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Abstract
In this paper a new methodology to estimate/update and forecast dynamic real time 
origin–destination travel matrices (OD) for a public transport corridor is presented. 
The main objective is to use available historical data, and combine it with online 
information regarding the entry and exit of each particular user (e.g. through the fare 
system, FS), to make predictions and updates for the OD matrices. The proposed 
methodology consists of two parts: (1) an estimation algorithm for OD matrices of 
public transport (EODPT), and (2) a prediction algorithm (PODPT) based on artifi-
cial neural networks (ANNs). The EODPT is based on a model that incorporates the 
travel time distribution between OD pairs and the modeling of the travel destination 
choice as a multinomial distribution, which is updated using a Bayesian approach 
with new available information. This approach makes it possible to correct the esti-
mates of both the current OD interval matrices and of preceding intervals. The pro-
posed approach was tested using actual demand data for the Metro of Valparaiso 
corridor in Chile (Merval), and simulated travel information in the corridor. The 
results are compared favorably with a static approach and can support the use of this 
methodology in real applications. The execution times obtained in the test cases do 
not exceed 10 s.
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1 Introduction

The operation of public transport systems is characterized by the variability in both 
travel times between successive stops and passenger demand in each of them. This 
variability tends to produce vehicle bunching, which ends up deteriorating waiting 
times, service reliability and comfort measures.

In order to avoid these negative impacts on the level of service, certain control 
measures can be implemented in a way to regularize the time intervals between 
vehicles. The results reported by Delgado et  al. (2009, 2012), show that schemes 
which combine such control measures delivered encouraging results, offering even 
levels of service for users and significant improvements over those obtained with 
each measure individually.

The availability of new technologies offers extremely advantageous opportunities 
in the creation and implementation of systems that control and regulate the evolution 
of public transport systems. Many systems currently use technologies of automatic 
passenger counting and automatic fare collection, in which the fare depends on the 
origin and destination of the trip of the user. In such systems users are identified 
(for example, through the validation of their payment card) at the beginning and end 
stops of their trip. Thus, this system allows to know the origin and destination stop, 
the departure and arrival times (and travel time), and the type of user. This system 
with validation both in the origin and destination stop will be called VOD.

Traditionally, control schemes deliver satisfactory results in regular demand sce-
narios, outlined in an average historical OD matrix. However, this information is 
not always sufficient, particularly when disruptions or unexpected events occur in 
the system, whose demand patterns are not captured in the historical matrix. Thus, 
a mechanism that allows updating the historical information online using data being 
obtained in real time, provides a powerful tool that would meet this need.

In this scenario, using the aforementioned technology systems would provide 
updated and higher quality information about trips made in the system which should 
allow predicting short-term future demand (e.g. next 15–30 min) in a more precise 
way. For this reason, the motivation for this research is to exploit such systems, in 
order to generate more accurate estimates and predictions of the present and future 
state of the system—dynamic OD matrices1—that would increase the benefits pro-
vided by the control schemes.

This process of estimation and prediction of trip matrices should be fast enough 
for real-time implementation. This speed contrasts with the high cost and long dura-
tion required by traditional processes for dynamic OD matrices. The OD matrix esti-
mation has been extensively discussed in the literature (see, for example, Ashok and 
Ben-Akiva 1993; Sherali and Park 2001; Bierlaire and Crittin 2004; Zhou and Mah-
massani 2007; Carrese et al. 2017; Krishnakumari et al. 2020) works mainly focused 
on private transport. As for public transport, not only are there less authors who 
have worked on the subject, see, e.g. Nguyen and Pallotino (1986), Nguyen et  al. 

1 The term "dynamic" refers to the update of the OD matrix in successive intervals/times in a day.
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(1988), Wong and Tong (1998), Li (2008), Rahman et al. (2016) Toqué et al. (2016), 
and Jenelius (2019), but only recently Zhang et al. (2017) considers an online esti-
mation about entry and exit of passengers to predict OD matrices. In our case, since 
we have online information about the station in which passengers board and alight 
we can use that information to estimate and update the forecast in real-time.

Thus, the aim of this paper is to present a methodology for estimation/update and 
forecast in real time of dynamic OD matrices for short intervals of time on a public 
transport corridor equipped with VOD.

The new methodology considers the estimation/update and prediction of dynamic 
OD matrices from a parametric approach. This means that an estimate of each of the 
cells of the OD matrices involved are not performed, but instead a model of travel 
destination choice is used, and the parameters associated with that model are esti-
mated and updated.

For each origin stop, the proposed model uses a probability distribution of travel 
destination choice for each time interval. These probability distributions are calcu-
lated using the historical information of trips made in the corridor, information also 
used to extract the empirical travel time distributions between different OD pairs, 
throughout the day.

The process of estimation/update and prediction of OD matrices requires discre-
tizing time in intervals of equal length. By working with these intervals, it is clear 
that there will be trips that begin within an interval (which will conform the OD 
matrix of that interval) and end in a future interval. Thus, the distribution of the 
destinations of trips beginning within a time interval will be modified in subsequent 
intervals, through the process of estimation/update as online information becomes 
available.

The methodology presented in this paper is based, then, mainly on two steps: 
first, a estimation/update phase, and second, a prediction phase. The first is respon-
sible for performing the successive estimates of OD matrices of a public transport 
corridor (EODPT) associated to past time intervals, and update data needed to make 
forecasts of future states of the system. Meanwhile, the latter makes predictions of 
OD matrices of the public transport corridor (PODPT) associated with future time 
intervals.

These two algorithms are closely related. The first one will use known informa-
tion, such as historical data and information collected from the fare system through-
out the day, to produce/update estimates of OD matrices that are fed into the second 
algorithm. This second algorithm forecasts future OD matrices of the system, and 
does not provide any information to the estimation step.

The EODPT algorithm uses data related to how users enter and exit the system, 
which will also give information of when users are expected to get out of the system, 
according to observed time distributions. Notice that these estimates about when and 
where users leave the system has no relation to future OD matrices, since they only 
explain how current estimates of OD matrices will be distributed in time and space.

On the other hand, the PODPT algorithm also uses historical information and 
is also fed with an updated estimate about OD matrices of the latest time intervals, 
which are obtained from the EODPT algorithm. This algorithm provides forecasts 
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for future time intervals, where no real information about those time intervals is 
available at the instant of generating the forecast.

Neural network techniques have shown great effectiveness when working with 
data of different natures, for example, demand profiles in public transport corridors 
and calendar information (day of week, holidays, etc.), and additionally have low 
times for delivering results. Based on these two attributes, they were chosen as an 
alternative to form the predictive engine of this work. It should be noted, however, 
that the main contribution of this work lies in the modeling used for updating OD 
matrices, whereby the travel destination of a user is the result of a multinomial pro-
cess. The developed Bayesian algorithm has closed and very simple mathematical 
formulas, which result in very low time incurred to deliver results, enabling the pro-
posed methodology to be used in real-time applications.

This article is organized as follows. In Sect. 2, there is a presentation and descrip-
tion of the problem, and a description of how the generic corridor under analysis 
works. Section 3 introduces the theoretical framework considered in this study, pre-
senting the models to address the problem and the techniques used in the solution. 
Section 4 formally presents the formulation of the proposed methodology. In Sect. 5 
the results of the application of the proposed methodology to a case study with real 
data are presented and finally Sect. 6 summarizes the main conclusions.

2  Presentation and description of the problem

2.1  Problem formulation

An analysis period T  is considered, divided into equal intervals k = 1,… ,K , each of 
length Δ (e.g. 15 min). The network considered is a two-way public transport cor-
ridor, serving N stops. Thus, there are nOD = N ⋅ (N − 1) OD pairs in the network.

For each interval k two types of information are available: (1) historical back-
ground, corresponding to an OD matrix that reflects the expected number of trips 
between each OD pair starting within that interval, as well as data of trips made dur-
ing this interval in days before, and (2) the information captured in real time from 
users getting in and coming out of the system.

It is assumed that the current time corresponds to the end of interval h =
[

h−, h+
)

 , 
where h− and h+ define the beginning and end of that interval.

The main objective is to develop a methodology to generate estimation/update 
OD matrices observed in the corridor intervals k ≤ h , and additionally forecast the 
OD matrices for h < k ≤ K , i.e. future time intervals. The notation and general defi-
nitions of the problem are summarized in Zúñiga (2011).

2.2  Description of the analyzed base corridor and its fare system

A corridor employing a fare system (FS) with VOD is considered, i.e., that recog-
nizes users at the origin and destination stop. It is possible to build a database of 
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trips made in the corridor, indicating the OD pair for each user, and their times of 
entry and exit, from whose difference experienced travel time is obtained.

In summary, operating with a FS with VOD allows for any temporal aggrega-
tion to have data such as:

Passenger entry counts for all stops.
Times of arrival of passengers at all stops.
Exit counts by OD pair.
OD matrices, obtainable from the database of trips.
Travel times for the OD pair between validations.

Analyzing historical travel time data from the base corridor, lognormal distri-
butions are found to be the most suitable distributions for modeling travel time 
across the system.

Empirical travel times for every OD pair in the system were studied and the 
parameters for every lognormal distribution were calculated, and stored as his-
torical data. For instance, empirical information and the fitted lognormal distribu-
tion for one specific OD is shown in Fig. 1.

Fig. 1  OD pair (1,8) lognormal travel time distribution
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The parameters that fit observed travel times distribution are not updated in this 
investigation. We recommend updating them every time the operator performs a 
major change in frequencies.

3  Methodology

Section 3.1 introduces the methodology to estimate the parameters of the travel time 
probability distribution in the corridor with incomplete information. Then, Sect. 3.2 
presents the Bayesian modeling to estimate the travel destination originated at each 
stop. In Sect. 3.3 basic concepts regarding artificial neural networks used in this arti-
cle are detailed.

3.1  Parameter estimation with incomplete information

In the public transport system considered, the system state is observed only every 
Δ minutes. At those moments, some trips are observed which are initiated but not 
ended, so it is not known where or when they will end. Therefore, one has incom-
plete information or censored data, which must be estimated. The destination stop of 
these trips will be known at some later moment than the current time of observation 
k+ , which is a multiple of Δ and corresponds to the end of interval k . In these cases, 
we say that the unobserved data are censored from the right.

A methodology for calculating maximum likelihood estimates (MLE) in scenar-
ios where there is data censorship from the right (or of type I) follows, based on 
Patti et al. (2007), and adapted to the case of a corridor.

A first need is to estimate a distribution function for travel times between OD pair 
w = (i, j) in the corridor. At any moment in time one could have incomplete informa-
tion because travelers making a specific trip may have not left the system yet.

We will call f (uw) to the probability density function of travel time between pair 
w , F(uw) to its cumulative distribution function, and S(uw) = 1 − F(uw) = P(U > uw) 
to the survival function. If we call �w to the vector of parameters associated with 
f (uw) and S(uw) , the log-likelihood function lw associated with the calibration of 
these parameters can be approximated as follows:

where ni is the number of individuals who entered the system at station i , and �r = 1 
if the travel time of the r-th individual is known exactly, and �r = 0 if such time is 
censored (not yet available). This is an approximation since we are considering that 
all passengers entering at a station i during a time interval will have the same travel 
time to any destination station j , which will naturally vary according to the OD pair 
w.

It is assumed that the data is under simple type I censoring. Thus, it can be 
assumed that up to time v the travel time of the first b users is known, and that the 
remaining 

(

ni − b
)

 are censored. Therefore:

(1)lw =

ni
∑

r=1

[

�r ⋅ ln (f (�
w)) +

(

1 − �r

)

⋅ ln (S(�w))
]

,
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Incorporating these assumptions, rewriting expression (3):

Then, to find the MLE nonlinear expression (3) should be maximized, consider-
ing the sign constraints for parameters �w.

3.2  Model of travel distribution

3.2.1  Proposed model

We assume that the travel destination Dk
i
 of users starting their trips at stop i during 

interval k , is a random variable with multinomial distribution Dk
i
∼ MN

(

yk
i
;qk

i

)

 , 
where yk

i
 represents the number of trips originating at stop i during interval k , and 

qk
i
=

{

qk
ij

}N

j=1
 is the vector of probabilities of choosing j as travel destination. There-

fore, the elements of vector Dk
i
 must add up to yk

i
.

According to Bayesian statistics (see, for example, Maritz and Lwin 1989), the 
conjugate prior distribution for the multinomial distribution is a Dirichlet distribu-
tion, thus vector qk

i
 is considered to distribute Dirichlet with parameters 

�
k
i
=

{

�
k
ij

}N

j=1
 , or Dir

(

�
k
i

)

 . As new information becomes available, vector qk
i
 will be 

updated using Bayes’ theorem. Then, being a conjugate distribution, the posterior 
distribution will be Dir

(

�̂�
k
i

)

 , in which �̂�k
i
≠ 𝛼

k
i
 . The new vector �̂�k

i
 is calculated using 

the methodology proposed by Wicker et al. (2008).

3.3  Updated Bayesian parameter

The dynamic OD matrices of the corridor are formed by terms xkh
ij

 of expression (4), 
which represent the estimate in interval h of the number of trips between each pair 
(i, j) initiated during interval k.

For estimating/updating the dynamic OD matrices of the corridor, matrices Mkh
i

 
are used. They are formed by mkth

ij
 elements, which represent the information updated 

up to interval h of the number of trips started at stop i during interval k , which ended 
(or will end) at stop j during interval t . Note that these elements are related to how 
users are distributed across the network and in time (i.e. how users get out of the 
system), and will be continuously updated using data of station and times in which 
users enter and exit the system, for all time intervals. The prior distribution for Mkh

i
 

(2)𝛿
r
=

{

1, i ≤ b

0, i > b
.

(3)lw =

b
∑

r=1

ln (f (�w)) +
(

ni − b
)

⋅ ln (S(�w)).
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is obtained using historical information for both travel destination and travel time 
distributions.

The terms xkh
ij

 are calculated summing mkth
ij

 elements, which contain an observed 
part (t ∈ [k, h]) and an estimated part (t > h) , which together allow to generate every 
new estimate/update of the dynamic OD matrices of the corridor.

The mkth
ij

 elements are obtained in a 2-step procedure: (1) estimating the number 
of trips originating at station i that will be coming out of the system in intervals 
t > h , and (2) distributing these trips to all different destinations in each interval t.

The outcome of the first step is obtained by multiplying the number of trips origi-
nated at station i during interval k ( yk

i
 ) and the proportion of those trips that should 

be coming out of the system in intervals t > h . This proportion is updated using 
information available up to interval h , of where users exit the system.

The second step distributes the number of trips obtained in the first step across all 
destinations and in the remaining time intervals ( t > h ), using the updated probabil-
ity at interval h of a trip starting at stop i in interval k that ends at stop j in interval t.

Then, the updated probability at interval h (posterior mean) that a trip that 
started at stop i during interval k had stop j as destination, is given by the following 
expression:

In expression (4) the term �k
i0
=
∑

j �
k
ij
 . Note that the above expression is used to 

leverage the knowledge of the historical distributions of travel destinations in inter-
val k , stored in parameters �k

ij
 . Thus, in  situations where, for example, the output 

process of passengers from stops is delayed beyond normal, one will avoid assuming 
immediately—and wrongly—that such delay is due to a change in the structure of 
the distribution of travel destinations. To infer whether that change actually 
occurred, we must resort to more information, such as travel times.

3.4  Artificial neural networks

Artificial neural networks (ANNs) use a basic processing unit, called artificial neu-
ron (AN). Within ANNs, knowledge is acquired after a learning process, and stored 
as "synaptic weights", which correspond to the connections of the ANN.

An ANN is a group of artificial neurons interconnected by several links. The 
architecture of these networks corresponds to the ordering that is made from such 
set of neurons. Grouping neurons is typically performed in layers, in which the input 
data is processed—input layers—internal calculations are performed—hidden lay-
ers—and the outputs of the ANN are generated—output layer. Furthermore, each 
layer contains a certain number of artificial neurons.

The number of neurons nin in the input layer corresponds to the number of input 
parameters of the ANN, and is given by the size of the input data vectors. Likewise, 

(4)qkh
ij
=

�
k
ij
+ xkh

ij

�
k
i0
+ yk

i

,∀i, j.
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the number of neurons nout in the output layer is given by the size of the output 
vectors.

Meanwhile, both the number of hidden layers and the number of neurons nh in 
each one of them must be calibrated heuristically, since there is not an optimum 
value, and it depends on the problem being treated. Cybenko (1989) showed that 
the ANNs possess the property of "universal estimators", i.e., an ANN can approxi-
mate any real function to an arbitrary level of precision. In order to achieve this, 
it is required that the ANN has an architecture that includes a hidden layer, with 
"sufficient" neurons therein. Therefore, architectures with just one hidden layer were 
considered, and the number of neurons nh in it was to be determined.

The topology and the shape that the ANN finally has is given by the connec-
tions that are made within and among the layers. When there are links that are only 
forward—i.e., from the input layer to the output layer—one speaks of a feedforward 
network. Meanwhile, when there are links between neurons in the same layer or pre-
vious layers, it is called recurrent networks.

3.4.1  Supervised neural networks

Supervised neural networks are one type of ANN where one seeks that the outputs it 
generates are as similar as possible to the actual values available, which is achieved 
by adjusting its parameters, in a process known as ANN training.

The aim of the training is to minimize an error function that relates the outputs 
delivered by the network and the actual values. Prior to the start of training, preproc-
essing of the data must be performed, normalizing it to the range corresponding to 
the co-domain of the activation functions used. Then, the normalized database is 
divided into three sets:

1 Training data (TrD): Progressive adjustment of network parameters.
2 Validation data (VD): Evaluation of the generalization ability of the network.
3 Test data (TeD): Independent measurement of network performance.

Training consists of two phases, which are detailed in Zúñiga (2011):

– Feedforward phase: aims to present and propagate through the ANN the couples 
of inputs and outputs.

– Backpropagation phase: aims to estimate the changes the synaptic weights will 
experience during training.

3.4.2  Selection of the ANN architecture

The most suitable architecture for a particular problem is related to the adjustment 
level you get while using such structure in training an ANN. There is, however, a 
wide range of possible architectures for the ANN, which are obtained from the dif-
ferent values that the vector 

(

nin, nh, nout
)

 can take. Then, for a given architecture, the 
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output delivered by the ANN—after training the ANN a low number of epochs (i.e. 
one cycle through the full training dataset)—is compared to TeD data set, and the 
goodness of fit is calculated. Heuristically, a low number of epochs is used to accel-
erate the process of selecting the architecture.

The adjustment measure to be used is the weighted information criterion (WIC), 
defined and used by Eğrioğlu et al. (2008). The network architecture that minimizes 
the WIC is the one that best fits the TeD set, and at the same time keeps its complex-
ity controlled, to maintain excellent generalization ability and avoid the phenom-
enon of overfitting.

4  Estimation of OD matrices for public transport (EODPT)

4.1  General description of the EODPT algorithm

The EODPT algorithm performs successive estimates of the OD matrices of the 
corridor under analysis, through the progressive incorporation of the information 
available up to h+ (the end of interval h ), particularly exits per stop and real travel 
times before delivering the final estimate associated with some interval of the study 
period.

Fig. 2  General outline of the estimation algorithm
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Figure  2 shows the overall scheme of operation of the proposed algorithm. 
In a first step, information is collected from VOD. This data feeds the second 
general step of the algorithm, where different internal parameters of the current 
model are updated, leading to the estimation of OD matrices of intervals associ-
ated with new information. This update includes the OD matrices for every trip 
of the corridor to interval h , inclusive, since many of them have still not ended.

Note that the incorporation of observed travel times allows updating all travel 
time distributions. With this new information it is possible to update the proba-
bilities related to how users travel across the network and in time. The latter 
probabilities pkth

ij
 are contained in matrices Pkh

i

[

j, t
]

 , and they represent the prob-
abilities estimated in interval h that a trip originated at stop i during interval k 
ends at stop j during interval t .

The EODPT algorithm consists mainly of three steps. First, travel time distri-
butions f kh

ij
(⋅) are updated, solving the MLE problem (3) applied to this case. 

Secondly, using these new travel time distributions, the probabilities pkth
ij

 are 
updated according to the actual time of arrival of the passengers who entered the 
system at stop i during interval k . Thirdly, the probabilities pkth

ij
 and the informa-

tion of how users exit the system in each time interval allows us to calculate the 
qkh
ij

 terms of Eq. (4), which end up in the new estimation of the OD matrices of 
the corridor.

4.2  Analysis of estimation results

The performance of the  EODPT algorithm was evaluated considering a hypo-
thetical corridor under different levels of abnormality between the historical 

Fig. 3  Scheme of test corridor—algorithm of EODPT

Table 1  Scenario matrix Case qkh
ij

= qk0
ij

f kh
ij
(⋅) = f k0

ij
(⋅)

1 ✔ ✔
2 ✔ ×
3  × ✔
4  ×  × 
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distribution of travel destinations and the observed situation. The test also 
included a congestion effect to cause the trips to lengthen, and therefore, the 
output processes of users should take longer than normal.

4.2.1  Travel estimation for test corridor

A small fictitious corridor composed of only five stops as shown in Fig. 3 was con-
sidered. All trips begin at the third stop and head to the other four.

For this corridor four cases were considered, which involved different levels of 
abnormality between the historical situation and the observed one, both in the dis-
tribution of travel destinations and travel times. Table 1 schematically presents the 
characteristics of each case.

Cases 1 and 2 described in the matrix correspond to those where travel destina-
tions show a very similar distribution to the historical one. The difference is that in 
the latter a congestion effect is observed, lengthening travel times with respect to the 
historical situation. In cases 3 and 4 the distribution of travel destinations is different 
from the historical one. The difference between cases 3 and 4 is again the congestion 
effect.

In all 4 cases, the times of arrival of passengers within each interval are identical. 
These were generated randomly using a uniform distribution.

4.2.2  Parameters used

In the test corridor, it was considered that during interval k = 1 , to stop i = 3 enter a 
total of y1

3
 = 200 trips. In addition, it was assumed that the maximum duration of a 

trip on the network, Smax , corresponds to 6 intervals.
First of all, a prior probability distribution of exits pkt0

ij
 needs to be determined 

(associated with the interval 0) to predict how many of those 200 trips will end at 
stop j during interval t . For this, the specific time of arrival of each user is used and 
a lognormal distribution of travel time for trips between i and j initiated during 
interval k is assumed, defined by historical parameters �k0

ij
.

In Table 2 the parameters of the trip distribution model are summarized, used to 
generate each test case. It is important to remember that the parameters associated 
with cases 1 and 2 are assumed to be available as historical information for cases 3 
and 4.

For each of the four test cases, 100 different instances of 200 trips were generated 
and distributed to the four destinations according to their associated probabilities. 

Table 2  Travel distribution 
parameters qk0

3j
 for each of the 

four cases: proportion of trips 
from node 3 to each node j 

Case Destination stop j

1 2 4 5

1 and 2 0.3 0.1 0.2 0.4
3 and 4 0.1 0.3 0.4 0.2
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The arrival times of the two hundred people are the same in each of the 100 
instances and also identical for the four analyzed cases. Finally, travel times are ran-
domly generated from a lognormal distribution, different for each OD pair, using the 
parameters reported in Zúñiga (2011).

4.2.3  Results

For brevity, we focus in this section only on case 4 which is the most difficult 
to forecast, knowing that for the other three cases the performance of the algo-
rithm is better than for this case. Table 3 shows the average distribution (over 100 
instances) of the exit interval and stop of the 200 trips.

We utilized three error measures to assess the performance of any predictive 
method: root mean square error (RMSE), the standardized root mean square error 
(SRMSE) and the relative number of wrong predictions (RNWP). We compute 
the average performance indicator and the standard deviation for each one.

We use the historical average trip distribution as our dynamic OD matrix esti-
mation benchmark to our method. Table 4 reports its performance.

The performance of the EODPT algorithm is presented in Table  5. It shows 
the evolution of the average error obtained at the end of each interval or iteration 
through the EODPT algorithm, and the average calculation times and confidence 
intervals (CI) at 95%.

It should be noted that with just 30% of the data at the end of the first inter-
val, a 5% improvement is achieved over the estimate using historical informa-
tion. Then, after interval h = 2 , where there is already almost 88% of information, 
close to 92% improvement is obtained with respect to the historical information, 
i.e., the benefits are rapidly seen. The evolution of the estimated probabilities of 
trip destination choice is shown in Fig. 4. It is observed that the probabilities are 
updated rapidly after the first iteration without reaching the real observed value 
in this case, as the historical probability distribution remains with some weight.

Table 3  Average distribution 
of exits by interval and stop for 
Case 4

j Sum h

1 2 3 4 5 6

1 20.11 0.00 1.98 10.06 8.07 0.00 0.00
2 60.76 19.74 41.00 0.02 0.00 0.00 0.00
4 80.05 38.69 41.36 0.00 0.00 0.00 0.00
5 39.08 2.27 30.78 6.03 0.00 0.00 0.00
% Information 30.35% 87.91% 95.97% 100% 100% 100%

Table 4  Estimation error 
using the historical average 
trip distribution: average and 
standard deviation of the error 
for each performance indicator

Historical

SRMSE RMSE RNWP

2.0410 (0.0351) 16.3279 (2.2464) 0.8081 (0.0058)
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To improve the operations of a public transport system, we need not just to 
have a good understanding of the OD matrices that explain the flows that the sys-
tem is observing, but also to improve the prediction of future trip patterns. In the 
next section we use the PODPT algorithm to predict future flows for a real Metro 
line.

Fig. 4  Probabilities of travel destination choice

Table 6  Variables used in the PODPT algorithm

v1 Day of the week
v2 Interval k of the day
v3 Number of trips between (i, j) pair in the same interval k in the last R days of the same type
v4 Number of trips between (i, j) pair in the last p intervals of the current day. In this case, a combina-

tion of actual data and estimates of EODPT algorithm will be available
v5 Calendar information, such as if the current day is a holiday or not
v6 Presence of any particular event, which are extracted from historical data. Within the database, the 

following events were found:
1. Soccer match
2. External strike on Merval: A strike in the services of buses in Valparaiso was observed, which 

generated an increase in the number of trips in the corridor
3. Internal strike on Merval: Merval’s train operators strike produced a lower supply in the corridor, 

which generated a decrease in the number of trips in the corridor
4. Cruise arrival: Cruise Queen Mary 2 arrived in Valparaiso’s port, generating a change in the pat-

tern of trips in the corridor
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5  Application of the prediction method for OD matrices 
for a corridor

A test was performed on the proposed method for estimating and forecasting OD 
matrices, using the information available for the corridor of the Metro of Val-
paraiso, Merval.

This chapter presents an application of the proposed algorithm for the PODPT 
with VOD using ANNs. The objective is to predict at the end of interval h , the 
number of trips between each OD pair in the corridor, to begin at later inter-
vals, i.e. k > h. The following sections describe the methodology that defines the 
input data, the architecture that the ANN will have, and the results obtained.

5.1  Description of the corridor and variable selection for the PODPT algorithm

The data used in this process is related to the operation of the corridor of Metro of 
Valparaiso (Merval) during the first 6  months of the years 2006, 2007 and 2008. 
This corridor serves 20 stops, crossing from the port city of Valparaiso to Limache, 
through the urban area of Viña del Mar, Chile. The information was previously 
grouped into three types of day: workday, Saturday and Sunday or holiday, and ana-
lyzed independently. Therefore, the kind of day will not be part of the set of varia-
bles that will influence xk

ij
—the number of trips between the pair (i, j), initiated dur-

ing interval k . For a particular type of day, the variables that were considered to 
influence xk

ij
 (i.e. the inputs) are summarized in Table 6.

The ANN method predicts (i.e. the output), at the end of the interval h , the next s 
values of the time series of x�

ij
 , where � = h + 1,… , h + s . The proposed methodol-

ogy would allow the recursive use of the predictions obtained at each interval of the 
day to feed back the model and generate a forecast of the variables x�

ij
 with 𝜏 > h + s , 

that is, for all remaining intervals of the day. However, in this application the model 
is applied to predict interval t after h + s only once the actual demand up to interval 
t − s is known.

5.2  Preprocessing and coding data

The ANN feedforward type used the hyperbolic tangent as activation function in 
each of the artificial neurons of the input hidden layers, while in the output layer the 
identity function was used. As part of the preprocessing, all data were normalized at 
the interval [−0, 9;0, 9] to avoid saturation of the first function, i.e., to avoid the more 
extreme values of the curve. During training, performed with the Neural Network 
Toolbox of Matlab™, standard division of the data set was performed, distinguish-
ing the TrD set, the VD set and the TeD set.
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5.3  Procedure to define the architecture of the network

As already mentioned, the architecture of the network is related to the parameter 
vector (p,R, s) . The parameters p and R , together with the coding used (i.e. the vari-
ables used), generate a total of nin = (p + R + 4) input parameters. As for s , it repre-
sents the number of output parameters nout of the network.

As for the parameter nH , according to an analysis of De La Fuente García (1995), 
it is recommended that this value should be at least 75% of nin (Salchenberger et al. 
1992), and can reach up to 

(

2 ⋅ nin + 1
)

 (Zaremba 1990). An ANN was used with the 
following architecture:

1 An input layer with nin neurons.
2 A hidden layer with nH neurons.
3 An output layer with s neurons.

The value of the variables in vector (p,R, s) was varied, obtaining different values 
for nin , for which the number of neurons nH was varied within the suggested range. 
The number n∗

H
 of neurons—associated with the vector (p∗,R∗, s∗)—will be the one 

that minimizes the WIC, during a training conducted for 20 epochs. Finally, the final 
structure will contain n∗

in
= (p∗ + R∗ + 4) neurons in the input layer, n∗

H
 neurons in 

the hidden layer and s∗ neurons in the output layer, and a full training will be per-
formed using this architecture.

5.4  Results

The experiment performed and the results obtained in the selection of the architec-
ture of the ANN are described in the following section. Subsequently, the results of 
the prediction with the final structure are shown. In both cases, the data of the trips 
made in 2007 and 2008 were used, which were divided into TrD = 85%, VD = 10% 
and TeD = 5%.

5.4.1  Selection of the ANN architecture

For this experiment, the data of only three OD pairs was used—(1,8), (8,1), (20,8)—
which correspond to pairs of stops which were considerably affected by the occur-
rence of events highlighted in Table 6. The range of variation of the vector (p,R, s) is 
given by the following values: predictions were considered only one step ahead, i.e., 
s = 1 , p between 1 and pmax dependent of the OD pair, and R between 1 and 4.

The pmax value comes from an analysis of the partial autocorrelation function 
(PAF) of the data. From PAF we extract the first lags of the series with the greater 
statistically significant participation in the explanation of the current value, if a lin-
ear autoregressive model was used to explain the series. The range for R emerges to 
include similar periods of several weeks before the prediction.
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The training was conducted for only 20 epochs, to accelerate the process of 
selecting the most appropriate architecture. It is important to remember that the 
number of possible architectures could be very large, because it is derived from all 
possible values of the vector ( nin , nh , nout ). After the adequate architecture is selected 

Table 8  Error measure of the PODPT algorithm: average and confidence interval for each type of day

Type of day Origin Destination RMSE

Average CI

Workday 1 8 0.5598 [0.5525; 0.5670]
8 1 0.4419 [0.4392; 0.4446]

20 8 0.7246 [0.7177; 0.7314]
Saturday 1 8 0.4252 [0.4188; 0.4315]

8 1 0.431 [0.4236; 0.4384]
20 8 0.807 [0.7992; 0.8148]

Sunday or holiday 1 8 0.4208 [0.4125; 0.4291]
8 1 0.3635 [0.3558; 0.3712]

20 8 0.784 [0.7754; 0.7927]

Fig. 5  PODPT predictions—pair (1,8)—weekday
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a proper training is conducted, from which the actual forecasting model is derived. 
Then, for each value of s , the value of ns that minimizes the WIC in the TeD group 
was sought. Then, the combination of (p,R, s) that generated this value ns and the 
parameters of the chosen architecture were identified. The results were compared 
with those that would have been obtained using the RMSE as a selection criterion. 
The results of this process are shown in Table 7, distinguished by the type of day.

Table 7 shows that the architecture selected using the WIC criterion is always less 
complex than the one selected using the RMSE, since a structure with lower nh and 
fewer total parameters is always chosen.

5.4.2  Training with the selected architecture

Training was conducted with the architectures selected in the previous section, 
with the same TeD set and the same methodology, but using a greater number of 
epochs (i.e. 1000). 30 different random initializations for the synaptic weights were 
performed and the results shown in Table 8 correspond to the average of those 30 
cases—and the 95% confidence intervals—using the RMSE as error measure, com-
paring the predictions against the 5% of the observed dataset that was reserved for 
this purpose (i.e. the TeD).

A low average forecasting error in the TeD set was obtained. Furthermore, we see 
that the confidence intervals are quite narrow, which allows sustaining that the archi-
tecture used is appropriate, and that the predictions are reliable.

As example, Fig. 5 shows graphically the comparison (of some data) between the 
predictions of the ANN (in red) and the actual values (in black) for the pair (1,8) on 
weekdays, which show that the results are of high quality. It is also remarkable how 
the predictions manage to capture direction changes of the data, and how in addi-
tion, they remain very close to the actual values.

OD pair (1,8) was selected as one the OD pairs affected by the events that dis-
turbed the normal demand behaviour; therefore, it was considered interesting to be 
analyzed.

6  Conclusions

It should be mentioned, first, that the proposed methodology explicitly incorporates 
a richer and broader set of information, associated with a corridor that uses a FS 
with VOD. Then, in the cases tested, both the PODPT and the EODPT algorithms 
are capable of delivering real-time results.

Both the speed and the quality of the results allow sustaining that this methodol-
ogy can be used in a practical way, focusing its application to generate better esti-
mates of future states of the system, in order to study the implementation of control 
measures, which may be incorporated into real time operation of the corridor.

Regarding the EODPT algorithm, the incremental adjustment of the results cor-
responds to a Bayesian approach in its modeling, which typically is not considered 
in OD matrices update processes. It is shown that the use of this approach and 
the incorporation of new information improve the results when compared to the 
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historical method of updating, both in similar and dissimilar scenarios with respect 
to the historical situation. It was observed that it performs very well in different 
scenarios, which differed from each other in the level of abnormality regarding the 
historical trips distribution. In the test cases, computation times remained low, not 
exceeding 10 s.

The speed of the EODPT algorithm depends on the amount of available informa-
tion. If this is not enough, the historical estimate remains the best available. Other-
wise, the algorithm searches for a solution to the proposed optimization problem.

Regarding the PODPT algorithm, the calibration of the ANNs must be performed 
offline. Once ANNs are trained, the results are delivered in real time, also with a 
good generalization capacity in the face of new scenarios. Section 5.4.2 shows how 
high quality results are obtained in the predictions, due to the methodology used to 
select the most appropriate architecture. Of this selection scheme the compromise 
between accuracy and complexity must be highlighted, which ensures that selected 
ANNs have a good generalization capacity, along with a good ability to fit the data 
used during training.

It was also observed that the used set of variables, corresponding to all the infor-
mation that was available, was sufficient to find ANN architectures that performed 
well in the predictions. Additionally, it may be mentioned that estimates from the 
EODPT algorithm can be used for variables that are related to trips between each 
OD pair in the corridor. As a future work, we should be exploring recurrent neural 
networks and reinforcement learning techniques.

Finally, an important discussion relates to computation times. If these values 
should be kept low, it is important to review the network size, perform offline ANN 
calibrations and revise the hardware configuration. Note also that MLE problems 
may not always converge to a solution, which is approximated by an internal itera-
tive process.

The methodology presented in this paper could be used for real-time control 
actions. It could become a key input for advanced operational policies aiming at 
headway regularity as train injection, speed control or holding at stations. These 
strategies yield more even headways which reduce unreliability in waiting and 
crowding conditions. The strategy can also be quite timely for a sanitary crisis as 
COVID19, in which public transport operators are requested to guarantee their users 
a minimum distance between passengers on the platforms and inside the trains. This 
would require metering the number of passengers allowed to board each train so 
that crowding conditions inside each one do not exceed the desired sanitary recom-
mendations. An accurate real-time prediction of the origin-destination matrix of the 
arriving passengers would be desirable to implement the needed metering strategy 
in each station.

Acknowledgements This research was supported by the Bus Rapid Transit Centre of Excellence funded 
by the Volvo Research and Educational Foundations (VREF). The authors also gratefully acknowledge 
the research support provided by CEDEUS, ANID/FONDAP 15110020 and FONDECYT 1171049.



80 F. Zúñiga et al.

1 3

References

Ashok K, Ben-Akiva M (1993) Dynamic origin–destination matrix estimation and prediction for real-
time traffic management systems. In: Proceedings of the 12th international symposium on traffic and 
transportation theory (1993). Berkeley July 1993, pp 465–484

Bierlaire M, Crittin F (2004) An efficient algorithm for real-time estimation and prediction of dynamic 
OD tables. Oper Res 52(1):116–127

Carrese S, Cipriani E, Mannini L, Nigro M (2017) Dynamic demand estimation and prediction for traffic 
urban networks adopting new data sources. Transp Res Part C Emerg Technol 81:83–98

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2:303–314
De La Fuente García D, Pino Díez R (1995) Comparison of estimates and calculations of univariate trans-

fer function, using the methodologies Box–Jenkins and neural networks. Qüestiió 19(1):187–215
Delgado F, Muñoz JC, Giesen R, Cipriano A (2009) Real-time control of buses in a transit corridor based 

on vehicle holding and boarding limits. Transp Res Rec 2090:59–67
Delgado F, Muñoz JC, Giesen R (2012) How much can holding and/or limiting boarding improve transit 

performance? Transp Res Part B Methodol 46(9):1202–1217
Eğrioğlu E, Hakan Aladağ Ҫ, Günay S (2008) A new model selection strategy in artificial neural net-

works. Appl Math Comput 195:591–597
Jenelius E (2019) Data-driven metro train crowding prediction based on real-time load data. IEEE Trans 

Intell Transp Syst 21(6):2254–2265
Krishnakumari P, van Lint H, Djukic T, Cats O (2020) A data driven method for OD matrix estimation. 

Transp Res Part C Emerg Technol 113:38–56
Li B (2008) Markov models for Bayesian analysis about transit route origin–destination matrices. Transp 

Res Part B Methodol 43:301–310
Maritz JS, Lwin T (1989) Empirical Bayes methods. Chapman & Hall, London
Nguyen S, Pallottino S (1986) Estimating origin destination flows for transit networks. Ricerca Oper 

38:9–27
Nguyen S, Morello E, Pallottino S (1988) Discrete time dynamic estimation model for passenger origin/

destination matrices on transit networks. Transp Res Part B Methodol 22:251–260
Patti S, Biganzoli E, Boracchi P (2007) Review of the maximum likelihood functions for right censored 

data. A New Elementary Derivation. COBRA Preprint Series, Article, p 21
Rahman S, Wong J, Brakewood C (2016) Use of mobile ticketing data to estimate an origin-destination 

matrix for New York City Ferry Service. Transp Res Rec 2544(1):1–9
Salchenberger LM, Cinar EM, Lash NA (1992) Neural networks: a new tool for predicting thrift failures. 

Decis Sci 23:899–916
Sherali HD, Park T (2001) Estimation of dynamic origin–destination trip tables for a general network. 

Transp Res Part B Methodol 35:217–235
Toqué F, Côme E, El Mahrsi MK, Oukhellou L (2016) Forecasting dynamic public transport origin-des-

tination matrices with long-short term memory recurrent neural networks. In: 2016 IEEE 19th inter-
national conference on intelligent transportation systems (ITSC) (pp 1071–1076). IEEE

Wicker N, Muller J, Kalathur R, Kiran R, Poch O (2008) A maximum likelihood approximation method 
for Dirichlet’s parameter estimation. Comput Stat Data Anal 52:1315–1322

Wong SC, Tong CO (1998) Estimation of time–dependent origin–destination matrices for transit net-
works. Transp Res Part B 32:35–48

Zaremba T (1990) Technology in search of a buck. Neural network PC tools. Academic Press Inc, New 
York

Zhang J, Shen D, Tu L, Zhang F, Xu C, Wang Y, Li Z (2017) A real-time passenger flow estimation and 
prediction method for urban bus transit systems. IEEE Trans Intell Transp Syst 18(11):3168–3178

Zhou X, Mahmassani H (2007) A structural state space model for real-time traffic origin–destination demand 
estimation and prediction in a day-to-day learning framework. Transp Res Part B Methodol 41:823–840

Zúñiga F (2011) Estimation and prediction of dynamic matrix travel on a public transport corridor, using 
historical data and information in real time. Thesis of Master of Science in engineering, Department 
of Transportation Engineering and Logistics, Pontificia Universidad Católica de Chile

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Estimation and prediction of dynamic matrix travel on a public transport corridor using historical data and real-time information
	Abstract
	1 Introduction
	2 Presentation and description of the problem
	2.1 Problem formulation
	2.2 Description of the analyzed base corridor and its fare system

	3 Methodology
	3.1 Parameter estimation with incomplete information
	3.2 Model of travel distribution
	3.2.1 Proposed model

	3.3 Updated Bayesian parameter
	3.4 Artificial neural networks
	3.4.1 Supervised neural networks
	3.4.2 Selection of the ANN architecture


	4 Estimation of OD matrices for public transport (EODPT)
	4.1 General description of the EODPT algorithm
	4.2 Analysis of estimation results
	4.2.1 Travel estimation for test corridor
	4.2.2 Parameters used
	4.2.3 Results


	5 Application of the prediction method for OD matrices for a corridor
	5.1 Description of the corridor and variable selection for the PODPT algorithm
	5.2 Preprocessing and coding data
	5.3 Procedure to define the architecture of the network
	5.4 Results
	5.4.1 Selection of the ANN architecture
	5.4.2 Training with the selected architecture


	6 Conclusions
	Acknowledgements 
	References




