Fig. 3  Example of travel chain from the origin to the destination
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3.4  Building OD matrix (STEP 6)

Because we are interested in building the OD matrix of the transit network, an exist-
ing zoning of the investigated context should be considered. Specifically, a special 
area consisting of one or more census blocks, block groups, or census tracts was 
delineated by the state and/or local transportation officials. This is used to tabulate 
traffic-related data, such as home-to-work and home-to-study trip statistics. There-
fore, matching each bus stop to each TAZ before inferring the matrix is required. 
Specifically, the procedure is as follows. Let:

• TZ be the set of TAZs and c ∈ TZ the centroid of TAZ, which has coordinates Xc 
and Yc.

Next, compute the distance distcf  between each centroid c ∈ TZ and bus stop 
f ∈ F . If this distance is lower than a threshold � , the stop station could belong to 
the TAZ. In order to remove the ambiguity of a stop station in multiple TAZs, only 
the minimum distance w.r.t. all centroids is considered for a bus stop, because all 
passengers are supposed to board/alight at the stop closest to their origin/destination.

Next, a new attribute is added to M3(u) to describe the centroid (and the associate 
TAZ) of each origin bus stop Ou or destination bus stop Du of passenger u ∈ U . This 
attribute is denoted by c∗

f
 for bus stop f ∈ F. Once each bus stop is joined to the refer-

ence zone, the final matrix is built by summing the entries recorded for each OD pair.
The pseudo code of the Building OD matrix algorithm is reported hereafter:

Algorithm 4  Building OD Matrix // stops/stations assigned to a specific TAZ, M3 is 
enhanced with new attribute called TAZ code, sum for each OD pair with the same TAZ.

=∅ // set of possible centroids of bus stop ∈

= distance between centroid c and bus stop ∈

For each u ∈

For each c ∈

If f=O(u) or f=D(u)

If 0 ≤ ≤

={ ∪ c}

end if
cf*={c ∈ : = min{ }} // centroid associated with bus stop

update M3(u)= (M3(u)| cf*) // the new attribute PO(u) is added to M3(u)

end if
end for

end for

O=set of origin TAZs; D=set of TAZs destination;
For each o ∈

For each d ∈

Count_od=0

For each u ∈ U 

If cO(u)*∈ and cD(u)*∈ // cO(u)* and cD(u)* are the centroids of the origin and the 
destination of passenger ∈

Count_od = Count_od +1;

end if
end for

end for
end for
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Although this matrix was built by data collected on a daily time scale, the overall 
procedure can be run in shorter periods of interest.

3.5  Data visualisation (STEP 7)

Building comprehensible and usable OD reports is a key factor for the effective anal-
ysis of SACDRs. Therefore, it is relevant to study and develop appropriate routines 
to generate brief and relevant reports that are easily understandable for planners, 
senior managers, and decision makers. In this context, clear representations of the 
OD matrix SACDRs can be achieved using GIS tools such as Qgis (see https:// www. 
qgis. org/ en/ site/) to highlight which TAZs deserve more attention and could benefit 
from the improvement in the service.

3.6  Matrix validation (STEP 8)

The performance of the framework is analysed by comparing the resulting OD 
matrix against a suitable benchmark matrix. The comparison is done in terms of 
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), to measure the 
average magnitude of the errors in a set of forecasts, without considering their direc-
tion. Both MAE and RMSE are negatively oriented scores (i.e., the lower the values, 
the better the results). More formally, if we denote by SACDRo,d and STATo,d the 
forecast and the benchmark data for the generic origin o ∈ O ⊆ TZ and the generic 
destination d ∈ D ⊆ TZ , respectively, these statistical indicators are computed for 
each origin as follows:

Similarly, as for the generic destination d ∈ D ⊆ TZ , the error indicators are com-
puted according to the Eqs. (6) and (7), where o is replaced with d.

Additionally, the Pearson correlation coefficient, denoted by rISTAT ,SACDR , is also 
computed. It is a positively oriented score, where a value closer to unity indicates a 
better result. More formally, as for the generic origin o ∈ O ⊆ TZ , the Pearson cor-
relation coefficient is computed as indicated in Eq. (8).

Similarly, as for the generic destination d ∈ D ⊆ TZ , the Pearson correlation 
coefficient is computed according to the Eq. (8), where o is replaced with d.

(6)MAEo =
1

|D|
∑
d∈D

||STATo,d − SACDRo,d
|| ∀o ∈ O ⊆ TZ

(7)RMSEo =

�∑
d∈D

��STATo,d − SACDRo,d
��2

�D� ∀o ∈ O ⊆ TZ

(8)

rISTAT ,SACDRo
=

∑
d∈D[(STATo,d − STAT

o
)(SACDRo − SACDR

o
)]]

�∑
d∈D[(STATo,d − STAT

o
)2(SACDRo − SACDR

o
)2]

∀o ∈ O ⊆ TZ

https://www.qgis.org/en/site/
https://www.qgis.org/en/site/
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Furthermore, for each generic origin o ∈ O ⊆ TZ , a Linear Regression Model 
(LRM) is built to evaluate the link between the target number of trips (i.e., STATo,d ) 
and the predicted one (i.e., SACDRo,d):

where �
o
 and �

o
 are the regression coefficients. Similarly, a regression model is built 

for each destination d ∈ D ⊆ TZ (in Eq. (9), index o is replaced with d ). The statisti-
cal significance of each LRM (denoted as p-value) is determined by performing an 
F-test.

4  Real‑case experiment

4.1  Context

The overall framework has been tested in the area of Cagliari, which has about 
400,000 inhabitants and is located on the island of Sardinia (Italy). CTM is the local 
public transport company and oversees public transportation using 271 vehicles 
(buses and trolleys). Moreover, these vehicles travel over 12.4 million kilometres 
annually along 34 routes and serve over 90% of the transit passenger demand in this 
area (CTM 2020).

The e-age and recent developments in portable devices have pushed CTM to 
develop an app, “BusFinder”,2 for mobile devices such as smartphones and tab-
lets. It provides passengers with all-in-one pre-trip and en-route real-time infor-
mation of routes and bus stops in the area of Cagliari (Tilocca et al. 2017). Spe-
cifically, passengers can plan their trips in different ways: (i) inputting the origin 
and destination addresses by a short text, (ii) selecting the origin and destination 
by a pointer on a map, and (iii) using the GPS coordinates of their smartphone 
like a navigator tool. Moreover, by selecting a bus stop of interest, the passenger 
receives information on useful routes and the expected bus arrival time for the 
next bus arrival (Fig. 4). The left side of Fig. 4 shows general information (i.e., 
on bus stop ‘Dante (ang. via Todde)’ and two different routes are available, #1 
and # 3). The central part of this figure lists some bus stops of interest for a pas-
senger and the pedestrian distance to reach them. The right side of this figure 

(9)SACDR
o,d

= 𝛼
o
+ 𝛽

o
⋅ STAT

o,d
∀o ∈ O ⊆ TZ

2 In Google Play the following statements are reported about the app “BusFinder”. “Data that may be 
shared with other companies or organisations. Data practices may vary based on your app version, use, 
region, and age”. To clarify, after the download, an anonymised user code is automatically generated 
and kept until the uninstallation. The app can be used in three ways. The first way enables passengers to 
buy a travel ticket after a registration by a user code and a password. The passenger must agree with the 
privacy policy of CTM and is informed about the processing of personal data. The second way enables 
users to plan a trip along the overall PT network and the app asks permission to track passengers at the 
origin. They should provide the consent by a function activating the localisation in the map and inform-
ing on the processing of personal data. The third way enables passengers to query the app on travel infor-
mation about the real arrival times in a specific bus stop without providing any consent, because passen-
gers are not tracked. This way is used in this research.
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reports an overview of bus arrival times (in blue). For instance, the first vehicle 
for route 9—direction ‘Matteotti–Decimomannu—at bus stop ‘Trieste CTM’ is 
expected to arrive at 09:31.

These features were achieved by integrating archived information on routes 
and sequences of bus stops gathered in a GIS environment, and real-time infor-
mation on expected bus arrival (at selected bus stops) provided by AVL technol-
ogy, all of which have been equipped on buses since 2007.

According to the last available statistics, CTM is quite satisfied with this app 
because it has been downloaded by several stores (e.g., IOS, Android, and Win-
dows Phone). Since its launch, “BusFinder” was downloaded approximately 
180,000 times. It is adopted by more than 80% of CTM’s passengers (CTM 2020).

4.2  Experimental setup and results

The method was developed and implemented on MS Access and MS Excel, as 
well as Qgis running on a standard PC. In the experimentation, we gathered 
9.6 M + raw SACDRs data collected daily from 01/01/2021 to 31/12/2021. These 
correspond to approximately 0.8 M SACDRs data monthly.

Next, drawing on these data, 30 workdays were selected from the middle of 
September to the end of November. Hence, about 1.5 M + SACDRs were consid-
ered to show the viability of the method in Sect. 3. In what follows, the execution 
of the method is described on a specific day and the average values of MAE, 
RMSE and r are computed over the 30 workdays for both origins and destinations.

Figure  5 provides a portion of the original M0 on a specific day, according 
to Sect.  3. This shows that user GsDId-04kcsvU5T3JQaAsaxUuVx7uGpJG3et-
dAheYY936kihTg queried “BusFinder” 12 times on 21/10/2021. Specifically, the 

Fig. 4  Overview of “BusFinder”
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passenger queried routes 1 and 31 four times, route 9 thrice, and route 30 once at 
different times (see the red-highlighted section in Fig. 5).

Next, according to STEP 1, the first data screening algorithm was applied: all 
SACDRs with the same passenger u ∈ U , route r ∈ R , and boarding stop/station 
f ∈ F to the origin were removed. The most recent timestamp was kept according to 
Eq. (1).

Figure  6 shows a simple example on user GsDId-04kcsvU5T3JQaAsaxUuVx-
7uGpJG3etdAheYY936kihTg: the yellow-highlighted records were removed. In three 
records related to route 9, only the last is retained because it has the maximum to. 
Thus, five records were deleted for this user. At the end of this screening proce-
dure, 32,906 records were available (on average over the 30 workdays), and M1 was 
returned.

Next, according to STEP 2, the second data screening algorithm was applied: all 
SACDRs with the same passenger u ∈ U and the same bus stop served by two or 
more routes were removed, except those with the most recent timestamp to according 
to Eq. (2). Figure 7 shows a simple example for user GsDId-04kcsvU5T3JQaAsaxU-
uVx7uGpJG3etdAheYY936kihTg: the violet-highlighted records were removed. Spe-
cifically, bus stop AB0110, which is common for routes 1 and 9, was considered. 
The violet-highlighted record related to route 1 is removed because its timestamp 
to is earlier than that of route 9; thus, the removed record refers to a previous call at 
that bus stop. Hence, only the record related to route 9 is retained. To summarise, 

Fig. 5  A portion of  M0: Raw data sample gathered from the SACDRs database
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two records were deleted for this user and five records were retained at the end of the 
second screening procedure. Finally, after applying the second screening procedure 
for each user, a total of 22,466 records were available on this day (on average over 
the 30 workdays) and M2 was returned.

As illustrated in STEP 3, the third data screening algorithm was applied: all 
SACDRs with the same passenger u ∈ U at stops/stations f ∈ F and g ∈ F served 
by routes r ∈ R and w ∈ R, respectively, were removed except that with the most 
recent timestamp to , according to Eqs. (3).

Figure  8 shows a simple example. For ease, the same user GsDId-04kcs-
vU5T3JQaAsaxUuVx7uGpJG3etdAheYY936kihTg is considered.

For this experiment, δ was set to 400 m (e.g., Murray et al. 1998). For instance, 
the distance distfg between bus stops S0020 and DA1268 was taken. Next, since 
distfg ≤ 2� and bus stop DA1268 has the largest to, it was selected. Therefore, the 
green-highlighted record of bus stop S0020 was removed. To summarise, one record 
was deleted for this user and four records were kept at the end of the third screening 
procedure, as shown in Fig. 9. Finally, after applying the third screening algorithm 
for each user, 14,501 records were available on this day and M3 was returned.

Next, according to STEP 4, for each passenger u, we can build the daily jour-
ney that consists of the sequence of queried (and validated) stops/stations. These are 
arranged in ascending order according to the timestamps. As for user GsDId-04kcs-
vU5T3JQaAsaxUuVx7uGpJG3etdAheYY936kihTg, the sequence of queried bus 

Fig. 6  A portion of  M1: Raw data sample after the first screening algorithm (STEP 1)
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stops during a day is AB0110, PM0030, DA1268, and finally, RM0739. Because 
these queried bus stops are origin points, we need to infer the destination, accord-
ing to the method described in STEP 5. Specifically, we obtain  M3(u) = {AB0110, 
PM0030, DA1268, RM0739}. Since the journey M3(u) contains multiple origins, 
we can find a destination because the passengers alighted at some stops different 
from those in the first case. According to the proposed methodology, the first bus 
stop of the journey (i.e., AB0110) is labelled as the boarding stop (i.e., the origin of 
the trip will be close to that of the bus stop). Next, for each bus stop different from 
AB0110, we compute the time difference between two consecutive timestamps and 
select the maximum value. Because it is associated with bus stop DA1268, we can 
infer that this last bus stop is the location where the passenger alights in the morn-
ing (i.e., the destination of the trip will be close to that bus stop) (see the left side of 
Fig. 10). The other bus stops represent transfer bus stops associated with the same 
journey.

Next, to build the OD matrix, each origin and destination bus stop is matched to 
each TAZ according to STEP 6. First, the distance distcf  between each TAZ centroid 
and stop/station is computed and matching it to each origin and/or destination bus 
stop is performed. Next, to remove the ambiguity of a single bus stop matched with 
two or more TAZs, the minimum distance between each TAZ centroid and the bus 
stop is considered. Once each bus stop is matched with each TAZ,  M3 is updated 

Fig. 7  A portion of  M2: Raw data sample after the second screening algorithm (STEP 2)
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with Id_TAZ and a single OD pair is determined for the user (see the right side of 
Fig. 10).

Next, by summing the related OD pairs for each user and TAZ, one can derive the 
corresponding matrix for each day or time period, as well as present and visualise 
data according to STEP 7. Figure 11 shows an example of the overall OD generated 
by TAZ 5510: the thicker the line, the greater the OD flow generated from the TAZ 
to each destination.

Interestingly, the thickest line is expected because the destination TAZ is the most 
common during the day, being located at a point of interest (i.e., interchange bus 
stops, rail, ship station, etc.). This simple application shows that the framework can 
be used to mine a lot of metadata on the interaction between the OD matrix and the 
spatial and temporal use of urban space: urban planning policies for the distribu-
tion of attractors, identification of optimal interchange parking lots, evaluation of 
infrastructural and preferential interventions, and organisation of the busiest nodes 
and stops are just a few examples. Thus, metadata would provide a synoptic picture 
of trends, a kind of low-cost and rapid-determination driver of the information con-
tained in a larger and more detailed body of a universe of data.

According to STEP 8, Eqs. (6) and (7) were applied to evaluate the performance 
of the proposed framework. The benchmark matrix is provided by the National 
Institute of Statistics (ISTAT) for the area of study (ISTAT 2022). This last matrix 
is built by classical household travel surveys on all transport modes and refers to 

Fig. 8  A portion of  M3: Raw data sample after the third screening algorithm (STEP 3)



539

1 3

Origin–destination matrices from smartphone apps for bus networks

systematic trips only. Therefore, it was revised to refer to the bus transport mode and 
capture both systematic and occasional trips.

As stated before, 30 matrices with 217 TAZs are built, one for each considered 
workday. The results are presented in Table  4, which reports the MAE and the 
RMSE for both origin and destination. Note that the values of MAE and RMSE are 
clustered into classes for the sake of clarity. Moreover, Table 4 shows the average 
number of TAZs in each class and the related percentages for both origins and des-
tinations. For instance, the second row of Table 4 shows that 116 origin TAZs and 
98 destination TAZs have a high accuracy in estimations, because the MAE is lower 
than 1.

The overall results show that:

• MAE is not very high. For instance, for about 90% of the origin trips and 85% of 
the destination trips, the trip error rate is lower than 5 movements and looks very 
accurate. The average MAE is about 2.31 trips, which is very low.

• RMSE ≠ MAE, thus all errors are not of the same magnitude.
• RMSE > MAE, thus there is some variation in the magnitude of the errors.
• The difference between RMSE and MAE is not so large, thus very large errors 

are unlikely to have occurred.

Therefore, the proposed method that uses SACDRs data seems accurate for infer-
ring OD matrices.

Fig. 9  Screened records of user GsDId-04kcsvU5T3JQaAsaxUuVx7uGpJG3etdAheYY936kihTg after 
the application of the overall data screening procedures. Red-highlighted bus stops are queried in the 
morning, whereas green-highlighted sections are queried during the afternoon
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Fig. 10  (Top): OD of user GsDId-04kcsvU5T3JQaAsaxUuVx7uGpJG3etdAheYY936kihTg; (Down): 
the trip of the same user after the application of algorithm in STEP 6; note that black numbers represent 
c*, i.e., the label of TAZs’s centroid
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As a further check, the rISTAT ,SACDR is computed by Eq. (8) to evaluate the correla-
tion between the ISTAT matrix and the SACDR matrix. Figures 12 and 13 show the 
rISTAT ,SACDR for each TAZ between SACDRs and ISTAT data, for origin and destina-
tion trips, respectively.

Both figures show a high correlation mainly in the first and second municipali-
ties of Cagliari (red dots and, to a lesser extent green dots), whereas the correla-
tion is acceptable in the central business district, which has few residents due to 
high costs and the presence of many service buildings, administration, schools, etc. 
On the average, the rISTAT ,SACDR at the origin takes a value of 70%, whereas at the 

Fig. 11  OD flow generated from TAZ 5510 to each destination. The black numbers represent c*, i.e., the 
label of TAZs’s centroid

Table 4  Average errors over the 30 workdays

Average number 
of origins (TAZ)

Average percentage Average number of 
destinations (TAZ)

Average percentage

MAE [trips]
0.00–1.00 114 52.33% 97 44.73%
>1.00–5.00 80 37.05% 88 40.34%
>5.00–10.00 9 4.21% 25 11.31%
>10.00 14 6.41% 8 3.63%
RMSE [trips]
0.00–2.00 78 35.87% 65 29.82%
>2.00–10.00 103 47.65% 93 43.07%
>10.00–20.00 13 6.04% 30 13.93%
>20.00 23 10.45% 29 13.18%
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destination it is larger than 50%. Thus, the correlation is high, and the proposed 
method provides a quite reliable estimation of OD trips using buses.

Fig. 12  rISTAT,SACDR for origin trips between ISTAT and SACDR matrices

Fig. 13  r
ISTAT,SACDR

 for destination trips between ISTAT and SACDR matrices
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Moreover, Fig. 14 shows the distributions of rISTAT ,SACDR for origin and destina-
tion TAZs. It shows that the correlation is higher for origin TAZs. Indeed, about 
85% of the origin TAZs have a coefficient of correlation higher than 0.5, as opposed 
to about 53% of the destination TAZs.

Finally, 217 LRMs for each specific origin TAZ, and 217 LRMs for each specific 
destination TAZ, are fitted according to Eq. (9). Figure 15 shows the results for the 

Fig. 14  Distribution of r
ISTAT,SACDR

 for origin and destination TAZs
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statistical significance of each LRM, according to the F-test. It indicates that a sub-
stantial portion of the LRMs is very significant, although the significance is higher 
for the origin TAZs. Indeed, about 99 and 80% of origin and destination TAZs have 
a p-value lower than 0.05, respectively.

Both figures indicate a strong relationship between the target and the predicted 
number of trips, because all the Linear Regression Models are very significant 
according to the F-Test.

To sum up, even if SACDRs data return a slightly different matrix from ISTAT, 
the interest of the SACDRs method is evident, because an OD matrix could be 
obtained daily with lower effort as opposed to traditional approaches. Conversely, 
the ISTAT matrix is an ‘average’ matrix that needs frequent updating. Thus, the vali-
dation enabled comparing the OD SACDR matrix with the ISTAT data with promis-
ing results.

5  Conclusions and research perspectives

The knowledge of passenger demand is a major requirement for public transport 
companies (PTCs). Although it can be estimated by traditional methods based on 
surveys, ride-check counts and smartcards, the availability of new communication 
technologies and the rapid spread of portable devices has paved the way for emerg-
ing methods to support this activity by telephone networks, Wi-Fi signals and apps. 
However, the challenge of processing collected data must be faced to derive mean-
ingful information.

This paper proposes the first framework for the estimation of OD matrices by 
processing the data provided by the app of a bus operator. The paper shows how 
to (i) perform some screening activities to process relevant SACDRs data, (ii) link 
the SACDRs data of all passengers to reconstruct their journey, (iii) infer the origin 
and destination of each passenger for the period of interest and (iv) validate the esti-
mated flows. More precisely, the framework:

• Integrates four novel algorithms for handling large amounts of SACDRs data to 
infer OD matrices in public transport over the overall transit network.

• Generates a mainstream source of origin and destination flows automatically, to 
shed light on which ODs need proper care because of the magnitude of their 
flows.

• Is illustrated in a real case study to show its practical effectiveness. Appropri-
ate maps were constructed to plan possible improvements in the service of bus 
routes once OD matrices are inferred. Moreover, the results show a quite reliable 
estimation w.r.t. a benchmarking matrix.

This study expands upon the ideas presented in Obino et al. (2023), incorporating 
additional data and analyses for a more comprehensive statistical examination.

There are several remarkable implications in the use of this framework for 
demand estimation. Unlike smart cards, the outcomes of this method are not affected 
by fare evasion and the availability of multiple types of tickets. Unlike long-term 
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based surveys, this method enables to build daily OD matrices, thus providing PTCs 
with a much deeper knowledge of passenger demand. Moreover, the framework 
returns OD matrices at much lower costs than survey-based, smartcard-based, and 
portable device-based methods, because it avoids costly surveys and/or sensors and/
or other devices on board or in ground infrastructures. Yet, since the framework can 
analyse a source of endogenous data on passenger demand, it results in significant 
workload savings for the planning department of PTCs. Finally, data privacy is pre-
served by an anonymized use-code.

The method can be extended to include incremental features to limit possible 
shortcomings. First, although the experimentation was done by a PTC in a monopo-
listic setting, other competitors must adopt a similar app and share collected data to 
avoid demand underestimation. Second, the scale of this research could be extended 
beyond the case of a mid-sized Italian PTC. For example, the framework is tested in 
the case only by buses and trolleys, whereas other transit modes could be considered 
(e.g., underground, light rail transit occurring in big cities). Finally, comparative 
experiments among this framework and the smartcard-based methods and/or port-
able device-based methods cannot be currently tested in this specific study owing to 
the lack of benchmarks and budget constraints.

Notwithstanding, additional developments will be investigated. First, the frame-
work may be integrated with other data sources, such as automatic passenger count-
ing and automatic fare collection systems to improve the estimation of OD passen-
gers. Thus, new data fusion and data handling algorithms should be implemented 
to make this integration. Second, even if running times were not a key point of this 
paper, it is important to investigate the computation efficiency of the framework 
in the case of large amounts of data. Third, the framework can be applied every 
day to derive several OD bus matrices, arrange service frequency and revise bus 
routes accordingly, to improve service quality. The estimation of passenger demand 
across different time periods with a focus on peak hours is relevant for enhancing 
public transport services. It can enable better resource allocation, improve service 
planning, enhance commuter experiences, reduce crowding on board and ensure 
smoother and more reliable journeys for passengers. The potential integration of 
different data sources and the incorporation of advanced modelling techniques will 
help create responsive and sustainable transit systems adapting to the dynamic needs 
of urban mobility.

Future research will investigate estimations at the route level, which may lead to 
the improvement of the service design. For instance, the route-level passenger OD 
flow can provide valuable information for the determination of new stop locations, 
route changes (e.g., extension, splitting, or merging) and the introduction of new 
services. Moreover, the route-level OD matrix can be useful for investigating the 
crowding on board along the route to improve service quality. These research topics 
may greatly influence future smart cities (Garau et al. 2022).
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