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Abstract
While shared demand-responsive transportation (SDRT) systems mostly operate on 
a door-to-door policy, the usage of meeting points for customer pick-up and drop-
off can offer several benefits, such as fewer stops and less total travelled kilometers. 
Moreover, real-world meeting points offer a possibility to select only feasible and 
well-defined locations where safe boarding and alighting are possible. This paper 
investigates the impact of using such meeting points for the SDRT problem with 
meeting points (SDRT-MP). A three-step procedure is applied to solve the SDRT-
MP. Firstly, the customers are clustered into temporary and spatially similar groups 
and then the alternative meeting points, for boarding and alighting, are determined 
for each cluster. Finally, a neighbourhood search algorithm is used to obtain the 
vehicle routes that pass through all the used meeting points while respecting passen-
gers’ time constraints. The goal is to examine the differences of a real-world meeting 
point-based system in contrast to a door-to-door service by a simulation with realis-
tic meeting point locations derived from the map data. Although the average passen-
ger travel time is higher due to increased walking and waiting times, the experiment 
highlights a reduction of operator resources required to serve all customers.

Keywords  Demand-responsive transportation · Shared mobility · Meeting points

 *	 Paul Czioska 
	 ikg.paul@czioska.eu

1	 Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Appelstr. 9a, 
Hanover, Germany

2	 Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, 
Australia

3	 Institute of Transportation and Urban Engineering, Technische Universität Braunschweig, 
Hermann‑Blenk‑Straße 42, Brunswick, Germany

http://orcid.org/0000-0001-9848-0863
http://orcid.org/0000-0002-1485-4993
http://orcid.org/0000-0003-0278-0488
http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-019-00207-y&domain=pdf


342	 P. Czioska et al.

1 3

1  Introduction

Demand-responsive transport (DRT) services, also known as Dial-a-Ride, provide a 
mobility solution based on door-to-door transport on request. They can be operated 
by companies or statutory authorities, then acting sometimes as part of the public 
transport. Initially intended as a service with restricted usage (such as for disabled 
or elderly, sometimes also called paratransit), it attracted more general attention 
in recent years due to emerging mobility solutions and the shortcomings of public 
transport systems (Nelson et al. 2010; Navidi et al. 2016). The DRT trend has been 
further boosted by rapid developments in information and communication tech-
nologies in the last decade, enabling automatic processing of requests and vehicle 
assignment.

In contrast to taxicabs, which usually accommodate only one customer (or a cus-
tomer group) at a time, DRT systems generally focus on larger vehicles, so that mul-
tiple passengers can share the ride. In order to distinguish from single customer DRT 
operators, such as Uber1 or Lyft2, the shared mode is often explicitly called a shared 
demand-responsive transport (SDRT) system. The difference is that idle resources 
are utilized by combining several requests with similar itineraries and time sched-
ules. As a result, a trip is often partly or completely shared with other travellers. 
Although this induces possible detours to accommodate multiple passengers, the 
service costs can be reduced and the vehicle capacity utilization can be improved. 
Growing traffic problems such as congestion or pollution in urban areas encourage 
a shift towards shared mobility as a more sustainable practice. In the last decade, 
many service providers have launched new SDRT services, including popular com-
panies such as UberPOOL3 and Lyft Line4, and smaller local start-up companies, 
such as Bridj5 (Boston, Kansas), Via6 (New York, Chicago, Washington DC), Clev-
erShuttle7 (Berlin, Leipzig, München), and Berlkönig8 (Berlin).

Shared DRT services are also different from shared taxi transportation systems, 
a mixture between taxicab and bus. Shared taxis mostly operate demand-based 
without a timetable, but on a fixed or at least partially fixed route. These systems 
are operating in many countries around the world with different naming, such as 
Colectivo, Marschrutka, Dolmuş or Dala dala, to name a few. The main difference 
compared to shared demand-responsive transportation systems covered in this paper 
is that there is no centralized or de-centralized optimization of the routes and the 
customer assignment to vehicles.

1  http://www.uber.com
2  http://www.lyft.com
3  http://www.uber.com/de/ride/uberp​ool
4  http://www.lyft.com/line
5  http://www.bridj​.com
6  http://ridew​ithvi​a.com/
7  http://cleve​rshut​tle.org/
8  https​://www.berlk​oenig​.de/

http://www.uber.com
http://www.lyft.com
http://www.uber.com/de/ride/uberpool
http://www.lyft.com/line
http://www.bridj.com
http://ridewithvia.com/
http://clevershuttle.org/
https://www.berlkoenig.de/
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Most commercial DRT services offer door-to-door transport, where passengers 
are picked up and dropped off at their home, or their current location. However, this 
can lead to considerable detours, since the driver has to stop at many different places 
and may have to travel into small residential roads. In addition, one-way streets may 
further extend the trip. A meeting point in the vicinity of a customer’s location could 
reduce the detours required. Furthermore, if the passengers walk a certain distance, 
they could meet at a place where safe and convenient boarding can be established. 
In the literature, it was found that people are mostly willing to walk up to 800 m to 
reach a boarding place (Hess 2012; Millward et al. 2013).

Recently, some well-known SDRT service providers switched to a meeting point-
based mode. UberPool and Lyft Line, two big SDRT services, offer so-called “sug-
gested pickup points” which use the fact that a short walk to meeting points allow-
ing them to have an easier way to optimize routes, offer a service for lower fee and 
save passengers both time and money (Griswold 2017). Also, other service opera-
tors, such as Bridj or Via, offer pickup and drop-off at meeting points. If possible, 
multiple passengers are grouped together and picked up and dropped off at the same 
location, reducing the number of stops and the necessary service time.

There are several reasons why meeting points can be advantageous for demand-
responsive transport services:

–	 Safety and convenience Meeting point locations can be chosen so that safe board-
ing is possible, without other traffic around and with sufficient parking space, so 
that luggage can be placed in the vehicle trunk.

–	 Identification By using well-defined meeting points, the driver and the 
passenger(s) know exactly where to go, and where to find each other. Meeting 
locations at the doorstep can be ambiguous at times, for example if there are sev-
eral entrances to a building.

–	 Service time The total service time (including boarding and de-boarding proce-
dure) can be reduced when more than one passenger meet simultaneously, due to 
a reduction of the total amount of necessary stops.

–	 Privacy The actual origin and destination of customers are not necessarily dis-
closed, or can be obfuscated (Aïvodji et al. 2016; Goel et al. 2016).

–	 Health The incorporation of walking into the daily transport route can be seen as 
a contribution to a healthier and more sustainable urban transport. A more sus-
tainable urban planning that includes or encourages walking into a daily trans-
port plan can assist in creating healthier cities (Giles-Corti et al. 2016).

–	 Designation Feasible meeting point locations can optionally be designated by 
the service operator to make it an official boarding place with reserved boarding 
areas. In particular, in view of the emergence of autonomous vehicles, it can be 
beneficial to have locations at hand where a boarding is known to be achievable.

However, the use of meeting points has not gained much attention in research com-
pared to door-to-door DRT systems. Although there are some studies that investigate 
the impact of meeting points, the actual determination of eligible meeting points in 
a real city environment has not been done. Often, the Euclidean plane is used for 
simulation, or all vertices of the street network are considered as potential meeting 
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point location. In reality, however, suitable locations for a safe and convenient pick-
up and drop-off are not ubiquitous, since it may not be possible to stop at a junc-
tion or in the middle of a street. Moreover, feasible meeting point locations, such 
as public parking areas, are usually unequally distributed within the city area and 
dissimilarly reachable by vehicles and pedestrians. Further, the road network may 
contain obstacles and one-way streets that require large detours to reach some meet-
ing points. Hence, the impacts of these limitations need to be investigated regarding 
a SDRT scenario.

This paper aims at determining benefits and disadvantages of using real-world 
meeting points for SDRT-MP systems. A simulation experiment is conducted to 
demonstrate the impact of different demand levels for supposed SDRT-MP service. 
The problem is decomposed into multiple sequential problems. Firstly, the incoming 
requests are clustered based on spatial and temporal similarity of requests. In the 
second step, real-world meeting points are determined using a GIS approach, which 
are then used to determine pick-up and drop-off locations for each cluster. During 
this procedure, it is ensured that each passengers’ acceptable walking distances and 
travel time windows are satisfied. In addition to this, for specific cases, alternative 
meeting point locations are further identified to potentially allow for better vehi-
cle routing results. Finally, vehicle routing optimization is applied to determine the 
routes. A similar procedure is applied when passengers are picked up at their door-
step and the two cases are compared to determine if real-world meeting points can 
be beneficial for SDRT.

2 � Literature review

This section provides a literature review of the state-of-the-art research works 
related to meeting points for demand-responsive transportation systems. Note that 
the naming of the meeting points is not consistent in the literature. Frequently 
used denominations include meeting point, pick-up point, boarding point, stopping 
point, ride-access point and rendezvous point; and correspondingly: drop-off point, 
deboarding point and leaving point. For the sake of consistency, the denominations 
meeting point (MP) and divergence point (DP) will be used in this paper, to empha-
size that people share the ride in between.

The majority of previous works on meeting points consider the standard ride-
sharing case with each driver having a unique origin and destination and not act-
ing as a service provider. The works considering this case cover several different 
research areas, such as the optimization of the inner-city ride-sharing  (Aissat and 
Oulamara 2014, 2015; Balardino and Santos 2016; Stiglic et al. 2015; Correa et al. 
2017), the optimization of long-distance ride-sharing (Czioska et al. 2017), the opti-
mization of carpooling for a fixed community  (Chen et  al. 2016), or privacy pro-
tection  (Aïvodji et  al. 2016; Goel et  al. 2016). Alternatively, some optimize the 
placement of meeting points  (Goel et  al. 2017) or the cartographic representation 
of meeting points  (Rigby et al. 2013; Rigby and Winter 2016; Rigby et al. 2016). 
Usage of meeting points in demand-responsive context was so far investigated only 
by Häll et al. (2008) and Martínez et al. (2014), but the usage of real-world meeting 
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points for demand-responsive transportation is, to the best of the authors’ knowl-
edge, currently not investigated.

These works use various methods to determine the meeting point set. A simple 
approach is to place the meeting points randomly in the investigation area, without 
considering the underlying street network. This can be done a priori to limit the set 
of feasible places (Stiglic et al. 2015) or a posteriori, when the group of travellers 
is already known (Martínez et al. 2014). Another possibility is to use all nodes in 
the street network graph  (Aissat and Oulamara 2014, 2015; Balardino and Santos 
2016; Aïvodji et al. 2016). Another example is a study by Goel et al. (2016), where 
a randomly chosen subset of major street intersections is used as the meeting point 
set. In the study of Häll et al. (2008), a hybrid method is applied: a regular grid of 
meeting points is initially created, and those that are not accessible using the road 
network are removed. However, it is important to consider real-world meeting points 
derived from map data since this narrows down available meeting points and intro-
duces additional constraints to the problem. Currently, map-based meeting point 
determination is considered only for ride-sharing by Correa et al. (2017); Czioska 
et al. (2017) and for carpooling by Chen et al. (2016).

Besides determining the available meeting point set, it is also important to con-
sider the method to select which meeting point to be used. A simple method is to 
perform some optimization based on Euclidean distance (Stiglic et al. 2015). If the 
group of customers sharing a ride is already known, another approach is to use the 
centroids of customer group locations as meeting and divergence points. However, 
they are hence not necessarily aligned with the street network or restricted to a pre-
defined subset of candidates (Martínez et al. 2014). Furthermore, the selection pro-
cess also needs to consider the walking distance imposed onto the travellers. Unlike 
in the study by Correa et al. (2017) (where customers drive to the meeting points) 
and by Aissat and Oulamara (2014), most other approaches limit the walking dis-
tance, either during the ride sharing matching phase Stiglic et al. (2015) or the pas-
senger clustering phase for SDRT (Martínez et al. 2014). However, the walking dis-
tance constraint may not be explicitly predetermined since the approaches by Stiglic 
et al. (2015); Martínez et al. (2014) do not consider the underlying street network, as 
previously mentioned.

While most approaches focus on selecting a single meeting point for each stop, 
a methodology has been proposed that uses lines or areas as potential meeting 
zones (Rigby et al. 2013, 2016), leaving the exact meeting point choice to the trav-
ellers. In a study by Rigby et al. (2013), an opportunistic client user interface tech-
nique called launch pads was developed, showing passengers the area in which they 
could potentially be picked up by a driver within a certain time interval. Later, the 
launch pads have been extended to a continuous representation of vehicle accessibil-
ity (Rigby et al. 2016). However, it is noteworthy that the study by Häll et al. (2008) 
has discovered that allowing the customers to choose the meeting point may lead to 
an inefficient use of meeting points. For instance, due to the very dense network of 
meeting points in the study by Häll et al. (2008), each customer is able to select the 
closest meeting point such that the walking distance from the customer’s doorsteps 
is never large, which yields a similar result to its door-to-door counterpart.
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Contrary to the study by Häll et al. (2008), other works have shown more posi-
tive results in using meeting points. In a ride sharing scenario, where a driver is only 
allowed one pick-up and drop-off (yet may accommodate more than one passenger), 
a computational experiment  (Stiglic et  al. 2015) has demonstrated that the use of 
meeting points may improve the number of matched participants (up to 6.8%) as 
well as mileage savings (up to 2.2%), depending on the number of available meeting 
points. In an urban SDRT service that utilises meeting points (Martínez et al. 2014), 
such service may replace 53% of private car trips longer than 5 km performed dur-
ing the morning peak (each minibus replaces, on average, 9.15 private cars) while 
still maintaining some financial profitability. Note that no comparison with door-
to-door service is made in this study by Martínez et al. (2014). However, obviously 
the average trip time of customers using the service (both ride sharing and SDRT 
setting) experience increased total trip time due to detour and walking. It is also 
reported in a study by Mageean and Nelson (2003), that the level of meeting points 
dispersion affects operational complexity and user satisfaction. Hence using artifi-
cial meeting points, as it was done in previous works, to evaluate SDRT-MP service 
does not guarantee that benefits and drawbacks will be evaluated appropriately.

A particular interest is given to the study by Martínez et  al. (2014) that uses a 
hierarchical clustering approach to group the passenger requests. The clustering of 
passengers takes into account normalized values of the distance between trip origins 
and destinations, and the difference in arrival time. It is furthermore constrained to 
a maximum distance radius and diameter, a maximum time, and a maximum clus-
ter size. These clusters are then subsequently combined to vehicle routes by Binary 
Integer Programming.

In light of this review, this paper presents an investigation of the use of real-
world meeting points based on map data for SDRT service. The contributions of this 
paper are threefold. Firstly, this work sought to confirm the benefits of using meet-
ing points when constrained to only practical stopping locations on the road net-
work, such as parking lots or service stations. This strategy is opposed to more basic 
approaches, e.g. using the spatial centroid of requests, as applied in the work by 
Martínez et al. (2014). Secondly, the proposed methodology of this paper explicitly 
constrains the walking distance of the travellers since it uses a clustering step that 
considers the distance based on the actual street network, unlike those methods used 
by Stiglic et al. (2015) and Martínez et al. (2014). The explicit constraint allows to 
limit the walking distance to a previously-proven acceptable amount  (Hess 2012; 
Millward et al. 2013). Finally, this paper serves as a case study of the implemen-
tation of SDRT-MP to the city of Braunschweig, Germany. This demonstrates the 
potential of the SDRT-MP in a real-life scenario that extends beyond hypothetical 
networks and demands.

3 � Methods

In this section, the methods to assign passengers to meeting points and to create 
vehicle routes based on these points are described. The workflow consists of three 
discrete steps:
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1.	 Clustering
2.	 MP candidates selection
3.	 Route optimization

Figures 1 and 2 visualize the processing chain. In a nutshell, the demand (Fig. 1a) 
is initially clustered into groups with similar origins/destinations and time sched-
ules (Fig.  1b). Secondly, each group is separately split into trips, with each trip 
having a common meeting and divergence point and potential alternative meeting 
points (Fig. 1c). Finally, the vehicle routing problem is solved to construct the routes 
(Fig. 1d).

The workflow is achieved by executing five algorithms and elementary processes. 
Figure 2 shows the interconnections and data exchange among the algorithms. The 
execution starts with the raw demand, which is initially clustered by Algorithm 1, 
yielding clusters of requests. These clusters are subsequently used as input for the 
Algorithms 2 and 3. For each cluster, these algorithms determine trips, each hav-
ing one or multiple meeting and divergence points. These points are reachable from 
all passengers of the cluster. Consecutively, the trips are again clustered by Algo-
rithm 1, which is done just to enable a parallel processing of the route optimization. 
Details of the optimization can be accessed in Sect. D.1. The output of the optimiza-
tion is a set of routes for each trip cluster. The final step is then to combine all the 
routes from the different clusters into longer routes to lower the number of necessary 

(a) (b)

(c)
(d)

Fig. 1   Illustration of the outputs of the clustering, MP selection and route optimization steps within the 
workflow
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vehicles. This is done by Algorithm 4, which calls Algorithm 5, yielding the final 
vehicle routes.

In the following, the data prerequisites and the details of each step of the work-
flow as well as the algorithms are described.

3.1 � Data prerequisites

The approach used in this work needs the following input and parameters:

–	 Street network A network graph G = (V ,E) consisting of vertices V and directed 
edges E. Each edge e ∈ E has a distance d(e), and a corresponding vehicle driv-
ing time tdriv(e) and/or a corresponding passenger walking time twalk(e) , depend-
ing on the type of an edge e.g. footpaths have no defined vehicle driving times.

–	 Meeting point candidates A set of meeting point candidates 𝜇 ∈ M ⊂ V  and a set 
of potential divergence point candidates � ∈ D are created using the methodol-
ogy described in Sect. 3.3. In this paper, these two sets are considered as equal, 
so that M = D.

–	 Demand A set of passenger requests P, where each passenger � ∈ P defines an 
origin vertex v+ , a desired destination vertex v− , and a desired departure time t+.

Fig. 2   Overview of algorithms used and data exchange in the workflow
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Depending on the maximum passenger walking distance dwalk
∗

 , each passenger � ∈ P 
is able to walk to/from a set of reachable meeting points M� and divergence points 
D� , respectively. Furthermore, the allowed detour time for a passenger tdetr

∗�
 is limited 

by either a hard time threshold that cannot be exceeded ( tdetr
∗

 ) or the travel time mul-
tiplied with a ratio value rdetr

∗
 , which prohibits exceeding detours on long trips:

This personalized maximum detour time can then be inserted in the calculation of 
the latest acceptable arrival time at the destination t−

�
:

where twait
∗

 is the maximum passenger waiting time, and tserv
∗

 is the vehicle serving 
time (boarding/alighting).

These and other parameters used in the experiment are presented in Table 1.

3.2 � Clustering

The clustering method in this paper is used to join similar transport requests into 
clusters that have a fixed size. It utilises an idea from the field of data analysis, 
where abstract points in space are classified using various distance measures in mul-
tidimensional space. The method is greedy and produces clusters that will have the 
same size with the possible exception of the last cluster.

The proposed approach in this paper applies the spatio-temporal constraint check-
ing during the MP candidates selection step (Sect. 3.4) to use actual distances based 
on the street network instead of Euclidean distance, which is used during the clus-
tering. Fixed size clusters are necessary to avoid combinatorial explosion during 
assignment of passengers to MP, since the method uses set partitioning, which is 
NP-complete.

Similarly to many classification algorithms  (Hastie et  al. 2009), we consider a 
vector of features � = [x1, x2,… , xN] , which in this case are the features of a trans-
port request: origin vertex coordinates, destination vertex coordinates and desired 
departure time i.e. � = [v+, v−, t+] . The cost function is defined as the Euclidean dis-
tance: d(�, �) =

�∑n

i=1
(xi − yi)

2 , where xi is the ith element of a feature vector � . 
Note that units for space and time are in meters and seconds, which have the same 
magnitude in this work, hence neither weighting nor normalization was performed.

Consider a cluster C that is a set of transport requests. Then, the distance of a new 
transport request � from cluster C is defined as:

The maximum number of requests for one cluster is fixed, hence the created 
groups are equally sized (except, potentially, the last one). Clustering works itera-
tively, it processes one request after another. To gain better understanding of this, 

(1)tdetr
∗�

= min
(
tdriv

(
v+
�
→ v−

�

)
+ tdetr

∗
, tdriv

(
v+
�
→ v−

�

)
⋅ rdetr

∗

)

(2)t−
�
= t+

�
+ twait

∗
+ tserv

∗
+ tdetr

∗�
.

(3)d(C, �) ∶=
∑

�∈C

d(�, �), where C ≠ �.
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consider a matrix X where the rows are transport requests i.e. � ∈ X . In the begin-
ning of the clustering procedure we set C = �0 i.e.  the first request from X and 
remove �0 from X. In the next step, the cost from the cluster C to all other vectors 
is calculated using Eq. (3) and the vector that has the smallest cost is added to C. 
This is repeated until the maximum allowed size of a group is reached in C, after 
which the whole process is repeated again until all requests are processed. Since the 
method is greedy and is mainly influenced by the first request, some clusters can end 
up with the first request being much further away from the rest. This problem is cor-
rected during the assignment of passengers to meeting points which will split such 
clusters into two or more clusters.

The clustering algorithm is presented in the Appendix  B (Algorithm  1). It 
is a novel clustering algorithm for creating fixed size clusters. The main differ-
ence from approaches found in the literature (e.g. Najmi et  al. 2017) is that our 
approach requires only the maximum size of a cluster to be specified, whereas other 
approaches require determining the number of clusters in advance and have no guar-
antees on the number of transport requests per cluster. Therefore, our clustering 
approach is better suited to be used as a preprocessing step for algorithms that have 
high computational complexity, such as the ones presented in Sect.  3.4, since the 
complexity can be controlled. The complexity of the clustering algorithm, in time, 
is O(n2) which is very competitive to the algorithms based on k-means which are 
commonly used for the same task. The derivation of the algorithm complexity is 
presented in Appendix B.1.

3.3 � Meeting point candidates generation

Feasible MP candidates � ∈ M (consequently, also DP candidates) are identified 
automatically based on real-world map data. For this study, we used data from 
OpenStreetMap9 and identified feasible locations by the tags of the map features. 
In order to ensure safety and convenience aspects like boarding places with reduced 
traffic, possibilities to park and easily recognizable places, the candidate locations 
are limited to the following selection:

–	 publicly accessible parking places without parking fees,
–	 side road intersections (with all adjacent roads having a maximum speed of ≤ 30 

km/h),
–	 turning areas (mostly at the end of a cul-de-sac),
–	 petrol stations.

In practice, frequently used meeting places also include the curb or public transport 
stops. However, this possibility is intentionally disregarded, as it would be irrespon-
sible to encourage people to meet in this manner. Further, it is not advisable accord-
ing to road traffic regulations in most countries.

9  http://www.opens​treet​map.org ©OpenStreetMap Contributors

http://www.openstreetmap.org
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If parking areas and petrol station areas are originally mapped as polygon fea-
tures in OpenStreetMap, they are first converted to point features using the centroid. 
Each candidate location is connected to the street network G with an edge between 
the meeting point location and the closest point on the closest edge. If the closest 
edge is not reachable by vehicles (such as a footpath), a second edge is inserted at 
the closest drivable edge. Also, if the closest edge is not accessible on foot, another 
edge is inserted at the closest walkable edge, so that both pedestrians and drivers can 
reach the meeting points. If a meeting point is not reachable for drivers or passen-
gers (e.g. located on private ground), it is removed from the set.

3.4 � Meeting point candidates selection

In this step, feasible meeting and divergence points are assigned to the previously 
determined clusters. Most likely, not all customers of a cluster will be feasible for a 
single meeting and divergence point, so the group has to be split up into subgroups 
which can reach one (or more) common meeting and divergence point(s). Such a 
subgroup is called a trip � . It is defined as a tuple consisting of one or more pas-
sengers with one or more meeting and divergence point candidates, each associ-
ated with a corresponding time window, indicating the valid boarding and alighting 
times: �i =

(
{�i,1, �i,2,⋯}, {�i,1,�i,2,⋯}, {�i,1, �i,2,⋯}

)
 such that ∀�, ∃ [tE(�), tL(�)] 

and ∀�, ∃ [tE(�), tL(�)].
A trip � is considered feasible if the time windows and walking distances are 

within the thresholds for all customers P� of the trip. The earliest (E) and latest (L) 
pick-up times for a MP � are determined by:

The earliest and the latest drop-off time, tE and tL , for a DP � are determined by:

3.4.1 � Single MP/DP selection

The task is to split up the groups coming from the clustering procedure as efficiently 
as possible into subgroups, such that the group size of the subgroups remains as 
large as possible while satisfying constraints coming from the underlying real-world 
map. This problem can be defined as set partitioning problem, with the objective to 
find the smallest number of subgroups that satisfy the walking and time constraints 

(4)tE(�) = max
�∈P�

(
t+
�
+ twalk(v+

�
→ �)

)
,

(5)tL(�) = min
�∈P�

(
t+
�
+ twalk(v+

�
→ �) + twait

∗

)
.

(6)tE(�) = max
�∈P�

(
t+
�
+ tdriv(v+

�
→ v−

�
) − twalk(v−

�
→ �) − tserv

∗

)
,

(7)tL(�) = min
�∈P�

(
t+
�
+ twait

∗
+ tdetr

∗�
− twalk

(
v−
�
→ �

)
− tserv

∗

)
.
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for each passenger from a given cluster. Since the set partitioning problem is NP-
complete, the input size is naturally limited. However, due to the fixed cluster size 
resulting from step  3, we propose a novel recursive dynamic programming algo-
rithm that yields the optimal solution for given clusters.

Initially, the algorithm attempts to put all customers within a cluster into a trip 
with a common meeting and divergence point. If this is spatially and/or temporally 
infeasible, the group is split into all possible subgroup combinations, and their feasi-
bility is checked likewise. This is done recursively for each subgroup until a feasible 
solution is found. The main objective is to split the initial cluster into as few sepa-
rated trips as possible. If there are multiple different combinations with the same 
number of necessary trips, the combination with the least sum of squared walking 
distances of all customers is chosen. The squaring is applied to penalize longer 
walking distances more than short distances, so that the walking distances have low 
variation.

By storing the intermediate results during the recursive process the computation 
time can be considerably reduced (dynamic programming approach). Thus it is pos-
sible to process reasonably sized clusters within an acceptable time. The proposed 
MP candidates selection method is outlined in Appendix C (Algorithm 2).

3.4.2 � Alternative MP/DP selection

The previously described algorithm returns exactly one MP and DP (including time 
windows) for each trip. However, there can be other meeting points worth consid-
ering from the operators perspective. For instance, consider the scenario shown in 
Fig. 3. In this case, the closest meeting point from the passenger origin (Point A) 
is chosen, which is located north of the motorway. Two other meeting point candi-
dates, namely B and C, would also be feasible for the trip, but they have not been 
chosen because of longer walking distances. For the operator, however, it could be 
advantageous in the routing phase to also consider C, since it offers the possibility to 
approach the passenger from the south without having to take a large detour around 
the motorway. From the passenger’s perspective, it is only a minor extension of the 
walking path via the footbridge.

To combat this, a second algorithm is proposed to identify alternative meeting 
points, which can be considered during the route optimization phase. Note that only 
one meeting point is still served by the vehicle, but the alternative meeting points 
provide more options for creating shorter routes. This extension is, to the best of our 

Fig. 3   Schematic drawing of a situation with useful alternative meeting point search
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knowledge, unique among the recent literature concerning meeting points and pro-
vides advanced optimization possibilities for the operators.

Using a shortcut ratio threshold � , an alternative meeting point candidate �a is 
considered if

where � is the initially identified meeting point candidate. In the example shown 
in Fig. 3, Point C is likely to satisfy Eq. (8), whereas Point B is unlikely. A larger 
� indicates fewer alternatives, which helps to reduce the input size of the vehicle 
routing problem. For faster computation times, all ratio values between all meeting 
point pairs can be precomputed and stored. The proposed algorithm is outlined in 
Appendix C (Algorithm 3). It recursively checks the next best option until no further 
useful alternative can be found. Also, note that the corresponding time windows of 
the alternative meeting points have to be checked.

3.5 � Route optimization with final meeting points selection

In this step, the trips having one or more meeting point alternatives resulting from 
the previous unit are combined to create the vehicle routes. In theory, this vehicle 
routing problem can be solved with any optimization method that is able to solve 
this class of problems, with minor adaptation for this use case. In this project, a 
neighbourhood search approach is used. In order to speed up the process, a second 
clustering is initially applied on the trips to form equally-sized trip clusters with sim-
ilar itineraries, which can then be solved in parallel. For this, the already described 
clustering method (Sect. 3.2) is reused; however, with a different threshold ( k2 ). Cer-
tainly, this makes it necessary to append a postprocessing step to combine the results 
of the simultaneously derived vehicle routes (Sect. 3.5).

The proposed route optimization problem itself differs from those in the literature 
mainly because of the alternative meeting points for each boarding/alighting proce-
dure that introduces an extra complexity to the problem. The presented approach of 
the route optimization problem extends the formulation by Kutadinata et al. (2019), 
which is similar to typical vehicle routing problems  (Cordeau and Laporte 2007; 
Ropke and Pisinger 2006; Parragh et al. 2008; Li et al. 2014) that use directed graph 
modelling. The novelty of the formulation used in this work stems from the fact that 
it does not introduce extra nodes to model the alternative meeting points. Instead, 
they are incorporated as decision variables and the travel times, distance, and time-
windows are functions of these decision variables. The benefit of this approach is 
that it requires very little modifications to the formulation that are already presented 
in the literature. As a result, most existing heuristics can be used to solve the prob-
lem. For the sake of brevity, the following summarises the optimization problem, 
while the complete formulation is presented in the Appendix D.1.

The problem is formulated as an optimization model on a directed graph, which 
is a different graph to the previously defined directed street graph G. Firstly, the 

(8)
tdriv(� → �a)

twalk(� → �a)
≥ �,
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stops to be visited are represented by a set of nodes, which include the vehicle start-
ing points, the stops to be visited (both pick-up and drop-off points), and a depot. 
Secondly, although each stop can have multiple meeting points, it is still represented 
by a single node. The meeting points for each node are represented as a set of deci-
sion variables to be optimized. Furthermore, each node is associated with several 
parameters that define the trip demand, namely: the number of passengers at the 
stop, the pick-up and drop-off time windows. Similarly, each directed edge is associ-
ated with distance and travel time parameters. Due to the multiple alternative meet-
ing points, these parameters, except the number of passengers, are functions of the 
chosen meeting points.

The optimization objective function is a trade-off between the “service level cost” 
and the operating cost. The service level cost takes into account the passengers late 
time, pick-up wait time, and detour time, whereas the operating cost considers the 
total number of vehicles used and the total mileage. Furthermore, note that the time 
windows are treated as soft constraints that necessitate the use of penalties for late 
pick-up and drop-off in the objective function (as part of the service level cost). This 
allows the optimization algorithm to choose a solution that has late services that are 
justified by the savings in other aspects. Typically, higher penalty weight parameters 
are used to avoid an unreasonable number of late arrivals. However, if hard time 
window constraints are desired, simply choose very large penalty values.

A two-layer neighbourhood search algorithm is used to solve the problem. The 
top layer optimizes the trip allocation to vehicles, which repeatedly calls the bottom 
layer that optimizes the route of each vehicle including the meeting and divergence 
point selection. The algorithms are presented in the Appendix  D (Algorithms  5 
and 4).

The output of a single optimization process described above is a group of routes, 
each route performed by a single vehicle. Since the route optimization for each clus-
ter of trips is performed in parallel, some of the routes can now be concatenated to 
reduce the total number of routes (and consequently the total number of vehicles 
used). Thus, this step can be described as a problem of maximizing the number of 
concatenations and is formulated and solved using a Linear Programming (LP). To 
ensure that a concatenated route can still be feasibly served by a vehicle, a constraint 
is applied to ensure that there is enough time to travel from the last stop of a prec-
edent route to the first stop of the subsequent one. The detailed formulation of the 
route concatenation is presented in the Appendix D.2.

Fig. 4   Concatenation of routes to form longer ones
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The concatenation solution is presented as an illustrated space-time diagram in 
Fig. 4. Note that the final statistics presented in this paper are the output of the LP 
problem.

3.6 � Dynamic scenario considerations

The problem solved in this paper is static; therefore, the dynamic problem is not in 
the focus of this paper. However, the workflow described in this section can also 
be used to handle dynamic requests, either through an event-driven approach or 
periodic optimization, i.e. a rolling horizon approach (Najmi et al. 2017; Eser et al. 
2018). Firstly, once a new request arrives, the clustering algorithm can be adapted 
to insert the new request into the closest non-full cluster. Recall that there will be 
some non-full clusters due to the splitting done during the meeting point selection. 
Secondly, due to the decentralised nature of the subsequent processes, the meeting 
point selection and the route optimization can be done only to the affected clusters. 
Finally, the route concatenation needs to be executed again only if the last stop of the 
affected cluster changes. However, as previously mentioned, addressing the dynamic 
situation is not the focus of this paper and is hence reserved for future work.

4 � Simulation experiment

To evaluate the potential benefits of the use of meeting points, a simulation experi-
ment is carried out, comparing the performance of a meeting point-based service 
(MP) with a door-to-door service (DS) used as a baseline scenario. In the MP ser-
vice, all steps described in Sect. 3 are executed, whereas the DS service only uses 
the vehicle routing optimization, applied on the raw demand data. As a result, this 
simulation focuses on investigating the benefits of the meeting point determination 
rather than the route optimization process. Note that for the simulation experiments, 
the parallel version of the route optimization is used in order to speed up the compu-
tation and solve the instances within a reasonable CPU time. Thus, the same heuris-
tics are used to solve both the MP and DS cases to ensure a fair comparison.

4.1 � Simulation setup

The simulation experiment investigates the impact of using meeting points for vari-
ous demand volumes. It is expected that, as the demand increases, the impact of 
using meeting points will be more significant. A total of 10,000 passengers are 
randomly generated based on the procedure described in Sect. 4.5 and subdivided 
into four demand instances (1000, 4000, 7000 and 10,000). Each demand instance 
is evaluated in both the MP and DS scenarios. To simplify the experiment, only 
a static problem is considered, i.e. all trips are known in advance. The parameters 
used in the optimization and meeting point algorithm are shown in Table 1.

The maximum cluster size for the initial clustering ( k1 ) is a hyperparameter that 
can be tuned in order to balance the trade-off between the quality of the result and 
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the computation time. Larger clusters lead to better results in terms of lowering the 
necessary boarding stops, since the meeting point determination method yields the 
optimal solution for a given group. On the other hand, the computation time grows 
exponentially with increasing cluster size. Figure  5 shows a sensivity analysis to 
determine a reasonable value. The maximum cluster size varies from 2 to 12 and the 
resulting number of trips and the computation times are recorded. The experiment 
was performed by a Python 3 script using parallel processing on a 4th generation 

Table 1   Simulation parameters

Parameter Unit Description Value used for simulation

twait
∗

s Maximum passenger waiting time 1200 s

dwalk
∗

m Maximum passenger walking distance 800 m

tdetr
∗

s Maximum allowed vehicle detour time 1200 s

rdetr
∗

% Maximum allowed vehicle detour time 25%
tserv
∗

s Vehicle service time (for boarding/alighting) 120 s
� % Shortcut ratio threshold (cf. Sect. 3.4) 50 %
k
1

– Maximum cluster size for the initial clustering 11 passengers
k
2

– Maximum cluster size for the re-clustering 10 trips
q∗ – Maximum vehicle capacity 9 passengers
cdist
∗ km

−1 Vehicle distance dependent cost 1 km−1

cvehi
∗

– Vehicle capital cost 2000

cwait
∗

s−1 Passenger wait time cost 0.5 s−1

clate
∗

s−1 Passenger late time cost 5 s−1

� – Passenger wait time cost growth 0.5
� – Passenger late time cost growth 2

Fig. 5   Cluster size influence on the computational time (5000 passengers)
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desktop orientated Intel i5 processor with 4 cores. As it can be seen, a larger input 
cluster size leads to fewer total number of trips, indicating a solution of higher qual-
ity. But, on the other hand, the computation time grows very quickly. In the simula-
tion experiments, a maximum cluster size of 11 was chosen, to obtain good results 
within a reasonable computation time.

Similarly, for the re-clustering ( k2 ), a value of 10 was determined as providing a 
good trade-off between calculation time and result quality.

4.2 � Implementation details

Demand generation, clustering and meeting point determination are implemented 
and tested in Python 3.6.5. Demand generation and meeting point determination 
perform shortest path computations by using pgRouting, which is an extension of 
the PostgreSQL database. This is done by establishing a connection with a database, 
located on a remote server, and executing SQL queries from Python. In the Python 
code several well established open source libraries are used: numpy (for linear alge-
bra computations), psycopg2 (for SQL connection), h5py (for storing the data in 
HDF5 format), matplotlib (for plotting the results). Python code is parallelized with 
multiprocessing module provided by the official Python distribution that comes with 
Ubuntu 18.04.

Vehicle route optimization is implemented in MATLAB. Parallel processing was 
set up using MATLAB Distributed Computing Server that solves the routing prob-
lem of each cluster independently. Once the optimization of all clusters was com-
pleted, the route concatenation code was then executed without parallelization.

4.3 � Street network

For the simulation experiment, the city of Braunschweig, Germany, is used as a 
spatial template. It is a medium-sized city with 250,000 inhabitants and a typical 
European city structure: the centre is dominated by its historical core with an irregu-
lar street network and pedestrian precincts, surrounded by a densely populated area 
with a more regular street network. In the outskirts, the population density is signifi-
cantly lower and there are some industrial areas.

The street network has been obtained from OpenStreetMap and transformed into 
a routing-enabled graph (Fig. 6). As previously mentioned in Sect. 3.1, vehicle driv-
ing times tdriv(vi → vj) , passenger walking times twalk(vi → vj) are calculated for 
every edge e ∈ E . The driving time depends on the maximum allowed speed. The 
walking time twalk

e
 is determined by assuming a constant walking speed of 4.8 km/h, 

using the mean speed for active-transport walking trips revealed by Millward et al. 
(2013). The traversal of footpaths, cycle ways and stairways is prohibited for vehi-
cles. Likewise, pedestrians are not allowed to walk on major roads or motorways.

As potential origins, residential buildings from a “Level-of-Detail 1” building 
model of the city of Braunschweig (Municipality of Braunschweig 2016) with a size 
of more than 100m2 are added to the network. Likewise, workplace buildings are 
used for potential destinations. All considered buildings are connected to the street 
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network to model the whole path of the user (Fig. 7). In total, the network consists 
of 88,381 nodes and 99,497 edges, including 26,845 potential home and 2615 poten-
tial work locations.

4.4 � Braunschweig meeting points

Using the methodology described in Sect.  3.3, 3475 meeting points have been 
detected within the investigation area, based on OpenStreetMap data. Slightly more 
than 50% of the meeting points are street intersections that can be found in low 

Fig. 6   Routing network (Source: OpenStreetMap)



359

1 3

Real-world meeting points for shared DRT

speed areas, and approximately 20% are parking places and turning areas. Only very 
few meeting points are located at petrol stations. In relation to the total investigation 
area size of 193 km2 , the overall MP density is approximately 18 per km2 , and in 
dense urban areas up to 40 MP per km2 . The observed mean distance to the nearest 
neighbouring MP is approximately 70 m.

Compared to the total number of nodes in the graph with approximately 30,000 
nodes, the number of candidate locations is relatively low, which is in contrast to 
other works that use all street intersections as candidate locations (e.g. Balardino 
and Santos 2016). A lower amount of suitable meeting points better represents the 
reality, since not every intersection is feasible for safe boarding. Hence, we expect 
the results to better reflect the actual situation.

4.5 � Demand generation

A set of randomly generated passenger requests P is used, defining for each passen-
ger � ∈ P an origin node v+

�
 , a desired destination node v−

�
 , and a desired departure 

time t+
�
 . For the DS case, the closest node that is reachable by vehicles is stored 

as the origin, and for the destination likewise. The spatial distribution of the trip 
requests is based on a weighted sampling of building data. Specifically, the probabil-
ity of a building to be chosen as origin or destination is proportional to its volume. 
To prevent huge factory buildings to be chosen disproportionately often, the prob-
ability of a building being selected is capped equivalently to having a volume of 
10, 000m3 . Figures 8 and 9 visualize the spatial distribution of customers within the 
investigation area.

Fig. 7   Connected origins and destinations
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Fig. 8   Customer origin loca-
tions

Fig. 9   Customer destination 
locations
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Furthermore, trip requests having their destination within 2000 m Euclidean dis-
tance of the origin are avoided since the passengers are assumed to walk or cycle. 
Figure 10a shows the resulting distribution of direct travel times via driving between 
origins and destinations.

In order to simulate a busy morning commute peak, the temporal distribution of 
the requests follows a Gaussian distribution centred at 07:00 AM with a standard 
deviation of 30 min (Fig. 10b). Moreover, as there are no actual depots in this prob-
lem, the depot location is chosen as the node which has the smallest maximum travel 
time to the other nodes in the network graph.

(a) (b)

Fig. 10   Statistics about randomly generated customer demand

Fig. 11   Fraction of users per group size after MP candidates selection for different total demand sce-
narios
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5 � Results

Figure  11 shows the group size histogram after the MP candidates selection step 
for four cases with different total number of customers, up to 40,000. While after 
the initial clustering phase nearly all groups have the maximum allowed size of 11 
passengers, the next step splits these groups into feasible subgroups. The result natu-
rally correlates with the average number of customers per pick-up (Fig. 12a). Gener-
ally, it can be stated that, with the increasing number of customers, the portion of 
bigger groups increases as more people with similar itineraries and time schedules 
can be grouped together.

It can be seen that the majority of customers boards at most with three other pas-
sengers. Larger groups are more uncommon, and only the group with the maximum 
size is more frequent than the other large groups, as they cover cases where the clus-
ter of customers with similar itineraries could have been even larger, e.g. commuters 
from a densely populated residential district to the city centre. Note that the group 
size can be higher than the actual maximum vehicle capacity, which is set to 9 to 
imitate minibuses. The actual assignment of passengers to minibuses is part of the 
vehicle routing phase, since only there the actual vehicle occupancy can be handled. 
As an example, a group size of 11 could be transported by three different vehicles: 
one with 5 spare seats, one with 3 spare seats and another one with at least 3 spare 
seats.

For our study area, Braunschweig city, 4000 passengers are already sufficient for 
a majority of people to share their rides. This also inherently reduces the number of 
necessary boarding and de-boarding service stops for the vehicles (Fig. 12b), since 
they have to stop only once for a group instead of stopping for every single cus-
tomer. Naturally, the savings are higher when the demand is dense. With 5000 cus-
tomers, the number of necessary stops is reduced by 33%, while it is halved at about 
15,000 customers.

After the vehicle routing optimization phase, several further statistics about actual 
vehicle usage and trip times can be derived (cf. Table 2 in Appendix E). Figure 13 
gives an impression about the potential benefits for the operator when using meet-
ing points (i.e. the MP case) instead of offering pick-ups at the doorstep (i.e. the DS 
case). While the effect is relatively small in low demand cases, the benefits are more 

(a) (b)

Fig. 12   Comparison between meeting point and doorstep simulation concerning trip size. DS Doorstep, 
MP meeting points
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(a) (b)

(c) (b)

Fig. 13   Comparison between meeting point and doorstep simulation concerning vehicle statistics. DS 
Doorstep, MP meeting points

(a)

(c)

(b)

Fig. 14   Comparison between meeting point and doorstep simulation concerning passenger statistics (DS 
doorstep, MP meeting points)
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significant with increasing number of customer requests. All plots in Fig. 13 show a 
similar trend. In the 10,000 customers case, the savings in time, kilometre, and fleet 
size is up to 30%. In addition, there are fewer dead kilometres (the distance travelled 
when the vehicle is without a passenger).

Figure  14, on the other hand, shows the drawback for the passengers resulting 
from the usage of meeting points. Naturally, the walking time is an additional factor 
that has to be considered in the total travel times (Fig. 14a). The average walking 
times in our example range from 6 to 8 min, including the walking time from the 
alighting point to the destination. For the doorstep case, the walking time is obvi-
ously zero. In addition to the walking time, the average waiting times at the meet-
ing points are higher compared to the doorstep case (Fig.  14b), since passengers 
likely have to wait for other fellow travellers. Here, the average waiting times for the 
pick-up are almost doubled when using meeting points, but the absolute values with 
about 3 to 5.5 min are comparably low. The total travel time differences between 
meeting and doorstep case can be seen in Fig. 14c.

6 � Discussion

In general, the results confirm the benefits for operators of SDRT systems when 
using real-world meeting and divergence points for the pick-up and drop-off pro-
cedure. Fewer vehicles, less vehicle kilometers and a reduction of necessary board-
ing and alighting stops results in reduction of operational costs, especially for cases 
where the demand is high.

Using meeting points leads to improved operational efficiency for operators. In 
particular all measured metrics were improved in favour of the MP case compared 
to the DS case. In particular, in Fig. 13 we see similar improvement trends for all 
examined metrics: i.e. number of used vehicles, total vehicles operating hours, total 
traveled kilometers and total dead kilometers. A common trend can be observed as 
more customers use the SDRT-MP the benefits become more significant. This is 
due to the fact that the DS case shows linear growth in all costs, whereas the MP 
case leans towards logarithmic growth. This is expected since the MP set is fixed 
for a given area, which implies a fixed MP distribution, hence increasing the density 
of customers only increases customer aggregation at meeting points. Note that the 
number of customers cannot be increased indefinitely since in addition to SDRT-
MP, users have the option to choose other modes of transport (private vehicle, public 
transport, etc.). Hence, the average trip size presented in Fig. 12a represents the pos-
sible ideal case. Interestingly, the simulation results also suggest a reduced computa-
tion time, which is another benefit to the operator. From Table 2, it can be seen that 
there are dramatical differences in running times between MP and DS cases during 
vehicle routing optimization, particularly for the cases with larger demand size.

Benefits for the operators should translate directly to lower price for the service 
which is directly beneficial to the users of SDRT-MP. Additionally, SDRT-MP offer 
a mobility service that is conceptually between public transport and a taxi service in 
terms of flexibility. Hence, this provides more options for the users.
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On the other hand, the use of MP will likely result in increased total travel time. 
The main cause of this is the fact that the users have to walk to the MP and to wait 
for the other passengers with the same pick-up to arrive (Fig. 14a). This has to be 
balanced carefully during the meeting point selection to provide a good coverage of 
the service area with MP. It can also be seen in Figs. 14b and 14c that the average 
pickup time and the average detour time is worse for the MP users than it is for the 
DS users. The longer pickup time is caused by waiting for other passengers to arrive 
at the MP, since not all passengers arrive simultaneously. While the average walking 
time can only be improved with more MP, average pickup time and average detour 
time can be improved by improving optimization methods which is a topic for fur-
ther research.

In literature, there are only very few applications using real-word meeting points. 
In the simulation of Häll et  al. (2008) it was found that, in general, the DS case 
offers a better service for the customers, which can be confirmed by the results of 
this paper regarding travel time. However, they found no major differences in the 
results between the MP and the DS case and state that, according to their results, a 
door-to-door service can be offered without any noticeable loss in efficiency. This 
contradicts the findings of this paper, in which an improved operational efficiency 
has been demonstrated (Fig.  13). This discrepancy can be easily explained since 
meeting points in the study by Häll et al. (2008) are distributed on a rectangular grid 
that is spaced 75m apart, which arguably is too small for any differences to be seen.

Although the simulation experiment by Stiglic et  al. (2015) does not include a 
routing phase, and focuses on ride-sharing, which allows only one boarding and 
alighting per vehicle, it is, nevertheless, interesting to draw a comparison. They 
conclude that the introduction of meeting points can improve a number of perfor-
mance metrics, such as kilometer savings and an increase in the number of matched 
riders. In their simulations, the total walking time is, on average, between 8 and 9 
min, which is comparable to the finding of this paper. Furthermore, they state that 
the average trip time for matched riders increases by approximately 12% due to the 
walking to or/and from a meeting point. In this paper, the travel time increase is up 
to 44%, which can be attributed to the relatively low total travel times (17.5 min for 
the DS case, 25.3 min for the MP case on average). Since Braunschweig is a small 
city and congestion is not modelled, all nodes of the city network can be reached 
within a short time, and hence meeting and waiting times have a high impact on the 
result.

The proposed solution is based on heuristics since it is not possible to compute 
the optimal solution for the tested instances. The heuristic solution can hence not 
claim to be optimal, and the gap to an optimal solution remains unknown. However, 
already the heuristic solution allows us to show the impact of a meeting point-based 
service compared to a door-to-door service. Both MP and DS cases are solved using 
the same methodology and we conjecture that the optimality gap should be equally 
present in both cases. Furthermore, as can be observed in Table 2 in Appendix E, the 
route optimization computation time demonstrated that the heuristics used to solve 
the vehicle routing problem do not scale well. Although this is not of importance 
for scientific research, we would like to emphasize that for production use more 
scalable vehicle routing solvers should be used. For that reason, the computational 
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time of the approach and the absolute result quality is therefore not considered to be 
relevant.

Another issue is that the numerical experiments are focused on a single instance. 
The conclusions may therefore not be very robust to changes in the input data. For 
future research, it is hence desirable to expand the experiments to cover more cities.

In contrast to the algorithms of commercial SDRT services such as UberPOOL 
or Lyft Line (see Sect. 1 for more examples and references), the proposed algorithm 
groups the users in a batch system, offering routing results for a fixed point in time 
(static dial-a-ride problem). Since requests also arrive dynamically, it is essential 
to allow real-time matching results (dynamic dial-a-ride) for a commercial system. 
With the proposed algorithm, this can be achieved by frequent runs of the algorithm, 
if the computation time can be reduced. However, for a real-time analysis of meet-
ing points new heuristics have to be developed that can deal with requests that arrive 
spontaneously and offer good meeting points. The concept of launch pads could 
offer a dynamic solution to the aforementioned problem (Rigby et al. 2016). Addi-
tionally, the commercial SDRT services seem to be solving a slightly different prob-
lem. Namely, it seems that their solutions have no optimization concept that involves 
multiple passengers and works by optimizing vehicle movement around the pickup 
locations of a single passenger and then assigning the passengers to vehicles. How-
ever, as the algorithms used in these services are not public, the authors can only 
infer their solutions based on their public announcements.

7 � Conclusion

The objective of this paper was to evaluate if shared demand-responsive transporta-
tion (SDRT) would benefit from the introduction of meeting points (MP) for pickup 
and drop-off, when those points are methodologically extracted from map data by 
using GIS tools. The evaluation was performed by comparing the proposed method 
to the more traditional door-to-door based SDRT. It was found that major benefits 
for the operators can be expected if SDRT-MP is implemented.

This type of service fills the gap between mass transit systems and taxi systems. 
Such SDRT services are already available in the market (cf. UberPOOL, Lyft Line), 
meaning that integrated planning of transportation systems should also consider 
them. It can be concluded that the placement of MP greatly affects the user’s sat-
isfaction (indicated by metrics such as travel time, transport price, and additional 
walking time). Hence, the placement and the density of MP should be considered as 
an initial planning step and should be in focus for future transport planning methods.

The results of this paper have demonstrated that the use of real-world MP for 
SDRT service will offer a more efficient operation, unlike what was suggested in 
some of the literature. As a result, the users of SDRT-MP will receive benefit in the 
form of a reduced price for the service. In exchange, the users would be required to 
do extra walking and experience longer travel time overall. Arguably, transportation 
service that promotes active mode of transport should be encouraged as it offers a 
healthier lifestyle. In the case of passengers with mobility impairment, it is relatively 
straightforward to make service adjustments to accommodate their special needs, 
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such as allowing door-to-door service and using wheelchair accessible vehicles. 
Several previous works have shown how multiple types of customers can be handled 
in a SDRT service, see Li et al. (2014); Kutadinata et al. (2019).

Several future research directions have been identified, including: sensitivity anal-
ysis of the methodology to different case studies; pricing mechanism that considers 
dynamic requests and meeting point allocation; integration with visual representa-
tion of possible meeting points (e.g. in Rigby et al. 2013); and social network-based 
clustering methodology (e.g. in Wang et al. 2019).

Acknowledgements  This research has been supported by the German Research Foundation (DFG) 
through the Research Training Group Social Cars (GRK 1931), the Australian Research Council’s Link-
age Projects funding scheme (project number LP120200130), the Universities Australia and the German 
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Appendix A: Preliminary note on notation and algorithms

Square brackets indicate access to a certain element in the vector or a set. For 
instance, S[0] indicates an access to the first element of the set S. Additionally, note 
that the authors employ zero-based indexing which is common in C like program-
ming languages. In many algorithms, we used mathematical notation for what are 
common algorithmic procedures. This allows algorithms to be more compact while 
still keeping the same level of information.

Appendix B: Clustering algorithm
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Appendix B.1: Complexity analysis

Using ∖ for integer division and given:

–	 k – Maximum cluster size,
–	 n – Number of requests i.e. n = |X|,
–	 N ∶= n�k,

the upper bound for the number of computations can be obtained using the follow-
ing equation:

where:

Notice that:

Since (10) tells us that every kth element of the sum is zero, i.e. the operation is of 
complexity O(1) , we have:

Putting all this together in (9) and noticing that N <
n

k
 , we get the complexity upper 

bound:

Therefore, Algorithm 1 has time complexity of O(
n2

2
).

Appendix C: Meeting point candidates selection

Algorithm 2 describes the procedure for the meeting point determination for a given 
demand cluster. The mentioned 2-Combinations function yields all possible paired 
combinations of a given set, e.g. 2-Combinations(a,b,c,d) = [a–bcd, b–acd, c–abd, 

(9)
N∑

i=0

�(i)(k − i mod k)(n − i ⋅ k) ≤ k

N∑

i=0

�(i)(n − i ⋅ k)

(10)�(i) =

{
0, if i�k = 0

1, otherwise.

(11)
N∑

i=0

(n − i ⋅ k) ≤
N

2
⋅ (2n − N ⋅ k)

(12)N

2
⋅ (2n − N ⋅ k) ≤

N −
N

k

2
⋅ (2n − N ⋅ k)

(13)k
N −

N

k

2
⋅ (2n − N ⋅ k) ≤

n2 ⋅ (k − 1)

2k
≤

n2

2
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d–abc, ab–cd, ac–bd, ad–bc]. The algorithm returns the optimal combination in 
terms of number of subgroups and summed squared walking distances.
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Appendix D: Vehicle routing optimization

Appendix D.1: Route optimization

Let the index set V = {0,S,M,D} be assigned to these nodes, where S is the set 
of � starting nodes of vehicles, M is the set of n pick-up vertices, D is the set of 
corresponding n drop-off vertices. Node 0 is the depot, and a demand is repre-
sented by a pair of pick-up and drop-off points (i, n + i) . These nodes are connected 
with directed edges, where each edge indicates a possible route to be traversed 
by the vehicles. Let E be defined as the set of all directed edges in the network. 
A directed edge �i,j ∈ E connects a pair of nodes, from Node i to Node j, where 
i,  j have the following relation: j ∈ {{0} ∪M ∣ ∀i ∈ S} , j ∈ {M ∪D ∣ ∀i ∈ M} , 
j ∈ {V ⧵ (S ∪ {i − n}) ∣ ∀i ∈ D}.

Each node has several parameters that define the trip demand. Similarly, each 
directed edge has its own associated distance and travel time parameters. To take 
into account the multiple alternative meeting and divergence points, some of these 
parameters are defined as functions of the chosen meeting/divergence points. For 
each i ∈ M ∪D , let Ni ∈ ℕ be the number of alternative meeting/divergence points 
for node i. Note that these alternative meeting points are not modelled as nodes and 
are not part of the graph; rather they can be seen as parameters for each node in the 
sets M and D . Also, note that some of these alternative points may, in real life, cor-
respond to the same location, in which case the travel time and distance between 
them is zero. Next, define a vector of integer variables m =

[
m1 m2 … m�+2n+1

]
 , 

where mi ∈ {1, 2,… ,Ni} is the chosen meeting/divergence point alternative for 
node i. Thus, m is part of the optimization decision variables specifying the meeting 
point selection.

Having established this, all the graph parameters can be defined. Let 
[tE
i
(mi), t

L
i
(mi)] be the associated time-window of node i when mi is chosen. Note 

that the time windows are treated as soft constraints. Furthermore, let di,j(mi,mj) and 
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ti,j(mi,mj) be the travel distance and time from node i to node j when using mi and 
mj . Observe that, as mentioned in Sect. 3.5, the meeting point selection influences 
the route optimization as the time windows, distances, and travel times are defined 
as functions of the meeting point decision variable, mi . In addition, each node has an 
associated service time si and a load qi . For i ∈ {0} ∪ S (the depot and the starting 
points), si = qi = 0 , Ni = 1 , and [tE

i
(1), tL

i
(1)] = [0,∞] . For the other nodes, si = tserv

∗
 . 

Moreover, in order to keep track of the vehicle loads, let qk
i
 be the passenger load on-

board vehicle k when it leaves node i.
Finally, the optimization formulation is ready to be presented and the decision 

variables can be defined. Let uk
i
 denote the time vehicle k starts servicing node i. The 

starting point of each vehicle k is similarly denoted with the index k and sk = 0 . 
Hence, the variable uk

k
 (which technically is the start of the service time of vehicle k 

at node k) indicates the first departure time of vehicle k from its starting point. Simi-
larly, uk

0
 represents the final arrival time at the depot. The binary variable xk

i,j
 is 

defined to decide whether vehicle k traverses from node i to node j. Thus, the deci-
sion variables are the service time uk

i
 , the binary variable xk

i,j
 , and the meeting points 

mi . The optimization problem is formulated as follows:

subject to:

(14)

min
x,u,m

∑

i∈M∪D

[
cwait
∗

max{uk
i
− tE

i
(mi), 0}

� + clate
∗

max{uk
i
− tL

i
(mi), 0}

�
]

+
∑

k∈S

[
cvehi
∗

sgn
(
uk
0

)
+
∑

i,j∈V

cdist
∗

xk
i,j
di,j(mi,mj)

]

(15)xk
i,j
∈ {0, 1} ∀i, j ∈ V, k ∈ S,

(16)uk
i
∈ ℝ≥0 ∀i ∈ V, k ∈ S,

(17)mi ∈ ℕ
+
≤Ni

∀i ∈ V,

(18)
∑

k∈S

∑

j∈V

xk
i,j
= 1 ∀i ∈ M,

(19)
∑

j∈V

xk
i,j
=
∑

j∈V

xk
n+i,j

∀i ∈ M,∀k ∈ S,

(20)
∑

i∈V

xk
k,i

=
∑

i∈V

xk
i,0

= 1 ∀k ∈ S,

(21)
∑

j∈V

xk
i,j
=
∑

j∈V

xk
j,i

∀i ∈ M ∪D,∀k ∈ S,
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where sgn(⋅) is a function that returns the sign of the input scalar. For a further 
parameter description we also refer to Table 1.

The formulation ensures that each customer is picked up only once and is dropped 
off at the destination by imposing (18) and (19). Furthermore, a vehicle has to start 
at its corresponding starting point and ends its route at the depot as enforced by (20) 
and (21). Constraint (22) provides a lower bound on the arrival time of a vehicle at a 
node and (24) ensures that the drop-off occurs after the corresponding pick-up. Note 
that the lower bound (22) allows uk

i
 to be zero if vehicle k never visits node i. Finally, 

(23)–(25) are constraints for the passenger load of each vehicle.
The first summation in the objective function is the “service level cost”. The first 

term penalises the “wait time”, which is defined as the difference between the arrival 
time and the start of a time window, and the second term penalises the “late time”, 
defined as the difference between the arrival time and the end of a time window. The 
parameters � and � are introduced to enable various polynomial forms of penalty 
terms. For instance, a quadratic term ( � = 2 ) can be used to penalize longer wait/
late times more than short wait/late times. With this formulation, the time windows 
are treated as penalty terms instead of hard constraints, which is different to typical 
formulations in the literature (Bent and van Hentenryck 2004; Cordeau and Laporte 
2007; Ropke and Cordeau 2009; Baldacci et al. 2011).

The first term in the second summation is the capital cost of each vehicle used. 
Recall that the formulation enforces that all vehicles start at their own starting points 
and end at the depot due to (20) and (21). However, if a vehicle k is actually unused, 
its starting point (Node k) coincides with the depot location (Node 0) and it will 
not incur a capital cost according to (22), in a sense that it allows uk

0
≥ 0 . Thus, the 

optimization would naturally choose uk
0
= 0 . Finally, a route length minimization is 

taken into account by the last term of the objective function.
As mentioned in Section 3.5, the optimization problem (14)–(25) is solved heu-

ristically with Algorithms 4 and 5.

(22)uk
j
≥ xk

i,j
⋅max

{
uk
i
+ si + ti,j(mi,mj), t

E
j
(mj)

}
∀i, j ∈ V,∀k ∈ S,

(23)qk
j
= xk

i,j
⋅ (qk

i
+ qj) ∀i, j ∈ V,∀k ∈ S,

(24)uk
i+n

≥ uk
i

∀i ∈ M,∀k ∈ S,

(25)0 ≤ qk
i
≤ q∗ ∀i ∈ V,∀k ∈ S.
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Appendix D.2: Route concatenations

Let R be the set of all routes produced by the route optimization process. A route 
r ∈ R is defined by the tuple {ts, bs, te, be} , where ts is the start of the service time of 
the first stop of r (that is not the vehicle starting point), bs is the location of the first 
stop of r, te is the end of the service time of the last stop of r (that is not the depot), 
and be is the location of the last stop of r. Moreover, tdriv(be

i
→ bs

j
) is the vehicle 

travel time from the last stop of ri to the first stop of rj . Furthermore, define the deci-
sion variable xi,j , which is equal to one if rj is appended to the end of ri , and zero 
otherwise. The optimization aims at maximizing the number of concatenation as 
follows:
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subject to:

The constraint is applied to ensure that the resulting route allows enough time for 
the vehicle to reach the first stop of the subsequent route from the last stop of the 
preceding one.

Appendix E: Results

See Table 2 here.

(26)max
x

∑

i,j

xi,j

(27)te
i
+ tdriv(be

i
→ bs

j
) ≤ ts

j
, ∀i, j.
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