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Abstract
This study proposes two bi-objective optimization problems for locating key sta-
tions of a metro network in both discrete and continuous demand modes. Tradition-
ally, designing a metro network based on optimization techniques consists of two 
approaches. The first approach locates a number of alignments and their stations 
simultaneously, while the second approach involves locating key stations, design-
ing a core network, and locating secondary stations. In locating key stations pro-
cessed by a single objective model, the number of produced and attracted trips to 
the key stations is maximized. This paper considers a second objective for this stage 
to maximize the coverage of key stations on origin/destination (OD) trips. A fuzzy 
goal programming model is established to solve the bi-objective model and provide 
some Pareto-optimal solutions. The previous single objective model and the pro-
posed model with continuous demand mode are applied to a real network. Results 
show that the proposed model significantly increases the coverage of key stations on 
OD trips with only a slight reduction in the number of produced and attracted trips.

Keywords Rail rapid transit · Metro network design · Fuzzy goal programming

List of symbols

Sets/Indices
S  The set of proposed stations
D  The set of demand points
C  The set of demand areas
L  The set of catchment levels
s, s′  The index for proposed stations
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i, j  The index for demand points/areas
l, l′  The index for catchment levels

Input parameters
ws  The coverage of station s of network demand points
wss′

ij
  The coverage of stations s and s′ of demand flow i to j where s and s′ are 

situated around the demand points/areas i and j, respectively
wss′  The coverage of stations s and s′ of total demand flows
P  The number of key stations in the network
�l  The cover intensity at the catchment level l
vi  The total number of trip production and attraction in the demand point i
vij  The demand flow from point/area i to point/area j
�isl  A binary input parameter, which is equal to one, if station i belongs to catch-

ment level l of station s, and zero, otherwise
dss′  The Euclidian distance between stations s and s′
dmin  The minimum permitted Euclidian distance between two key stations
�  A constant value based on the gravity model
ai  The total area of demand area i
aisl  The common area of demand area i and catchment area l of station s

Decision variables
Zs  A binary decision variable; it is equal to one if station s is selected as key sta-

tion; otherwise it is equal to zero
Yss′  A binary decision variable; it is equal to one if both stations s and s′ are 

selected as key stations; otherwise it is equal to zero

1 Introduction

Rail rapid transit system is a general term used for transportation systems including 
metro, light metro, commuter train, monorail, etc. (Laporte and Mesa 2015). Con-
struction of a Rail Rapid Transit Network (RRTN) can help alleviate traffic conges-
tion, air pollution and passengers’ travel time. Due to advantages such as high speed, 
high capacity and independence of the  network, metro systems are constructed in 
many cities throughout the world. According to the World Metro Database (Rhode 
2014), 191 cities around the world have metro networks of which 49 inaugurated 
their metro network in the twenty-first century. Given the high implementation costs 
and life cycle of metro systems, meticulous attention should be paid to the efficient 
design of RRTNs (Karlaftis 2004). Finding a ubiquitous layout of a metro network 
is almost impossible due to the diversity of goals sought by decision makers includ-
ing traffic engineers, city planners, citizen interest groups, environmentalists, politi-
cians, etc. (Laporte et al. 2005). Hence, rather than an optimal solution, the metro 
network design problem usually has some Pareto-optimal solutions.

At a strategic level, designing a metro network like other RRTNs includes deter-
mining the location of a line and its stations. Traditionally, the process of designing 
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a metro network starts with analyzing the city structure and identifying the major 
areas that generate or attract trips in a city. Then, a broad corridor is considered 
based on the mobility pattern of the city by analyzing the origin/destination (OD) 
matrix. In the next step, to find the best alignment and its stations in the corridor, 
some scenarios are developed for metro lines. Finally, the best scenario is selected 
based on various criteria including land-use disruptions (Bay 1985; Wulkan and 
Henry 1985), environments (Blackledge and Humphreys 1984), traffic and park-
ing (Schabas 1988), and safety (Siegel 1980; Straus 1980). This process, known as 
scenario-based method, requires a considerable amount of iterations to modify sce-
narios and finally select the best one (Laporte and Mesa 2015).

Another method of locating metro alignments and their stations is based on opti-
mization. In fact, the optimization helps locate the best alignments and their stations 
in a city. Other applications of the optimization in metro design include locating the 
best corridors in a city, before locating metro alignments and their stations (Gutiér-
rez-Jarpa et al. 2018), and combining proposed alignments to form a metro network, 
after locating metro alignments and their stations (Laporte and Pascoal 2015). In the 
literature, two different approaches have been presented for locating alignments and 
their stations by the optimization technique. In both approaches, forecasting based 
on the four-step planning model (trip production, trip distribution, mode choice and 
traffic assignment) is needed.

The first approach involves locating one or more alignments and their stations at 
the same time (Dufourd et al. 1996; Bruno et al. 1998, 2002). Maximizing the popu-
lation coverage (Curtin and Biba 2011; Escudero and Muñoz 2009) and trip cover-
age (Gutiérrez-Jarpa et al. 2013; Laporte et al. 2005) are some objective functions 
that are widely used in this approach. Considering the population coverage as the 
objective function has certain advantages and drawbacks. For instance, computing 
this objective function is inexpensive, as it does not require rich information about 
OD trips (Bruno et al. 2002). On the other hand, disregarding the station-to-station 
demand may lead to a sub-efficient solution (Laporte et al. 2005).

The second approach consists of three consecutive stages of locating key stations, 
designing the core network, and locating secondary stations (Laporte et al. 2002). In 
the first stage, locating key stations, a number of important and expected crowded 
stations are selected from many possible sets of stations. These key stations are usu-
ally selected based on the number of trip production and attraction in proposed sta-
tions. In the next stage, the lines that pass through key nodes are located to maxi-
mize the covered station-to-station trips (Laporte et al. 2007). In the last stage, the 
secondary stations are located on the proposed lines and between the edges of lines, 
which are supported by two key stations to improve the OD trips attracted to the pro-
posed line (Laporte et al. 2002).

The first approach involves proposing candidates as potential stations for align-
ments. When locating alignments and their stations in a single problem, it should 
be noted that increasing the number of potential stations will increase the com-
plexity of the problem. In the second approach, the size of the problem, i.e. the 
number of proposed stations, is decreased in the stage of locating key stations. 
However, the process of selecting the best alignments and their stations is fur-
ther divided into three separated problems, implying the difficulty of finding an 



324 S. S. Mohri, M. Akbarzadeh 

1 3

optimal solution. Therefore, it is crucial to exclude some stations from the set of 
proposed stations, which requires establishing good measures.

To the best of our knowledge, over the recent years, most studies have adopted 
the first approach or the second and third stages of the second approach, with few 
researchers exploring the stage of locating key stations. The key stations located 
in the network are used as inputs for the next stages of a transit study. Therefore, 
the final results depend upon the locations of key stations. However, despite the 
importance of this issue, only one method has been proposed for locating key sta-
tions. In view of this gap, the focus of this study is on locating key stations in an 
efficient manner.

Traditionally, the objective functions for the first and second stages of the 
second optimization approach are population and trip coverage, respectively 
(Laporte et al. 2007). Considering these unparalleled objective functions for two 
consecutive stages to achieve a unique goal may result in a non-optimal solu-
tion. Therefore, we believe that locating key stations should be performed by a 
bi-objective model to maximize population and trip coverage, simultaneously. 
Figure 1 shows a simple case, suggesting that if the key stations are only located 
with one objective, a non-optimal solution could be selected. In this figure, three 
stations (A, B, and C) are proposed as network stations and the goal is to locate 
two of them as key stations. The number on each dashed line indicates the flow 
of movements between two demand points (in both directions). The pink circle 
around each station shows its catchment area. It is assumed that if the demand 
point i is located in the catchment area of station k, the total trips from/to it will 
be covered. Moreover, if both origin and destination points of the flow movement 
i to j are located in the catchment areas of stations k and m, the total trips on i to j 
will be covered by stations k and m.

Stations A, B and C cover 170, 120 and 120 units of population, respectively. 
Therefore, if the objective function is to maximize the covered population, station 
sets {A, B} or {A, C} will be selected as the optimal solution. On the other hand, 
the number of trips covered by pair stations (A, B), (A, C) and (B, C) is 70,100 
and 20, respectively. Hence, if the problem objective is to maximize the covered 
trips, station set {A, C} will be located as key stations. As can be seen, neglecting 
trip coverage objective may lead to an inefficient solution by locating {A, B}.

60
40

A

C

B

40

30

20 10 20

Proposed station
Demand point
Flow movement
Catchment area

Fig. 1  An example of locating key stations based on maximizing population and trip coverage
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Similarly, considering only the trip coverage objective may result in an inefficient 
solution. Also, since a metro system is a once-in-a-century investment and the fore-
casted mobility patterns are estimated due to their changes in the long run, disre-
garding expected crowded stations in the set of key stations may reduce the sys-
tem utility in the future. Additionally, placing expected crowded stations on metro 
alignments increases the probability of covering more OD flows in the third stage 
(secondary stations locating). Hence, we propose two bi-objective problems based 
on maximizing population coverage as well as trip coverage for locating key stations 
in discrete and continuous demand modes. A fuzzy goal programming method is 
utilized to merge the two objectives into a single one. The computed Pareto-optimal 
solutions can be used as an input for the other next stages. Also, we consider a lower 
bound for the distance between key stations to avoid concentrating stations in some 
places and assist the dispersion of key stations throughout the city. In the next stages 
of the design, it is possible to add the expected crowded stations excluded by this 
condition to propose alignments by selecting them as secondary stations.

The rest of the paper is organized as follows: In Subsect.  2.2, the method of 
locating key stations is explained. In Subsect.  2.3, the new bi-objective models 
are presented for locating key stations based on both population and trip coverage 
objectives in discrete and continuous demand modes. The fuzzy goal programming 
method is explained in Sect.  3. Section  4 introduces the metro network of Isfa-
han, Iran, as the case study of this research. The results of comparing existing and 
proposed methods of locating key stations in the Isfahan network are examined in 
Sect. 5. Finally, conclusions are drawn in Sect. 6.

2  Modeling

In this section, first the notations used in this study are described. Then, the method 
of finding key stations based on the population covering objective is explained for 
both discrete and continuous network demands. Finally, the proposed bi-objective 
models of locating the key stations based on both population and trip covering 
objectives in both discrete and continuous network demands are presented.

2.1  Locating key stations with a population covering objective

Metro stations are points that allow changing the travel mode. This ‘modal shift’ 
is expected to take place from either cars to metro, in a residential area, or from 
walking to metro, in a central area (Laporte et  al. 2002). One of the important 
points at this stage is to determine the station coverage on the demand points 
located in both residential and central areas. The extent of station coverage is 
defined based on the catchment level around each proposed station. A catchment 
level is the area  with a specific radius served  by the proposed station. Stations 
located within a central business district (CBD), unlike a residential area, have 
several catchment levels (Laporte et  al. 2007). The studies on locating the key 
stations stage identify the stations with a maximum coverage on the produced 
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and attracted trips (Laporte et al. 2002, 2007). Increasing the coverage of key sta-
tions on demand points is not equivalent to increasing the number of passengers 
attracted to the new metro system (Bruno et  al. 2002). It is only a measure to 
increase the possibility of attracting passengers to the first stage. The anticipated 
number of passengers attracted to the metro system will be computed in the next 
stages based on utility functions of all existing modes made by different measures 
such as level of income, car ownership, travel costs in the modes and accessibility 
of metro (Dufourd et al. 1996).

Based on the travel cost function between the proposed station and the demand 
point/area, several different catchment levels are defined. Determining the cover-
age of proposed stations depends on the nature of the network demand point/area, 
which is estimated by discrete or continuous catchment levels, respectively. Fig-
ure 2 shows an example of continuous and discrete catchment levels.

In Fig. 2, three different catchment levels are drawn around each station s or 
s′ . Ci indicates the demand area i and Di shows the demand point i. Each catch-
ment level has a specific coverage intensity, �i . The value of �i is in the range of 
zero and one, with greater distance from the center of a station yielding lower 
values (Bruno et al. 2002; Laporte et al. 2002, 2007). The theory adopted to cal-
culate station coverage intensity on the network demand in the discrete mode 
corresponds to the problems that calculate a partial coverage in the covering 
location problems. In the partial coverage problems, the coverage intensity is 
inversely correlated with the travel cost (distance, time, etc.) between the sta-
tion and the demand point (Berman and Krass 2002; Alexandris and Giannikos 
2010; Jones and Simmons 1993). The partial coverage method has been recently 
applied to other location problems including an implicit covering model (Murray 
et al. 2010), a gradual coverage decay model (Berman et al. 2003), the comple-
mentary edge covering problem (Sadigh et  al. 2010) and a hierarchical cover-
ing location model (Lee and Lee 2010). Also, a number of studies have defined 
the station coverage intensity on network demand as a function of the passen-
gers’ walking distance from the demand point to the proposed stations (Schabas 

(b)(a)

1 2 3

′

1
2

3
1 2 3

1

2

3

Fig. 2  a Continuous, and b discrete catchment levels
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1988). Maximizing the coverage of network stations in both discrete and continu-
ous modes is based on these equations (Laporte et al. 2002; Dufourd et al. 1996; 
Bruno et al. 2002; Laporte et al. 2007).

Subject to:

Objective (1) maximizes the total production and attraction trips covered by 
the located key stations. The coverage of station k on network demand points (dis-
crete mode) and demand areas (continuous mode) is obtained from Eqs. (4) and (5), 
respectively.

In Eq. (4), �isl is a binary input parameter, which needs to be computed before solv-
ing the model based on distance from station s to demand point i. Equation (5) com-
putes the coverage of station s on demand areas. aisl∕ai is the fraction of demand area i 
that is held in catchment area l in station s. Equation (2) determines the number of key 
stations in the network. Also, the type of decision variable Zs is determined by (3).

2.2  Locating key stations by population and OD trip covering objectives

In this section, we propose two bi-objective mathematical models for locating key 
stations in discrete and continuous modes of the network demand. Unlike the popu-
lation covering method, in the trip covering method, the coverage of key stations on 
each OD flow depends on the coverage of key stations in both origin and destina-
tion. For clarification, an example of calculating the coverage of stations s and s′ on 
demand flow i to j in both discrete and continuous demand modes is shown in Fig. 3.

Equations  (6) and (7) are used to compute the coverage of stations s and s′ on 
demand flow i to j for both discrete and continuous demand modes. The basic form 
of these equations, which are based on a gravity model, were proposed by Mesa and 
Ortega (2001). Laporte et al. (2005) utilized this method to design the best align-
ment by maximizing trip coverage.

(1)max
∑
s∈S

wsZs

(2)
∑
s∈S

Zs = P

(3)Zs ∈ {0, 1} ∀s ∈ S

(4)ws =
∑
i∈D

∑
l∈L

�l × vi × �isl ∀s ∈ S

(5)ws =
∑
i∈C

∑
l∈L

�l × vi × aisl∕ai ∀s ∈ S

(6)wss�

ij
=

∑
l,l�∈L,(l≠l�)

�2
[
�l
(
aisl∕ai

)][
�l�
(
ajs�l�∕aj

)]
vij ∀s, s� ∈ S and i, j ∈ C
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In Eq. (6), �l
(
aisl∕ai

)
 is the coverage of station s on trip origin i. Also, �l�

(
ajs�l�∕aj

)
 

is the coverage of station s′ on trip destination j. Hence, the product of these two 
specifies the coverage of stations s and s′ on demand flow i to j. Equation (7) is simi-
lar to Eq. (6), but it represents a discrete form of wss′

ij
 . Equations (8) and (9) calculate 

the coverage of stations s and s′ on total network demand by aggregating wss′

ij
 on 

demand nodes.
By computing wss′ , the mathematical form of the multi-objective key sta-

tion locating problem for both discrete and continuous modes can be presented as 
follows:

(7)wss�

ij
=

∑
l,l�∈L,(l≠l�)

�2
(
�l × �isl

)(
�l� × �js�l�

)
vij ∀s, s� ∈ S and i, j ∈ D

(8)wss� =
∑
i∈C

∑
j∈C

wss�

ij

(9)wss� =
∑
i∈D

∑
j∈D

wss�

ij

(10)
Max O1 =

∑
s∈S

∑
s�∈S

wss� × Yss�

(11)max O2 =
∑
s∈S

wsZs

1 2 3

1 2 3

′

4

4

1 2 3

1 2 3

′

4

4

Continuous demand mode

Discrete demand mode

Fig. 3  An example of computing trip coverage
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Subject to:

In (10), the first objective ( O1 ) is to maximize the coverage of located key sta-
tions on the total demand flows for both continuous and discrete demand modes. 
Moreover, in (11), the second objective ( O2 ) is to maximize the coverage of located 
key stations on produced and attracted trips in the network. In Eq. (12), it is assumed 
that the number of key stations is equal to P. In Constraints (13) and (14), if the 
value of Yss′ is equal to one, then the value of both Zs and Zs′ must be equal to one, 
meaning these stations are counted as located key stations. Accordingly, if both Zs 
and Zs′ are equal to one, Constraint (15) ensures that the value of Yss′ is equal to one. 
Equation (16) decreases the number of Yss′ , as decision variables, by half and con-
tracts the size of the problem. According to Constraint (17), if two stations s and s′ 
are located as key stations ( Yss� = 1), their distance must be greater or equal to dmin 
(the minimum limited distance between key stations). (18) shows the nature of the 
decision variables (binary variables).

3  Fuzzy goal programming

Unlike a single objective optimization (SOO) model, a multi objective optimization 
(MOO) model usually does not have an optimal solution due to conflicting objec-
tives. For MOO models, identifying the non-dominated solutions (Pareto-solutions 
or efficient solutions) is of great importance. A non-dominated solution is a solu-
tion in which the value of no objective can be improved without deteriorating the 
values of other objectives. There are several methods for solving MOO models, but 
none can be claimed to be generally superior to all the others. In fact, the specific 
features of the problem and the decision maker’s judgements are important factors in 
selecting an appropriate method (Miettinen 2012). The solving approaches of MOO 
models can be categorized in various ways. One popular classification was presented 
by Hwang and Masud (1979), who categorized MOO solving approaches into four 
groups based on the level of utilizing the preference information:

(12)
∑
s∈S

Zs = P

(13)Yss� ≤ Zs ∀s, s� ∈ S

(14)Yss� ≤ Zs� ∀s, s� ∈ S

(15)Yss� ≥ Zs + Zs� − 1 ∀s, s� ∈ S

(16)Yss� = Ys�s

(17)dss� ≥ dmin × Yss� ∀s, s� ∈ S

(18)Yss� ,Zs ∈ {0, 1} ∀s, s� ∈ S
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• No-preference methods (e.g. global criterion).
• A priori methods (e.g. goal programming or fuzzy goal programming).
• A posteriori methods (e.g. ϵ-constraint methods).
• Interactive methods (e.g. NIMBUS method).

In previous methods, the preferences of a decision maker are incorporated in the 
initial formulation of an appropriate SOO. This category includes methods such as 
value function (e.g. weighted global criterion method, weighted sum method, weighted 
min–max method, exponential weighted criterion and weighted product method), lexi-
cographic ordering and goal programming. Goal Programming (GP) is a useful method 
that helps decision makers model the real-world MOO problems and find a set of non-
dominated solutions. However, this method requires precise determination of the goals 
for objective functions. It is difficult to define precise goals for decision makers, as they 
only contain partial information. In this regard, Fuzzy Goal Programming (FGP) offers 
a useful approach for importing imprecision and uncertainty. For instance, in a MOO 
model, one objective is maximizing profits. To convert the model into a single problem 
with GP, a precise goal like 500 must be considered for the profit. By setting the goal, 
deviations are minimized. However, in FGP, the goal defined as the profit should be a 
value around 500. As a result, the goal itself is imprecise and fuzzy in nature.

To the best of our knowledge, Narasimhan (1980) was the first to propose an FGP 
method. This FGP method was further improved in a number of studies to enrich com-
putational efficiency (Hannan 1981a, 1981b). Among the presented FGP methods, 
those with an additive function that consider the priority of objectives are suitable for 
this study. These methods are classified into weighted FGP methods, FGP methods 
with preemptive priority and FGP methods with different achievement degrees. In this 
study, a weighted FGP method is used for our model (Tiwari et al. 1987; Amid et al. 
2011). The weighted FGP method is selected not only for its simplicity, but also its 
ability to find a set of Pareto-optimal solutions by changing the weights of fuzzy goals. 
For further information about the methodology of the other two methods, interested 
readers can see Chen and Tsai (2001).

3.1  Weighted additive fuzzy goal programming

Narasimhan (1980) proposed an FGP method using membership functions to specify 
the aspiration levels of goals in a fuzzy environment. The membership functions used 
in Narasimhan (1980) are actually inspired by a fuzzy programming approach pre-
sented by Zimmermann (1978). The linear membership functions for maximization 
goals �Oa

(x) ( a = 1, 2,… , q) and minimization goals �Ob
(x) ( b = 1, 2,… , q�) are simi-

lar to Eqs. (19) and (20). Also, Fig. 4 shows the linear membership functions,

(19)�Oa
(x) =

⎧
⎪⎨⎪⎩

1 if Oa(x) ≥ Omax
a

Oa(x)−O
min
a

Omax
a

−Omin
a

if Omin
a

≤ Oa(x) ≤ Omax
a

a = 1, 2,… , q

0 if Oa(x) ≤ Omin
a

,
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where Oa(x) and Ob(x) are the values of maximization and minimization goals. Omax
a

 
and Omin

a
 are the ideal and nadir solutions for maximization goals. Also, Omin

b
 and 

Omax
b

 are the ideal and nadir solutions for minimization goals. In multi-objective pro-
grams, the ideal solution of each objective is calculated by its optimization irrespec-
tive of other objectives. It is difficult to compute the nadir solution for each objective 
especially for problems with more than two objectives. It can be estimated with the 
payoff table of objective values but this estimation may not be reliable (Miettinen 
2012). However, for bi-objective problems, the value of the first/second objective 
when optimized individually will be a nadir solution for the first/second objective.

Based on the linear membership functions (Eqs.  (19) and (20)), Tiwari et  al. 
(1987) proposed an additive fuzzy goal programming that takes into account the 
weights of objectives. The method is formulated as follows:

Subject to:

(20)
�Ob

(x) =

⎧
⎪⎨⎪⎩

1 if Ob(x) ≤ Omin
b

Omax
b

−Ob(x)

Omax
b

−Omin
b

if Omin
b

≤ Ob(x) ≤ Omax
b

b = 1, 2,… , q�

0 if Ob(x) ≥ Omax
b

,

(21)Max

q∑
j=1

�oj�oj
(x)

(22)�Oa
(x) =

Oa(x) − Omin
a

Omax
a

− Omin
a

for maximization goals a = 1, 2,… , q

(23)�Ob
(x) =

Omax
b

− Ob(x)

Omax
b

− Omin
b

for minimization goals b = 1, 2,… , q�

(24)
q∑
j=1

�oj = 1, �oj ≥ 0

( )

1
( )

1

Fig. 4  Objective function as fuzzy number
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where �oj is the weight of objective j, and q is the number of objectives. Also, a and 
b are the vectors of coefficients and constants of non-fuzzy constraints, respectively. 
Objective (21) maximizes the weighted additive fuzzy goals. Equation (24) ensures 
that the sum of objectives’ weights is equal to one. The system constraints in vector 
notation are provided by (25). The remaining constraints provide the linear member-
ship functions, as explained above.

4  Data presentation

The presented model was applied to Isfahan, which is one of the Iranian metropo-
lises with a population of 2.25 million and a total area of 551 km2 . Its metro system 
has been under construction since 2001, but it has not been completed yet. The stud-
ies that led to the construction of this network can be traced back to 2000. The city 
center is made up of 178 traffic zones, and the OD matrix of travel demand between 
each pair of these zones was obtained based on the results of a home survey in 2016, 
which was conducted as a part of the Isfahan’s transportation comprehensive study 
(Isfahan University of Technology, 2014). Figure 5-a shows the city road network 
map and its 178 traffic zones. Figure  5-b shows the metro network (stations and 
lines) of this city. It consists of 47 stations in three different lines (Isfahan University 
of Technology 2014).

(25)Ax ≤ b & x ≥ 0

(26)0 ≤ �Oa
(x),�Ob

(x) ≤ 1a = 1, 2,… , q & b = 1, 2,… , q�

Fig. 5  a Isfahan’s traffic zones. b The metro network
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To apply the proposed model, a set of 165 possible stations were considered. 
The set of proposed stations also included the existing metro stations (47 sta-
tions). Typically, the people living within a certain distance from stations are 
attracted to the system. This distance is limited to 400 m for populated regions 
and could be extended to 1 km for less populated areas (Laporte and Mesa 2015; 
Gutiérrez-Jarpa et al. 2018). There are various measures for depicting the walking 
distance such as Manhattan, Block, Euclidean norm, etc. (Laporte et al. 2005). In 
this study, we assume a maximum walking distance of 400 m and use a revised 
Euclidean norm based on the pattern of Isfahan’s streets. Since the structure of 
the streets in cities is typically based on a rectangular grid, the average walking 
distance in each catchment level ( di ) is more than the radius ( ri ) considered in 
the Euclidean norm. Accordingly, we decreased the radius of the catchment lev-
els (10 percent) to provide the expected walking distance. The characteristics of 
catchment levels are as follows:

• Catchment level 1: 0 ≤ d1 ≤ 130 & 0 ≤ r1 ≤ 120 & �1 = 1.

• Catchment level 2: 130 < d2 ≤ 270 & 120 < r2 ≤ 240 & 𝜃2 = 0.5.

• Catchment level 3: 270 ≤ d3 ≤ 400 & 240 < r3 ≤ 360 & 𝜃3 = 0.25.

• Catchment level 4: 400 < d4 & 360 < r4 & 𝜃4 = 0.

Fig. 6  Proposed stations for the metro network
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Figure 6 shows the proposed stations and their catchment levels.

5  Results and discussion

After determining the catchment levels of each proposed station, first parameters wss′

ij
 

and ws were calculated using MATLAB software. Then, IBM ILOG CPLEX 12.6.1 
software was used to solve the previous and presented models for locating key sta-
tions. A computer (Intel(R) Core(TM) i7 CPU @2.13 GHz with 8G RAM under the 
64-bit Windows 7 OS) was used to solve the models. According to previous studies, 
the number of key stations generally varies between 5 and 22 (Laporte et al. 2007). 
Thus, this study presents the results of three scenarios with 10, 15, and 20 key sta-
tions. In this section, first a comparison is drawn between the results of (a) the previ-
ous model and (b) the proposed model based on the continuous demand mode. 
Then, the results of the proposed model are compared with the metro system of Isfa-
han to evaluate the efficiency of the considered design plan.

In order to apply the proposed model to three scenarios, the ideal and nadir 
solutions for all scenarios were needed. Table 1 shows the value of the ideal and 
nadir solutions for the two objectives of the proposed models and all scenarios. 
The solutions are computed assuming that the values of a and dmin are 1 and 500 m, 
respectively.

The Pareto-optimal solutions for the bi-objective proposed model were computed 
by changing the weight of the first fuzzy goal �O1

 (trip coverage objective) from 
zero to one in increments of 0.1. The solutions of the previous method are shown 
in the fifth column of Table 1 (the ideal solution for population covering objective 
O2 ). Figure 7 shows the Pareto-optimal solutions for all scenarios and the solutions 
achieved from the previous method.

In Fig. 7, the solutions in yellow circles demonstrate that the bi-objective model 
is more effective than the single objective model with the population coverage objec-
tive. These Pareto-optimal solutions are slightly different in the population coverage 
objective, but they are considerably different in the trip coverage objective. This is 
especially evident in case p = 15 . In this case, the solution of the single objective 
model based on population coverage is point A, which covers 41,337 people and 931 
trips. Also, the closest solution of the bi-objective model to point A is B. The popu-
lation and trip coverage objectives of point B are 41,178 and 1011, respectively. A 
comparison of these points shows that if the population objective distances is just 

Table 1  The ideal and nadir 
solutions for all scenarios

Scenario ID No. key sta-
tions (P)

OD trip covering 
objective (O1)

Population cover-
ing objective (O2)

Ideal Nadir Ideal Nadir

1 10 868 651 31,367 27,282
2 15 1226 931 41,337 37,196
3 20 1585 1257 49,908 46,443
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less than 4 percent from its optimal value, the trip coverage objective can approach 
its optimal value by about 28 percent. Therefore, the bi-objective model, by intro-
ducing some Pareto-optimal solutions, can help making the best decision.

The results of the bi-objective model were compared with the existing metro sys-
tem in Isfahan for the following reasons:

(1) Evaluating the efficiency of the existing system based on a comparison of the 
position of the proposed key stations in the bi-objective model and the existing 
stations.

(2) Recognizing the most important key stations not covered in the existing metro 
lines and proposing them as key stations for development plans.

(3) Prioritizing the existing lines based on their coverage of selected key stations.

Table 2 shows located key stations in all Pareto-optimal solutions. In this table, 
the located stations are signified with number 1 in cells. The last row of the table 
shows the repetition of each station in all Pareto-optimal solutions. Therefore, sta-
tions with higher repetition take priority over other stations. Figure  8 shows the 

Legend (for three figures)

A Pareto-optimal solution
from (a) the proposed model

The solution of (b) the 
previous model
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spatial location of key stations. As can be seen, the located key stations are classified 
into five groups based on the frequency of their repetition in all solutions.

The results show that the existing metro lines covered 12 of 27 stations selected in 
Pareto-solutions. Based on the objectives of this study, the current Line 3 is unable to 
cover important key stations and is therefore an inefficient line. Moreover, some impor-
tant key stations (with high repetitions) are far from all proposed paths. These stations 
are indicated in Fig. 8 with a red circle. The existing Line 2 covers eight key stations 
and seems to be an efficient line although some key stations with high repetition are 
around this line (e.g. points 95, 161, 57, 132, 92, and 96). The existing Line 1 is an effi-
cient south-to-north line that covers two key stations with high repetition in the center 
of the city (i.e. points 9 and 10). Also, some important key stations are located at the 
beginning and end of this line.

The key stations not covered by existing lines have a greater potential to be cov-
ered in the development of the metro system in the future. Among these stations, 57, 
100, 132, and 161 take priority. The results also suggest that Lines 1 and 2 take higher 
priority for opening than Line 3. To determine the priority of Lines 1 and 2, the two 
objectives considered in this study were computed based on the locating of the key 
stations belonging to these lines. The population coverage objective for Lines 1 and 2 
were 1424 and 1531, respectively. Moreover, the trip coverage objective for Lines 1 and 
2 were 98.6 and 248.4, respectively. Therefore, Line 2 takes priority over Line 1.

Fig. 8  The key stations based on the bi-objective model and their repetitions in all scenarios
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6  Conclusion

This study presented two bi-objective optimization problems for locating key sta-
tions in the design of a metro network in both discrete and continuous demand 
modes. The first objective maximizes the coverage of key stations for total produced 
and attracted trips in the city. The second objective maximizes the coverage of key 
stations on OD trips. The results showed that simultaneous consideration of the two 
objectives could provide more effective solutions than a single objective problem. 
To solve the bi-objective problem, a fuzzy goal programming technique was applied 
to convert it into a single objective problem. The proposed model was applied to a 
real case study in the city of Isfahan. The results suggested that the proposed model 
could expand the coverage of key stations on OD trips with only a small reduction in 
the coverage of produced and attracted trips. Furthermore, the comparison of results 
with the metro network of Isfahan revealed that some important areas of the city do 
not have access to any of the metro lines.
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