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Abstract
Surface transit lines in North America commonly feature a basic service pattern 
consisting of a single branch of all-stop service, with stops usually tightly spaced. 
Such a configuration is inefficient for the operator and unattractive for the users, par-
ticularly if the prevailing passenger demand is unevenly distributed along the line. In 
such cases, it is more effective to tailor the scheduled services to passenger demand, 
both spatially and temporally. Public Transit agencies have increasingly adopted 
various stop and service pattern strategies in order to provide high-quality services 
while reducing operating costs. This study is focused on one such strategy, namely 
limited-stop operation. It proposes a new mathematical programming model to find 
the best candidate route stops for this strategy to minimize the total passenger travel 
time. The adopted approach consists of three steps: optimization, post-optimization, 
and simulation. An agent-based simulation platform, called Nexus, is used to repre-
sent real-life operating conditions, generate input data for the optimization model, 
enable post-optimization pattern recognition for grouping trips, and finally help 
assess the optimization results and present a best possible strategy. The developed 
approach is tested in a case study of a transit system in Hamilton, Ontario, Canada. 
Multiple analysis and algorithm test cases are demonstrated.
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1 Introduction

Public transit (PT) systems rely increasingly on information extracted from oper-
ators’ intelligent data-gathering equipment. Such data can enable more effective 
matching of supply and demand of the modern-day transit systems. With the help 
of newly available smart card data and recent advancements in communication 
technologies, it is possible to develop better-customized scheduling services that 
are spatially and temporally sensitive to passenger demand. This paper employs 
the emerging wealth of sensor data on both transit users and service vehicles for 
the design and optimization of stop and service patterns (SSP) operations.

The design of SSP operations is a critical task in transit planning and can 
have remarkable impacts on user travel times and system efficiency (Vuchic 
2005). Stop and service patterns include several specialized service strategies 
designed to expedite operations and tailor service to unevenly distributed pas-
senger demand along a public transit route; examples include stop consolidation, 
limited stop service, zonal service, and short turn routes. Agencies may consider 
one strategy at a time or a few in combination. For example, a line could be re-
designed by consolidating some stops or introducing a limited-stop branch in 
conjunction with a basic all-stop branch. These decisions on SSP need to be sup-
ported by appropriate analytical tools built using detailed data on both demand 
and performance. The transit industry is enjoying increased availability of such 
data due to the wide implementation of automated data collection systems, such 
as Automatic Fare Collection (AFC), Automatic Passenger Counting (APC), 
and Automatic Vehicle Location (AVL). In this study, one specialized service 
strategy, the limited-stop strategy, is investigated to examine its potential to bet-
ter align the provided service with demand. It is to note that a limited-stop ser-
vice in this study refers to a bus service that operates between two terminals and 
skipping (i.e., non-serving) some stops in a given bus route. We introduce a new 
mathematical model to select the best candidate route and stops for this strategy 
so as to minimize the total passenger travel time. The optimization model is for-
mulated in a way that minimizes the changes to the level of service (LOS) (in 
terms of walk time to/from stops and waiting time).

2  Literature review

Several studies have discussed different strategies and approaches for addressing 
the inefficiency of the surface transit system. Early research into planning SSPs 
includes the zonal operation studies by Jordan and Turnquist (1979) and the bi-
directional extension of zonal service optimization by Furth (1986). Eberlein 
(1995) addressed the limited-stop problem as an integer nonlinear programming 
model with a quadratic objective function and solved it using a heuristic method. 
Leiva et al. (2010) examined the optimization of express operations, and Ulusoy 
et al. (2010) showed that these strategies could yield significant time savings and 
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social benefits. In another study, Larrain and Muñoz (2016) presented a model 
that can be used to predict the performance of limited-stop bus services as a bus 
rapid transit management policy. Wirasinghe and Vandebona (2011) analyzed 
grid and non-grid patterns for coordinated express services. Social welfare ben-
efits of limited-stop services, when coordinated with regular services making all 
stops, were investigated by Chiraphadhanakul and Barnhart (2013).

Tétreault and El-Geneidy (2010) used AVL and APC data to select stops and 
estimate running times for the limited-stop service. Their finding shows that lim-
ited-stop service usage would result in substantial travel time savings for both 
limited-stop and existing local services. Chen et al. (2015) proposed a mathemati-
cal model for the optimal stopping design of a limited-stop bus service. The study 
considered the vehicle capacity and stochastic travel time, and it restricted skip-
ping stops by two consecutive vehicles. Soto et  al. (2017) developed a bi-level 
optimization method to design limited-stop services by considering bus capacity, 
transfers, and different types of behavioral models for the passengers. The recent 
study by Wang et al. (2018) also proposed a mathematical model to design lim-
ited-stop service operation strategies. The problem was formulated as a mixed-
integer nonlinear program with equilibrium constraints. The model presented a 
global optimal solution for small to medium-size transit corridors. In a practi-
cal transit guide, Hart (2016) developed a methodology to assess the potential of 
limited-stop service along with the existing local service where the net benefits 
of in-vehicle travel time savings would outweigh the negative impact of increased 
wait, access, and egress times when limited-stop service is implemented. Con-
cerning operational control strategies, Eberlein et al. (1999) categorized control 
strategies into three main categories: stop control, inter-stop control, and others. 
The first category includes two main classes of strategies known as holding and 
stop skipping/limited-stop. The second includes speed control and traffic signal 
priority. The third consists of strategies like adding vehicles, splitting trains, and 
more. Although the operational stage (i.e., real-time) problem is different from 
the planning stage problem considered in this study, it is possible to learn from 
both problems, especially in the development of the optimization formulation.

Sun and Hickman (2005) studied the possibility of implementing a limited-
stop strategy for operations control in a real-time manner. A non-linear integer 
programming problem for two different stop-skipping policies was formulated to 
examine how the performance of the two policies could change with the vari-
ability of effective parameters, such as passenger distribution patterns, and vehi-
cle travel time variability on the route. Nesheli and Ceder (2015) investigated 
how hybrid special operations, including skip-stop strategies, could be used for 
transfer synchronization. In another study, a systematic PT control procedure to 
increase service reliability was proposed (Nesheli and Ceder 2017). The main 
task was to develop a library of various strategies for PT operations to attain opti-
mal strategies for reducing passenger travel times and improving PT systems’ 
serviceability. A recent study by Cao et  al. (2020) showed the application of a 
skip-stop strategy to implement the optimal/best-adjusted urban rail timetable at 
a tactical level.
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Contribution and objectives

The contribution of our work is briefly presented as follows: 

1. The previous efforts mainly focused either on developing complicated optimiza-
tion methods, which were difficult to implement in practice or used some simpli-
fied analytical models to address the effects of any given SSP configuration. In 
contrast, this study utilizes a new mathematical model in combination with a route 
simulation model to provide more realistic metrics for the optimization model.

2. The study proposes a new mathematical programming model that explicitly con-
siders the heterogeneity in travel patterns and the associated passengers’ travel 
experiences between their stop origins and destinations.

3. A set of penalty functions in the model is introduced to consider the extent of 
drawbacks of the developed strategy on the impacted passengers.

4. The study introduces a practical procedure for finding feasible SSPs. Specifi-
cally, the developed framework is undertaken in two stages. First, an optimization 
model generates the optimal (or close-to-optimal) SSPs at the trip level, followed 
by a pattern recognition algorithm employed to define the best possible branches 
(distinct groups of trips) for the transit service route. Finally, the simulation plat-
form tests the quality of solutions on passengers’ travel experiences.

The objective of this work is to develop a framework combining an optimization 
model with a pattern recognition approach within a simulation platform for deter-
mining the best limited-stop strategy at the planning stage.

3  Model development

The limited-stop (LS) strategy is beneficial for considering high-frequency routes, 
where high-demand stops are served by all route vehicles while stops with low demand 
are skipped by some vehicles. The LS strategy benefits mainly accrue to “through” 
passengers aboard a vehicle skipping a given stop and those who will board at a down-
stream stop served by the vehicle. However, this strategy has an adverse effect on pas-
sengers who want to board at the skipped stop, since they have to wait for the next 
available vehicle or walk to the adjacent stop. In this section, we introduce an optimi-
zation model to develop an optimum bus service operation for a given bus route. The 
proposed model seeks to modify the bus timetable by optimally reassigning local trips 
to operate as LS service. Therefore, the LS service operates in parallel to the local ser-
vice with the overall objective of minimizing the total passenger travel time.

3.1  Assumptions

Usually, the LS strategy is constrained by the passengers who want to alight the 
vehicle at a candidate stop for skipping. It is assumed that passengers aboard 
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a vehicle are aware of a vehicle’s specific service pattern before boarding. It is 
also assumed that any LS introduction does not modify rider behavior in terms 
of mode choice and route choice. The model assumes the availability of origin-
destination (O-D) demand matrices for routes under consideration. Such data can 
be derived from AFC systems with or without tap-off requirements. Because the 
LS strategy is treated here at the planning phase, the route information and any 
possible changes as a result of LS strategy deployment is assumed to be known 
to passengers and the service operator and fixed over the period concerned. It is 
assumed that passengers have knowledge about their choices and make rational 
decisions based on shortest travel time. It is also assumed that stops where pas-
sengers want to transfer cannot be skipped.

3.2  Model formulation

Consider a single corridor with ℕ = {1, 2,… , |ℕ|} stops. A route is made up of a 
collection of “trips” in each direction. Each trip k represents a single vehicle run, 
with specific departure times at the stops along the route. The notations used in the 
model formulation are defined as follows: 

ℕ  set of stops, with n ∈ ℕ;
�  set of vehicle trips, with k ∈ �;
bk,n  the number of boarding passengers at stop n for trip k;
ak,n  the number of alighting passengers at stop n for trip k;
lk,n  passenger load on trip k at stop n;
ck,n  vehicle running time on trip k at stop n which is defined as the vehicle running 

time between stops n − 1 and n;
dk,n  vehicle dwell time on trip k at stop n;
Hk  vehicle planned headway time on trip k;
Sk,n  binary decision variable, 1 if trip k at stop n is skipped, and 0 otherwise.

3.2.1  Terms and parameters

While the benefit of any LS strategy is due to the in-vehicle time saved for through 
passengers, it increases the travel time for passengers who want to alight or board at 
the skipped stops. To consider the impact of an LS strategy on the waiting times of 
different passenger groups the following terms and parameters are defined.

Let Θk,n =
∑ℕ

i=n+1
bk,i , be the total number of passengers boarding trip k down-

stream of stop n. If an LS strategy requires trip k to skip-stop n, while keeping all 
other elements of the route schedule unchanged, trip k will have a shorter travel 
time to all downstream stops and the passengers who normally board this trip (i.e., 
k) from those stops can experience a shorter headway (between trips k − 1 and k), 
hence shorter wait times.
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On the other hand, the passengers’ travel times will change by applying the LS 
strategy at some previous stops (i.e., upstream of stop n). These time changes will 
also change the route headway and should be considered in the model formulation. 
Let Λk,n =

∑n−1

i=1
(Sk,idk,i) be the time change due to the introduction of an LS strategy 

at the upstream stops. That is, a bus will arrive at stop n (to be a skipped stop) in a 
shorter time. Therefore, Λk,n is an additional wait time for the out-of-vehicle pas-
sengers of trip k at stop n due to the applied LS strategy at upstream stops, resulting 
in longer wait time. Consequently, Λk,n will be added to the route headway, which 
increases the time interval for the next service to visit this stop.

In order to generalize the formulation and encompass different situations, it is 
also important to consider those passengers who are affected by the use of the LS 
strategy on the previous trip (k − 1) at stop n and could not board the vehicle and 
need to take the next available trip. Let Γk,n = Sk−1,nbk−1,n be the number of extra 
boarding passengers on trip k at stop n due to the applied strategy to the previous 
trip. These passengers will experience longer waiting times and will board the next 
available vehicle. Figure 1 illustrates the defined parameters.

One of the challenges in using any strategy is evaluating how these strategies 
affect the passengers’ travel experiences between their origins and destinations. 
Recent advancements in data and information technology, such as smart card data, 
have made it possible to obtain highly disaggregate O-D passenger demand (stop 
to stop) for each route. Given passenger demand heterogeneity, using disaggregate 
O-D demand matrices offers more prudent modeling possibilities. This O-D infor-
mation has been considered in the formulation as follows. First, a passenger-travel 
time O-D matrix (PTOD) for each trip is generated from the O-D matrix of pas-
senger demand and the O-D matrix of travel time. A ratio based on those passengers 
who are affected by applying the LS strategy is computed with the numerator refer-
ring to the O-D matrix of affected passenger-travel time and the denominator refer-
ring to the O-D matrix of total passenger-travel time. Let Ψk,n be the defined O-D 
ratio of trip k at stop n. As the following expression shows, the value of Ψa

k,n
 depicts 

Fig. 1  The parameters of the LS strategy
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the fraction of the travel times by those passengers who normally alight at the stop 
that is not served (i.e., skipped) and should instead use the alternative stops.

Similarly, for the alighting passengers, it is possible to consider the impact of O-D 
passenger travel time on those passengers who wanted to board at non-served stops 
using the following formula:

3.2.2  Penalty function

To consider the drawback of any LS strategy on the impacted passengers and to 
examine different alternatives for them, a set of penalty functions is introduced. The 
penalty function is a crucial element of the objective function that represents the 
passengers’ inconvenience. If the LS strategy is found to cause more inconvenience 
than benefit, it will not be recommended. Figure 2 illustrates these penalties. 

(a) Walking time penalty: Let the “upstream served-stop” be the last stop served 
before the skipped-stop, and the “downstream served-stop” be the first stop 

(1)Ψa
k,n

=

∑n

i=1
PTODk,i,n

∑�ℕ�−1
i=1

∑�ℕ�
j=i+1

PTODk,i,j

(2)Ψb
k,n

=

∑n

i=1
PTODk,n,i

∑�ℕ�−1
i=1

∑�ℕ�
j=i+1

PTODk,i,j

Fig. 2  The penalty time components
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served after. It is possible to categorize two types of penalty functions to take 
into account the LS strategy’s impact on disadvantaged passengers.

  In the first type, passengers who want to alight at the non-served (i.e., skipped) 
stop but will instead alight at the downstream served stop will need extra time to 
reach their destination; this is termed forward time penalty ( PF ) and formulated 
as follows: 

 where f is the ratio of an average bus speed over the average walking speed of 
a pedestrian. The impacted passengers are going from stop q (the stop that pas-
sengers decide to alight) to stop n (the stop that is not served by trip k). These 
passengers will not experience a prolonged bus running time along with the 
segments upstream of the non-served stop.

The second type of penalty, pertaining to passengers who alight at the “down-
stream served stop”, will need to return to their desired stop n, with this addi-
tional time given the term backward time penalty ( PB ), and formulated as follows:

Note that these passengers will experience additional bus running time beyond the 
non-served stop because of staying in the bus and alighting at the next stop. We thus 
obtain the walking time penalty as follows:

 

(b) Waiting time penalty: The other possibility for passengers, which occurs when 
the walking distance is relatively long, is to wait for the next bus to reach their 
desired stops. This wait time could be associated with the effect of the LS strat-
egy used on the previous trip. Thus, 

 Using passengers’ waiting and walking times to construct the penalty function 
of those who wanted to use non-served stops, the total alighting penalty time 
( Palight ) takes the form: 

(3)PF
k,n

= (f − 1)

n∑

i=1

ck,i

n∏

q=i

Sk,q ∀q, n ∈ ℕ, {1 ≤ q < n}

(4)PB
k,n

= (f + 1)

ℕ∑

i=n+1

ck,i

i∏

q=n

Sk,q ∀q, n ∈ ℕ, {n < q < |ℕ|}

(5)Pwalk
k,n

= min(PF
k,n
,PB

k,n
)

(6)Pwait
k,n

= Hk +

|ℕ|∑

i=1

Sk−1,idk−1,i

(7)P
alight

k,n
= min{Pwalk

k,n
,Pwait

k,n
}
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(c) Stop-waiting penalty: Similarly, those who wanted to board at the stops that are 
not served (skipped) should wait for the next vehicle. Therefore, the formulation 
of penalty time of this group of passengers is associated with the upstream stops, 
where the LS strategy is used and can be written as follows: 

Based on the above equations, the effect of the LS strategy on the change in the total 
travel time with respect to trip k and stop n can be expressed in Eq. (9). Note that the 
passengers’ wait time components are weighted by �1 for out-of-vehicle wait time and 
�2 for the in-vehicle wait, which can be set by the empirical data.

The objective of the model is to minimize the total passenger travel time, which is 
computed as the total possible increase in out-of-vehicle passengers’ wait time and 
decrease in in-vehicle passengers’ travel time by the introduction of the LS strategy. 
That is, the objective function will be defined based on changes in the total pas-
senger travel time. Note that if the optimization returns no passenger saving time, 
it means the LS strategy will not occur, resulting in no changes to the existing local 
services.

Consequently, the objective function for the proposed model to find the optimal LS 
strategy can be written as:

3.2.3  Constraints

A set of constraints needs to be considered in the model to ensure the LS strategy meets 
the service requirements under different conditions. The following constraints ensure 
that the values of LS constitute valid service.

where Zk,n is 1 when n is a special stop that cannot be skipped, otherwise zero.

where Yk,n is 1 when n is a transfer stop that cannot be skipped, otherwise zero.

(8)PSwait
k,n

= Hk + Λk,n

(9)
LSk,n = Sk,n

[
(1 + Ψa

k,n
)ak,nP

alight

k,n
+ �1(1 + Ψb

k,n
)bk,nP

Swait
k,n

+ �1Γk,n(2Hk + Λk,n) − �2dk,n(lk,n + Θk,n)
]

(10)min
∑

k∈𝕂

∑

n∈ℕ

LSk,n

(11)Sk,1 = 0

(12)Sk,nZk,n = 0 ∀Zk,n ∈ {0, 1}

(13)Sk,nYk,n = 0 ∀Yk,n ∈ {0, 1}

(14)Sk,n + Sk,n+1 ≤ 1
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Constraint 11 ensures that the first stop is served. Constraints 12 and 13 guarantee 
that important stops, such as transferring stops and some special stops with ameni-
ties cannot be skipped. Constraint 14 ensures that two consecutive stops cannot be 
skipped. Constraint 15 ensures that the LS strategy cannot be applied to consecu-
tive trips at the same stop. The reason behind designing constraints 14 and 15 is to 
reduce the negative impacts on people disadvantaged by skipping the stop. Skip-
ping consecutive stops on a trip or skipping the same stop on consecutive trips will 
increase the chance of imposing extra delays on those passengers who want to use 
that specific stop or trip. Also, these constraints enable the flexibility for passengers 
to have the additional option of walking to the adjacent stops. Therefore, the con-
straints are designed to minimize the negative impact of walk time to/from stops and 
waiting time with the introduction of the LS strategy. This would also support the 
assumption of study that mode and route choices remain unchanged.

Constraint 16 is defined to check that the bus capacity meets the available demand 
when the bus departs the stop. The value of � indicates the capacity of a bus. When 
the vehicle capacity is reached ( � = �max ), those denied passengers will have to wait 
for the next available vehicle. It is assumed that passengers will wait at their stop 
until a vehicle arrives (no one leaves the system without taking the first vehicle to 
arrive). Therefore, the number of passengers prevented from boarding due to capac-
ity constraints corresponds to Γk,n , which is defined in the previous section.

4  Model implementation

4.1  Modelling process

As the limited-stop service design optimization process was developed to harness 
the emerging wealth of sensor data produced by modern-day transit systems, the 
method expects detailed input data on the movement of both transit users and ser-
vice vehicles on a trip-by-trip basis. Emerging transit demand data sources are not 
yet at a level to provide the detailed input data required in this study, particularly 
for vehicle trip-level O-D volumes, but continuous advancements and adoption of 
AFC technologies can eventually provide such data. Another challenge stems from 
the need for an adequate representation of the complex dynamics of transit route 
actors (vehicles, stops, and passengers) in order to evaluate the impact of any pro-
posed service changes properly. To address these challenges, an agent-based simula-
tion model is firstly constructed using available sources of information to generate 
random input data for the proposed optimization model. Subsequently, the optimi-
zation model is used to find the optimal value of the decision variable for each trip 
and stop. Although these optimized solutions are theoretically sound, it would be 
difficult to implement a different LS pattern for every single bus trip in real-world 

(15)Sk,n + Sk+1,n ≤ 1

(16)� = lk,n + bk,n − ak,n ≤ �max
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practice. Therefore, a post-optimization analysis using a pattern recognition algo-
rithm is carried out in order to group trips into a reasonable number of distinct ser-
vice patterns. Finally, more simulation runs are made, containing the new service 
pattern determined by the optimization program, and using a post-optimization pro-
cedure so as to finalize the results attained by the model. Figure 3 illustrates the gen-
eral structure of the limited-stop service modelling framework.

4.2  Model data for simulation

The simulation model adopts inputs and parameters from real-life data so that the 
transit network can be considered under stochastic conditions. This study utilizes 
a mesoscopic simulation, namely the Nexus simulation platform previously devel-
oped at the University of Toronto (Srikukenthiran and Shalaby 2017). Nexus is an 
agent-based simulator with an integrated transit assignment, allowing for detailed 
metrics on both service and user experience. Initially developed to enable a highly 
detailed simulation of large-scale regional multi-modal networks, the platform facil-
itates the dynamic integration of multiple simulation software, each modelling dif-
ferent aspects of a transit system (rail, surface transit, and stations). Transit users, 
as agents, are transferred between the various software components as they travel 
through the network, with their overall route determined separately by a path choice 
decision-making component.

Since this study is focused on urban transit network service optimization, the 
utilization of Nexus was limited to its surface transit simulator in Nexus, which 
is described in Srikukenthiran and Shalaby (2017). The network is constructed 
dynamically using information provided in the Google Transit Feed Specifica-
tion (GTFS), which, amongst others, describes stops, routes, schedules, and geo-
graphic paths taken by vehicles. Using census and GTFS data provides a feasi-
ble approach for measuring the gaps between PT supply and demand (Kaeoruean 
et  al. 2020). Vehicles make a set of trips, with information on vehicle blocks 
also provided in GTFS. While for the initial Nexus simulation model, vehicle 
speeds were set to maintain schedule, this feature was adjusted in this paper, 

Fig. 3  The limited-stop service modelling framework
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incorporating a random-forest speed prediction model which utilizes historical 
automatic vehicle location (AVL) data available publicly; details on data prepara-
tion and speed prediction can be found in Wen et al. (2018). Dwell times are set 
based on a formula prescribed by Vuchic (2005) with an assumed boarding and 
alighting time per passenger of 3.0 and 1.5  s, respectively. Transit user agents 
traverse this surface network in Nexus as they make their way from origin to des-
tination using a quickest-path (based on published schedules with a penalty for 
transfers) path-finding method.

As an agent-based microsimulation software, Nexus produces highly detailed 
output for all movements of both surface vehicles and transit user agents, with 
aggregate values matching closely transit sensor data (AFC, APC, AVL). Logs 
are kept of vehicle interactions at all bus stops; recorded information includes the 
vehicle and trip number, arrival and departure times, incoming vehicle load, and 
the total number of agents (passengers) boarding, alighting, and unable to board 
due to capacity limitation. Nexus also keeps for each agent a record of its indi-
vidual trip, with information including departure and arrival times, the boarding 
and alighting stop of each segment (both in-vehicle and transferring), the actual 
vehicle trip, and any walking, waiting and in-vehicle duration.

In the simulation, passengers arrive randomly following a Poisson distribution 
with mean �k,n at each stop. The simulation model considers the vehicle travel 
times between two adjacent stops as a random variable with a log-normal distri-
bution; LN(�, �2) that has been commonly used in previous studies (Wen et  al. 
2018; Nesheli and Ceder 2015). Results for ten simulation days (using different 
random seeds) were produced. This data was processed to act as input for the 
optimization.

Fig. 4  Bus Route 1 (King), in Hamilton, Canada
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5  Case study

An analysis was carried out based on a case study of the Hamilton Street Railway 
(HSR) transit network to evaluate the application of the developed limited-stop ser-
vice method. The HSR serves over 80,000 passengers daily. One of the major bus 
routes of the network, Route 1-King, was selected for our case study (see Fig. 4). 
The route has two branches with a daily ridership of over 12,000 passengers. The 
first branch, which is the main one, serves between Hamilton GO Centre and East-
gate Square. The second branch runs between University Plaza and Hamilton GO 
Centre. For this study, the first branch is used. The route consists of 45 stops and 
runs in a west-east direction in lower Hamilton from the Hamilton GO Centre in the 
west to the Eastgate Square in the east. The route length is 12 km in each direction, 
and the planned headway is 10 minutes during the morning peak.

A weekday morning peak-period (7:00–9:00 AM) Nexus simulation model of the 
Greater Toronto and Hamilton Area (GTHA) region was utilized. A recent study by 
Rashedi et al. (2021) used a passenger survey of GO rail transit of GTHA data to 
investigate the impact of access cost on transit mode switching behavior of commut-
ers in the GTHA. Being a proof-of-concept model, the 2016 GTFS data was used 
to construct the regional transit system, while transit demand was provided by the 
2011 Transportation Tomorrow Survey (TTS). The TTS is a regional travel survey 
conducted every five years in the GTHA, which in part asks for a working day travel 
diary, including detailed route information for those using transit. The data retrieval 
system for the TTS allows for the extraction of O-D matrices in 10 min departure 
time slices; these matrices were used to generate an agent population for the region. 
Additionally, APC count data was used to validate the model output at the aggregate 
level. This larger regional model was used in place of a more focused single-route 
model. This was done given the prior construction/and availability of the regional 
model, as well as the transit demand O-D being available only at the regional level; 

Fig. 5  Passenger boarding, alighting and volume profiles at stops for Bus Route 1
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this allowed for the avoidance of assumptions to be made for travel to/from Hamil-
ton. Figure 5 presents the passenger demand profile of one day for Route 1-King, 
at each stop in the Eastbound direction produced from the simulation output. The 
framework was executed for the specified peak-time period of 10 working days in 
order to accumulate enough data required for the analysis.

6  Analysis and results

Modifications of the simulation model for consistency with the initial simulation 
model are made for this study, with the implementation of the aforementioned ran-
dom forest speed prediction model for more realistic movements of buses in the case 
study area. As a baseline, the in- and out-of-vehicle wait times contribute the same 
marginal time; however, different relative wait ratios (in-vehicle over out-vehicle 
times) are tested in the sensitivity analysis. The average walking speed of a pedes-
trian is 5 km/h, and the average bus speed is 25 km/h, according to the study data. 
The service schedule headway is fixed at 10 minutes over the time period. The bus 
capacity is 60 pass/veh, with 40 seated and 20 standing.

The optimization problem is coded in Python, and “Bonmin”—an open-source 
optimization solver (Bonami and Lee 2007)—is used to solve the problem. Bonmin 
features several algorithms, such as the branch-and-bound algorithm. The branch-
and-bound allows to efficiently solve the problem to determine the value of each 
decision variable and find an optimal solution. The computations are carried out on 

Table 1  Summary of optimization

Objective function Computational times Integer gap of convergence

− 15,562.31 (passenger seconds) 173 (s) Less than 1%

Table 2  Optimal result for LS service

1 = Non-served stop; 0 = served stop; stops 23, 24, and 25 are highlighted in bold

Trip W-E direction LS pattern Net time saving 
(passenger sec-
onds)

1 000010101010010101000010101010000101000010100 1872
2 000000000001001010101001000001001010001001000 3115.54
3 000010101010100000000010100000000100100010000 1710.15
4 010100000101000001000001000100000001000100000 1640.77
5 000000000010101010101010101000010100000001000 4315.02
6 010010000001000100010001000001000000000100000 516.05
7 001001010100100010101010101010101010101000000 1784.78
8 010100101010000000000001010101010100000000000 312
9 000000000000000000000010100000000000000000000 296
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a Mac OS X machine with a 2.4 GHz Intel Core i5 processor and 8 GB of RAM. 
Table 1 summarizes the total objective function value and the computational times 
for the case study. The solution is obtained after applying the branch-and-bound 
method within an optimality gap of solution (i.e., less than 1% gap).

The detailed results obtained by the developed methodology are shown in 
Table 2. Each trip shows the optimum service pattern. In particular, it can be seen 
which stops are the most appropriate candidates for applying the LS strategy. The 
patterns illustrate that Stops 23, 24, and 25 (highlighted in bold in Table 2), which 
are located in the middle of the route, are the most non-served stops for the major-
ity of the trips. The benefit of using this strategy yields saving times for each trip, 
as indicated in Table 2. As can be seen, the results also show a somewhat superior 
outcome for trip #2 and #5 than for other trips, with a 20% and 28% improvement in 
total passenger travel time, respectively. This is because most of the passengers of 
these two trips board at the start of the route and alight near the end of the route. In 
other words, the number of onboard passengers in the middle of the route is large 
and very few passengers board or alight at those stops, which are located in the mid-
dle section of the route. It is increasingly evident that due to special passenger O-D 
patterns, the method was able to customize special service patterns accordingly. It 
is to note that in this case study, the vehicle capacity is not reached. It is also worth 
noting that the proposed framework is capable of capturing the LS effects on user 
behavior, specifically regarding route choice. However, based on the scope of this 
study we assumed no change to travel behavior (i.e., no mode or route shift). Further 
analysis and investigation of the route choice and mode choice behavioral changes to 
the LS strategy are recommended for future study.

6.1  Stop pattern recognition

The results of Table 2 demonstrate that a group of trips (i.e., branch) may follow 
a similar pattern. As implementing a trip-by-trip skip-stop operation would not be 
practically feasible, finding a small number of LS branches is necessary. Conse-
quently, further analysis using a pattern recognition approach for the binary result 
data set is carried out. We select a binary pattern [0 1] (meaning a served stop fol-
lowed by a non-served stop). The following algorithm 1 illustrates the process.

In this study, the frequency of occurrence ( � ) of the defined binary pattern for 
each trip is depicted in Fig. 6. In the figure, those stops that follow the defined 
pattern are selected, meaning that the x-axis shows stops where the 0 of the pat-
tern occurs, implying that the indicated stop will not be served (or is equal to 1 
in the pattern). This will lead to reducing the search space needed to find the best 
combination of stops and the number of branches by removing those stops that 
are not candidates for an LS strategy. As the figure illustrates, there are two differ-
ent patterns of using stops that are recognizable from the peak points. Peaks with 
a value of three or more are considered in this study, since the most frequent situ-
ation happens in the case of three or more trips. The first pattern is mostly shared 
among odd-numbered trips, while the second pattern is mostly shared among 
even-numbered trips. We name these two patterns as “Branch A” and “Branch 
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B”. Now, we should assign suitable stops to each branch utilizing the information 
of this figure. As an example, suppose we assign the most frequent stops (22, and 
24) to Branch A and the second frequent stop (23) to Branch B, respectively. This 
indicates that Branch A serves stops 22 and 24 while skipping stops 23 and 25.

Similarly, Branch B serves stop 23 and skips stop 24. We then continue the 
same procedure for the other peaks (i.e., frequency ≥ 3 ) with careful attention 
to stop assignment being due to the highest number of odd or even trip numbers 
that are sharing the stop where the pattern occurs. Consequently, the service and 
stop pattern assigned to both Branch A and B is obtained as follows, as shown in 

Fig. 6  Stop pattern recognition according to the frequency of occurrence of the binary pattern [0 1] for 
the given bus trips

Table 3  Summary of feasible 
branches

Branches LS pattern Average net time 
saving (passenger 
seconds)

A “00001010100010001010
1010101000000100000
000000”

1958.91

B “01000000000100000000
0001000001000000000
000000”

13,725.65
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Table 3. Each trip (of all 9 trips in our case study) then follows patterns in Branch 
A and B sequentially.

The simulation served as a validation of the optimization results under a sto-
chastic framework. When the optimization framework recommends a solution 
to deploy in the simulation, it is possible to evaluate the LS strategy’s efficiency 
and its effects on passengers’ travel experiences. Figure  7 shows the effect of 
applying the LS strategy on the passengers’ travel times along branches A and 
B from the simulation run. As explained in the previous section, the benefits of 
implementing the LS strategy are accrued mainly by the “through” passengers, 
who are already onboard the bus, and those boarding downstream. On the other 

Fig. 7  The effect of applying an LS strategy on passenger travel time
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hand, it has an adverse effect on passengers who want to alight or board at the 
skipped stop, inflicting extra time on such passengers. As Fig.  7a and b show, 
the maximum saving of passengers’ travel times occurs in the middle of the 
route where Stops 23, 24, and 25 are located. According to the optimization for-
mulation, the optimal solution will naturally tend to maximize the potential sav-
ing in passengers’ travel times by identifying the stops where the total passenger 
travel time can be minimized. Conversely, at stops where the extra travel times 
experienced by the disadvantaged passengers outweigh the travel time savings of 
the other passengers, the LS strategy will not take place, rendering no change to 
the passengers’ travel times. It is to note that the proposed model is generic and 
can offer the best solution based on the route characteristics. 
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6.2  Sensitivity analysis

A sensitivity analysis of the objective function (OF) value with weightings of 
passenger wait time and speed ratio is shown in Fig.  8. The marginal burden 
or disutility of out-of-vehicle waiting time is perceived to be more burdensome 
than in-vehicle travel time (Reed 1995). Thus, the wait time factor is computed 
as in-vehicle over out-of-vehicle times ( �2∕�1 ). A wait time factor less than 1 
means the passengers who are not through passengers are likely to experience a 
higher disutility of wait time with less saving time for the system.

The other factor when considering the application of an LS strategy is the 
ratio of the average speed of a bus and the average walking speed of pedestrians 
(f), which takes the walking penalty time into consideration. An adjustment of 
this ratio means higher or lower passenger travel time than the base data. The 
bus speed variation also leads to a vehicle running time variation. That is, a 
higher ratio means higher bus speed and less walking time penalty. The results 
of Fig. 8 reveal a somewhat superior saving time for a lower speed ratio with a 
higher wait ratio. In particular, the higher saving time in the objective function 
is attained in a lower walking time penalty and greater value of in-vehicle wait 
time. In other words, the sensitivity analysis depicts that the effectiveness of the 
proposed optimization model is high when the speed of the bus system is low 
(e.g., because of traffic congestion or fluctuations of passenger demand), and the 
in-vehicle travel time ratio is high. This is especially the case when the large 
group of passengers travels a longer distance, and due to the low speed of the 
system, they will experience large in-vehicle travel time.

Fig. 8  Sensitivity analysis of wait time factor and speed ratio
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7  Conclusions

This paper presented a new mathematical programming model which aims at find-
ing the best candidate route stops for a limited-stop strategy. The developed model 
is formulated in two stages, solving the optimization problem, and post-optimization 
analysis. Within this study, we analyzed the benefits of implementing such a strategy 
for the purpose of minimizing the total passenger travel time. The adopted approach 
consists of three steps: optimization, post-optimization, and simulation. An agent-
based simulation framework is built to represent a real-life example and to gener-
ate reasonable input data for the proposed optimization model. Subsequently, the 
post-optimization procedure using the optimization outputs enabled us to propose an 
appropriate service pattern at the branch level. Finally, the simulation platform tests 
the quality of solutions on passengers’ travel experiences. Based on the formulations 
for optimization and the post-optimization process, we developed an efficient algo-
rithm for finding the best candidate for the route service pattern. In order to furnish 
a practical solution for selecting a feasible service pattern, a new pattern recogni-
tion method as part of the post-optimization procedure is developed. The model was 
applied in a case study of one route in Hamilton (Ontario), and a detailed discussion 
regarding the optimum service stop pattern is provided.

A sensitivity analysis of the objective function value with weighting passenger 
wait time and speed ratio is conducted. The computational results demonstrate the 
effectiveness of saving time for the greater value of in-vehicle wait time.

The main contribution of the proposed framework is to offer PT agencies a ready-
to-use tool for designing and evaluating the limited-stop strategy to real-world 
routes. For example, the cost per kilometer drops since buses reduce the time they 
require to accelerate, decelerate, and open their doors. Also, the service cycle time 
would be shorter, resulting in reducing the fleet size. However, in this study, we 
investigated the LS strategy to improve the quality of existing services by matching 
supply and demand in a better way.

Ongoing research related to this study includes validating some of the assump-
tions, analyzing travel behavior (route and mode choices), developing a family of 
stop and service pattern strategies (such as semi-express service), and utilizing more 
accurate simulation models (including learning-based transit assignment with a 
more realistic passenger arrival distribution at stops) to measure the transit system’s 
key performance indicators.

Acknowledgements This research was supported by NSERC, OCE, Trapeze and SOSCIP. We also grate-
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