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Abstract
The Bus Passenger Trip Planning Problem is the decision problem the bus passenger 
faces when he has to move around the city using the bus network: how and when 
can he reach his destination? Or possibly: given a fixed time to get to the destina-
tion, what should be his departure time? We show that both questions are computa-
tionally equivalent and can be answered using an A*-guided and Pareto dominance-
based heuristic. The A* procedure drives the search estimating the arrival time at 
the target node, even in intermediate nodes. Dominance is triggered each time a new 
label is generated, in order to prune out labels defining subpaths with high values 
for the objectives we focus on: arrival time at destination, number of transfers and 
total walking distance. We discuss the tradeoff between processing time and solution 
quality through a parameter called A* speed. The tool is available for transit users 
on a day-to-day basis in Brazilian cities of up to 800,000 inhabitants and returns a 
variety of solutions within a couple of seconds.
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1 � Context

Stimulating people to switch their means of transportation from individual to public 
alternatives is an important point in addressing the problem of mobility in Brazil-
ian cities. A study by CNI RSB - Urban Mobility, 20151 indicates that only 24% of 
the Brazilian population use buses to commute. Nevertheless, bus riding is the most 
widespread public transportation option in the country. One of the reasons prevent-
ing more people from adopting this transport mode is the lack of clear and updated 
information. In this sense, powerful passenger information tools help to increase its 
attractiveness.

Using an online Trip Planner, the passenger is given a list of route options in the 
public transport network to go from his current place (or any other starting point) 
to a desired location. Each option defines a value for every criterion the passenger 
wishes to minimize, such as the time of arrival, the number of transfers and the total 
walking distance. Instead of minimizing his arrival time at his destination, the pas-
senger can also provide a target arrival time and the tool maximizes his departure 
time.

Section 2 describes the features of our Trip Planner, which is continuously avail-
able in several Brazilian cities (Florianópolis2, Guarujá3 and São Bernardo do 
Campo4). Section 3 formulates the Trip Planner by Departure Time as a multi-objec-
tive problem. Section  4 shows why this problem and the Trip Planner by Arrival 
Time are equivalent problems and how they can be solved using the same algorithm. 
In Sect. 5 we present an A*-based algorithm to solve the problem. Section 6 shows 
the influence of an A* parameter on both the algorithm performance and the solu-
tion quality and we finally draw some conclusions and perspectives for future work 
in Sect. 7.

2 � The multi‑objective bus passenger Trip Planning Problem

In the problem tackled in this paper, the passenger expects to find some trip options 
for his journey from an origin to a destination, considering the city bus network, all 
the route schedules and the current bus positions. The data about the bus route net-
work and the bus schedules is given by the bus company offering the service, and is 
treated here as static data at the time of the passenger request.

The user needs to specify the following information:

•	 origin (current) location (it may be automatically picked out from the user’s 
smartphone location),

2  https​://www.flori​panop​onto.com.br/tripp​lanne​r.jsp.
3  https​://guaru​ja.onibu​sfaci​l.com.br/.
4  http://www.parti​usbc.com.br.

1  http://www.ibope​.com.br/pt-br/notic​ias/Docum​ents/RSB%2027%20Mob​ilida​de%20Urb​ana%20Set​
embro​%20201​5.pdf.

https://www.floripanoponto.com.br/tripplanner.jsp
https://guaruja.onibusfacil.com.br/
http://www.partiusbc.com.br
http://www.ibope.com.br/pt-br/noticias/Documents/RSB%2027%20Mobilidade%20Urbana%20Setembro%202015.pdf
http://www.ibope.com.br/pt-br/noticias/Documents/RSB%2027%20Mobilidade%20Urbana%20Setembro%202015.pdf
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•	 desired destination location,
•	 departure (ready) time (and date, as the bus company defines specific bus sched-

ules for different day types, such as weekday, Saturday, Sunday, etc.). By default, 
it is set to the present date and time.

The tool then suggests some bus trip options, each one containing the following 
information:

•	 bus routes to be used along the trip,
•	 for each transfer: alighting time from the previous bus and boarding time onto 

the next bus,
•	 departure time from origin location (it may be after the “ready” time given by 

the user),
•	 arrival time at destination location,
•	 total walking time and distance.

For a request with a desired departure time close to the present time, the current 
positions of buses (available through GPS) and traffic conditions update the static 
daily bus schedule considered to generate the trip plan options. See (Jariyasunant 
et al. 2010) for a similar inclusion of real time conditions.

All passengers wish to arrive as soon as possible at their destination, but some 
may want to avoid transfers as much as possible or prefer short walks, even if this 
means a later arrival time. Furthermore, several bus routes usually share common 
sections, which allows passengers to have backup options in case of an unpredictable 

Table 1   Objective values for the 
Trip Planning request example

Fig. 1 Fig. 2 Fig. 3

Arrival time at destination 22:28 22:33 22:44
Number of transfers 1 1 0
Total walking distance 610 m 481 m 491 m

Fig. 1   Earliest Arrival Problem, with one transfer
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event such as an accident slowing down the traffic and preventing them from per-
forming their next transfer. Therefore, the Trip Planning tool should provide a broad 
range of options for the passenger.

Figures 1, 2 and 3 depict some options of passenger trips for a request made at 
21:45 between the neighbourhoods of Córrego Grande and Lagoa da Conceição 
in Florianópolis, Brazil. Table 1 gives a summary of the objective values for every 
option. Each one is the best with respect to a specific criterion. If a passenger wishes 
to arrive as fast as possible, he would certainly choose the option depicted in Fig. 1. 
On the other hand, if he wants to avoid transfers and minimize the risk of delays, he 
will probably choose the option given in Fig. 3.

3 � Trip Planning by Departure Time and extensions

In this section, the problem introduced previously is described formally. For a mat-
ter of clarity, all the time-related variables or constants are denoted by Greek letters.

Fig. 2   Option with a short walking distance and one transfer

Fig. 3   Direct ride option, arriving after both previous options
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After a literature review in Sect. 3.1, the Trip Planning by Departure Time (or 
TPDT) is formulated in Sects. 3.2, 3.3 and 3.4. The last sections (3.5 and 3.6) 
describe possible additional features of this problem.

3.1 � Literature review

A Shortest Path Problem as described by Zhao et al. (2008), Nannicini et al. (2011), 
Idri et al. (2017) or an Earliest Arrival Problem (see Yang et al. 2012; Wang et al. 
2015) only aims to minimize the arrival time at a destination. However, we also con-
sider the number of transfers and the total walking distance as relevant criteria for 
the passenger. Bast et al. (2015) give a comprehensive review of similar problems 
and algorithms to solve them.

The graph defined to perform the search is usually either time-expanded (as for 
Jariyasunant et al. 2010; Wang et al. 2015) or time-dependent.

Spiess and Florian (1989) use a time-expanded graph for frequency-based bus 
transit and introduce the concept of optimal strategies to reach a destination node in 
a stochastic network. Attanasi et al. (2013) and Gentile (2017) model such strategies 
as hyperpaths in a hypergraph defining mixed frequency-based and schedule-based 
multimodal transit services. Comi et  al. (2017) present a “weighted time-based” 
approach introducing a utility function that balances several attributes: on-board 
time, waiting time, transport mode, etc. The authors explicitly show that the result-
ing solutions match the user’s preferences in about 90% of the cases. Nonetheless, 
these preferences have to be configured beforehand (through a poll or at least a small 
form). This can be cumbersome for the passenger, especially if he is an unfrequent 
user of the Trip Planner. In addition, we chose a multi-objective approch given that 
a utility-based algorithm can lack the information on each objetive individually. For 
example, a Pareto-based method is able to provide the passenger with more diverse 
route options, including, for every criterion, the best option with respect to this cri-
terion. On the other hand, depending on the preference setting, a utility-based algo-
rithm could fail to find the least-walking option, or the fewest-transfers option, but 
return only balanced options. As for the graph type, time-expanded graphs can be 
too large and memory-consuming for the Trip Planner to be able to deal with several 
requests per second ( Pyrga et al. (2008)).

Among the time-dependent approaches, Cooke and Halsey (1966) and Dreyfus 
(1969) propose a generalized Dijkstra algorithm to solve the mono-objective time-
dependent Shortest Path Problem. Zhao et al. (2008) present an A* algorithm where 
the heuristic function takes the current time as a parameter. Nannicini et al. (2011) 
introduce a bidirectional A* search on large-scale networks. Idri et  al. (2017) use 
an A* algorithm on a heuristically restricted search space in a multimodal network. 
Brodal and Jacob (2004) model the timetable through a time-dependent network so 
that their problem can be solved using Dijkstra-like methods. All the previous time-
dependent approaches have the single objective of minimizing the arrival time or 
the total cost. Mandow and De La Cruz (2010) present a multi-objective A*-based 
method in which the heuristic function is defined on every criterion, and Sand-
ers and Mandow (2013) find all Pareto-optimal paths using a parallel label-setting 
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algorithm; both papers search a multi-objective Shortest Path without considering 
any transit timetable. Berger et al. (2009) propose speed-up techniques for a bi-cri-
teria (travel time and number of transfers) path search in a schedule-based railway 
transit network.

To the best of our knowledge, no other schedule-based Trip Planner proposes an 
approach based on both A*-guidance and Pareto-dominance to solve the problem. 
Our paper contributes to the literature by tackling this problem using both methods.

3.2 � Graph and timetable

The network presented here is time-dependent where the transit-time function is 
given by the bus timetables stored as distinct data structures instead of being explic-
itly included into the graph.

The bus route network is defined in a directed graph G = (V ,E) where V is the 
set of vertices (all the possible reference locations and bus stops) and E is the set of 
directed edges, made of:

•	 a set ER of route edges, and
•	 a set EW of walking edges.

Sets ER and EW are disjoint and such that E = ER ∪ EW . Every edge e in ER is a street 
section between two successive bus stops in at least one route path. The set of all the 
bus routes that have edge e inside their path are denoted by R(e), and R is the set of 
all bus routes. In addition, every walking edge e in EW is such that R(e) = � and is 
associated with a walking distance d(e) and a walking duration �(e).

A path is a sequence of nodes in V: PV = (v1v2 ⋯ vivi+1 ⋯) such that 
∀i ≥ 1, (vivi+1) ∈ E . A route path is such that ∀i ≥ 1, (vivi+1) ∈ ER , whereas a pas-
senger path can be made of edges from both ER and EW . By extension, path PV 
can also be seen as a sequence of edges denoted by PE . Formally, for any edge 
e ∈ PE,∃i, e = (vivi+1) . In the following, we use the generic notation P to denote 
both the sequence of nodes and the sequence of edges.

Each bus route r ∈ R of the bus company is defined by its path of length mr along 
the geographical network, which is the sequence of mr nodes (or bus stops) in V 
through which it goes : Pr = (vr

1
vr
2
⋯ vr

mr
) , where for each i such that 1 ≤ i ≤ mr − 1 , 

(vr
i
vr
i+1

) ∈ ER and r ∈ R(vr
i
vr
i+1

) . Each bus route r ∈ R is associated with a sequence 
of nr bus trips. Each bus trip is a bus ride along the bus route at a certain time of the 
day. It is defined by the list of the mr times at which the bus arrives at each bus stop 
along the route path related with the trip. Formally, if r is a bus route, its u-th trip 
can be defined by the times �r

u,vr
1

, �r
u,vr

2

,⋯ , �r
u,vr

mr

 where 1 ≤ u ≤ nr , and 
∀i, 2 ≤ i ≤ mr, �

r
u,vr

i

 is the time the bus reaches bus stop i. We suppose here that the 
bus layover is zero at every intermediate stop, meaning that the bus leaves just after 
it arrives.

The bus route’s first and last stops are usually specific locations, called bus 
terminals, with more space and facilities for the bus drivers to park their bus and 
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rest that allow passengers to sit down and get information about the next buses to 
leave. Some routes can also have bus terminals as intermediate stops.

In summary, all the bus trips of a given route r define a matrix �r of nr lines 
and mr columns of trip times from the first node of the route path to the last node. 
This matrix is the complete daily timetable for route r, and strictly increases line-
wise and columnwise: for each u such that 1 ≤ u ≤ nr and for each i such that 
1 ≤ i ≤ mr,

Inequality (1) states that the duration between two successive stops is positive, 
whereas inequality (2) ensures that the trips in the matrix are sorted in increasing 
order of their first stop time. This inequality also ensures that the trips do not over-
lap: if a bus departs before another one, it will not arrive after the other in any sub-
sequent bus stop, which is a reasonable practical assumption usually called FIFO 
property. The contrary would mean that buses of the same route overtake one 
another, which is operationally avoided.

(1)if i ≤mr − 1 then 𝜃r
u,vr

i+1

> 𝜃r
u,vr

i

(2)if u ≤ nr − 1 then 𝜃r
u+1,vr

i

> 𝜃r
u,vr

i

walking edge
route edge

s t
r2

r2

r1

v2

v1

v3

δ = 12 sec
d = 10 m

δ = 120 sec
d = 100 m

d = 50 m
δ = 60 sec

r1

Fig. 4   Example of a Trip Planner graph with three intermediate nodes and two bus routes

Table 2   Example of a timetable 
for the previous graph, including 
two trips for route r

1
 and a single 

trip for route r
2

Route Trips

r
1

v
1

v
2

v
3

08:00 08:03 08:10
08:50 08:54 09:00

r
2

v
2

v
1

v
3

08:30 08:35 08:55
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Figure 4 and Table 2 depict an example of a graph and a timetable on a simple 
network, with two bus routes performing three trips overall.

3.3 � Solution description

The user defines a source node s and a target node t. He also chooses a time �  which 
is the date and time he is ready to start from node s.

A Trip Planning option (or solution option) is composed of:

•	 a passenger path P of q nodes PV = (v1v2 ⋯ vq) and q − 1 edges 
PE = ((v1v2)(v2v3)⋯ (vq−1vq)),

•	 the arrival time at each node of the path �1, �2,⋯ , �q,
•	 the index of the route taken at each step r1, r2,⋯ , rq−1 ( ri is the route on edge 

(vivi+1)),
•	 the index of the trip taken at each step u1, u2,⋯ , uq−1.

In the following, the expression “passenger path” can refer to a whole solution 
option, meaning that this path also contains all the other attributes (arrival times, 
routes and trips).

These option attributes are subject to the following constraints:

•	 v1 = s , vq = t , �1 = � ,
•	 ∀i, 1 ≤ i ≤ q − 1, 𝛾i < 𝛾i+1,
•	 ∀i, 1 ≤ i ≤ q − 1 , if edge (vivi+1) ∈ PE ∩ EW (walking edge), then we have 

�i+1 = �i + �(vivi+1) and by convention ri = ui = 0.
•	 ∀i, 1 ≤ i ≤ q − 1 , if edge (vivi+1) ∈ PE ∩ ER (route edge) then:

•	 ri ∈ R(vivi+1) ( ri is one of the routes going through edge (vivi+1)),
•	 1 ≤ ui ≤ nri ( ui is one of route ri ’s trips),
•	 �i+1 ≥ �

ri
ui,vi+1

 (arrival at node vi+1),
•	 �i ≤ �

ri
ui,vi

 (departure from node vi ): the passenger must arrive at node i before 
trip ui of route ri leaves this node. He can achieve this either by riding in the 
same trip (in which case it is an equality), or from another route, or even 
walking.

The arrival time at the next node in the case of a route edge could also be stated as 
exactly �i+1 = �

ri
ui,vi+1

 because there is no reason to choose a higher value for �i+1 . It 
is written here as an inequality for reasons of symmetry with the departure time 
constraint.

A passenger boarding can be seen as an index i along path P such that ri ≠ 0 and 
ri ≠ ri−1 : the path is going through a route edge on i and this route is not the same as 
the previous one (which can possibly be a walk). The number of boardings b(P) of 
a passenger path P is the number of times a route ri is such that ri ≠ 0 and ri ≠ ri−1 
along the path.

Let R∗(P) be the sequence of all bus routes along P: R∗(P) = (ri)0≠ri≠ri−1 . Then 
b(P) is simply the size of R∗(P) : b(P) = |R∗(P)|.
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3.4 � Objectives

The number of transfers is exactly b(P) − 1 (or 0 if b(P) = 0 , but pure walking paths 
are disconsidered), so minimizing the number of transfers is the same as minimizing 
b(P).

Given a final passenger path P, the objective is to minimize several criteria:

•	 the arrival time �(P) = �q,
•	 the number of boardings b(P),
•	 the total walking distance d(P) =

∑
e∈PE∩EW

d(e).

It is also possible to minimize the total trip fare, which depends on the bus types 
covering the bus routes along the passenger’s path. For example, a passenger will 
pay an extra fare in a so-called executive bus with air conditioning. Moreover, in 
some cities, when a passenger buys a ticket, he may be able to ride several trips 
within a time window using a single fare. After this time window, he will need to 
pay another fare if he has to take another bus. The fare calculation will not be con-
sidered here so as to maintain a concise formulation.

In the two following sections, we describe some possible extensions to the TPDT.

3.5 � Transfer delay constraint

When switching buses, the passenger could be prompted to arrive earlier than the 
next bus by a given amount of time (e.g. at least three minutes). This gives the pas-
senger convenient boarding and alighting times and helps to decrease the risk of 
losing the next transfer if the current bus gets late. This minimum time is called 
transfer delay duration and is denoted by T.

It is possible to enforce that, whenever (vivi+1) ∈ PE ∩ ER (route edge) and 
ri ≠ ri−1 (passenger boards onto a new bus at vi ), the following constraint holds: 
�i ≤ �

ri
ui,vi

− T .

3.6 � Transfer location preference

In the case of a transfer between two routes sharing a common section (same 
sequence of stops), passengers usually choose to switch buses as early as possible 
to avoid the situation when the next bus of the transfer gets past the current one. 
Note that this situation does not contradict the FIFO property defined in Sect. 3.2, 
as buses from distinct routes can overtake one another. In addition, bus terminals 
provide facilities (clear information, platforms for the disabled, etc.) to improve the 
comfort, speed and safety for their waiting period. Therefore, passengers may prefer 
to wait for their bus at the terminal to perform their scheduled transfer.

This transfer location preference is modelled as follows: consider a passen-
ger path P defined by its nodes PV = (v1v2 ⋯ vq) . Suppose that for two points g 
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and h in the path such that 1 < g < h < q , there are two routes x and y such that 
∀i, g ≤ i < h, {x, y} ⊂ R(vivi+1) . That is, routes x and y share the same subpath 
between nodes vg and vh . Fig. 5 depicts this common section for routes x and y.

Suppose further that rg−1 = x and rh = y , meaning that the passenger has to 
switch between a bus of route x and a bus of route y at some node between vg and vh , 
and suppose that this transfer is possible in any of those nodes. For this to be true, 
trips ug−1 on route x and uh on route y are such that at any node in the common sub-
path, trip ug−1 arrives before trip uh , considering the transfer security threshold T 
(recall its definition in Sect.  3.5), meaning that the passenger has enough time to 
switch between both buses. Formally, ∀i such that g ≤ i ≤ h, �x

ug−1,vi
≤ �

y
uh,vi

− T .
Then the following holds:

•	 If the sequence of nodes vg ⋯ vh contains no bus terminal, the transfer between 
routes x and y must be performed at node vg . In other words: ∀i, g ≤ i < h, ri = y 
and ui = uh.

•	 If the sequence of nodes vg ⋯ vh contains at least one bus terminal (e.g. 
vz1 , vz2 ,⋯ ), the transfer between routes x and y is performed at the first bus termi-
nal in the sequence, denoted by vz1:

•	 ∀i, g ≤ i ≤ z1 − 1, ri = x and ui = ug−1.
•	 ∀i, z1 ≤ i < h, ri = y and ui = uh.

4 � Trip Planning by arrival time

In the Trip pPanning by arrival time (TPAT), instead of being available at a given 
time and minimizing his arrival time at his destination (see the TPDT problem 
described above), the passenger may be interested in finding out when he should 
leave his current place to arrive at some other place at a given time. For example, 
what time do I have to leave home so that I can get to work at 08:00 AM?

Formally, if the date and time the passenger wishes to arrive at node t is �  , the 
path arrival time is constrained to �q = �  (with the same notations as previously), 
and the departure time �1 should be maximized (which is the only difference to the 
TPDT objectives).

Fig. 5   Possible transfer locations incoming from route x and outgoing through route y 
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Theorem  1  The TPDT and the TPAT are computationally equivalent: from any 
instance of one problem, we can build an instance of the other problem such that any 
optimal solution in the problem can be matched with an optimal solution in the other 
problem.

The idea of the proof is similar as the forward and backward search introduced by 
Wu and Hartley (2004). Here, both the graph and the route timetables are reverted, 
and the trip plan is requested from the original target to the original source. We 
show here that TPDT ≤p TPAT (TPDT reduces polynomially to TPAT) by mapping 
this instance of the TPDT into an instance of the TPAT. We could show similarly 
that TPAT ≤p TPDT.

Figure 6 and Table 3 depict the TPAT graph and timetable corresponding to the 
TPDT graph and timetable given in Fig. 4 and Table 2.

Proof  Consider an instance of the TPDT described above and formulated in Sect. 3.
The TPDT is described by its graph G = (V ,E) where E = ER ∪ EW and by its 

set of bus routes R, each of which ( r ∈ R ) is defined by its path Pr and its timetable 
�r . As stated above, a solution option between nodes s and t is defined by its path 

walking edge
route edge

s t
r2

r2

r1

v2

v1

v3

δ = 12 sec
d = 10 m

δ = 120 sec
d = 100 m

d = 50 m
δ = 60 sec

r1

Fig. 6   Definition of the TPAT graph with reversed arcs

Table 3   Definition of the TPAT 
timetable, with reversed and 
negated times

Route Trips

r
1

v
3

v
2

v
1

− 09:00 − 08:54 − 08:50
− 08:10 − 08:03 − 08:00

r
2

v
3

v
1

v
2

− 08:55 − 08:35 − 08:30
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PV = (vi)
q

i=1
 , its arrival times at each node (�i)

q

i=1
 , its route at each step (ri)

q−1

i=1
 and its 

trip at each step (ui)
q−1

i=1
.

From this TPDT we build a TPAT instance as follows: let G� = (V �,E�) be its 
graph where E� = E�

R
∪ E�

W
 is such that:

•	 V � = V  (same nodes as in the TPDT graph),
•	 |E�| = |E| and ∀e = (ij) ∈ E, e� = (ji) ∈ E� (TPDT arcs are reverted), where 

R(e�) = R�(e) (the set of routes R′ is defined just below), e ∈ EW ⇔ e� ∈ E�
W

 
and if e ∈ EW then �(e�) = �(e) and d(e�) = d(e) (same walking duration and 
distance for both arcs).

Furthermore, for each TPDT route r ∈ R we associate a TPAT route r� ∈ R� such 
that:

•	 its path Pr� = (vr
mr
vr
mr−1

⋯ vr
1
) = (vr

mr−i+1
)
mr

i=1
 where route r’s path is 

Pr = (vr
1
vr
2
⋯ vr

mr
) (TPDT route paths are reverted),

•	 each trip u, 1 ≤ u ≤ nr of route r is associated to a trip u� = nr − u + 1 of route r′ 
such that: ∀i, 1 ≤ i ≤ mr , let i� = mr − i + 1 . Then 1 ≤ i′ ≤ mr and �r�

u�,vr
i�

= −�r
u,vr

i

 
(TPDT timetable is reverted and negated).

The timetable matrix then maintains its linewise and columnwise time-increase 
property:

•	 𝜃r
�

u�+1,vr
i�

− 𝜃r
�

u�,vr
i�

= −𝜃r
u−1,vr

i

+ 𝜃r
u,vr

i

> 0,
•	 𝜃r

�

u�,vr
i�+1

− 𝜃r
�

u�,vr
i�

= −𝜃r
u,vr

i−1

+ 𝜃r
u,vr

i

> 0.

From a TPDT s-t solution option, we define a TPAT t-s solution option as follows:

•	 its path P�
V
= (v�

1
v�
2
⋯ v�

q
) = (vqvq−1 ⋯ v1) (reversed TPDT path),

•	 its arrival times at each node ∀i, 1 ≤ i ≤ q, � �
i
= −�q−i+1,

•	 its route and trip at each step ∀i, 1 ≤ i ≤ q − 1, r�
i
= rq−i and u�

i
= uq−i.

We show that the TPAT solution option complies with the rules described in 
Sect. 3.3, except the specific TPAT requirement that � �

q
= −�1 = −�  is the maxi-

mum expected arrival time at the last TPAT node s:

•	 v�
q
= v1 = s (node s is the destination of the TPAT we defined)

•	 v�
1
= vq = t

•	 ∀i, 1 ≤ i ≤ q − 1, 𝛾 �
i+1

− 𝛾 �
i
= −𝛾q−i + 𝛾q−i+1 > 0

•	 ∀i, 1 ≤ i ≤ q − 1 , if (v�
i
v�
i+1

) is a walking edge then (vq−ivq−i+1) is a walking edge 
in the original TPDT graph, therefore: 

� �
i+1

= − �q−i = −(�q−i+1 − �(�q−i�q−i+1)) = −�q−i+1 + �(v�
i
v�
i+1

)

= � �
i
+ �(v�

i
v�
i+1

)
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 Besides, r�
i
= rq−i = 0 and u�

i
= uq−i = 0.

Suppose now that (v�
i
v�
i+1

) is a route edge. So is (vq−ivq−i+1) in the TPDT graph. Then:

•	 rq−i ∈ R(vq−ivq−i+1) , which means r�
i
∈ R(v�

i
v�
i+1

) . Also, as uq−i is a trip from route 
rq−i , u′i is a trip from route r′

i
 (in other words: 1 ≤ u′

i
≤ nr′

i
).

•	 �q−i ≤ �
rq−i
uq−i,vq−i

 (departure from vq−i ). Given that, by definition:
	   � �

i+1
= −�q−i and �rq−iuq−i,vq−i

= −�
r�
i

u�
i
,v�
i+1

 , we finally have � �
i+1

≥ �
r�
i

u�
i
,v�
i+1

 , which is the 
arrival time constraint at v�

i+1
.

•	 �q−i+1 ≥ �
rq−i
uq−i,vq−i+1

 (arrival at vq−i+1 ). Similarly:
	   � �

i
= −�q−i+1 and �rq−iuq−i,vq−i+1

= −�
r�
i

u�
i
,v�
i

 , which yields � ′
i
≤ �

r′
i

u′
i
,v′
i

 (departure time con-
straint from � ′

i
).

We still need to show that a solution option of the TPAT instance is optimal with 
respect to a given criterion if and only if the corresponding TPDT solution option is 
optimal with respect to the same criterion. In fact, we show that both the number of 
boardings and the walking distance are the same values in both problems. Regarding 
the departure time (in the TPAT) or arrival time (in the TPDT), they are opposite one 
another, so maximizing one will minimize the other one. Recall that every criterion is 
described in Sect. 3.4.

First consider the number of boardings in the TPDT b(P) and the number of 
boardings in the TPAT b(P�) . Recall that, by definition, b(P) = |R∗(P)| where 
R∗(P) = (ri)0≠ri≠ri−1 is the sequence of all the routes along P. Then similarly 
b(P�) = |R∗(P�)| . As by definition R∗(P�) has the same elements as R∗(P) in reverse 
order, its size is the same as R∗(P) . Then b(P) = b(P�).

The walking distance is also simple to calculate: in the TPAT instance its defini-
tion is 

∑
e∈P�

E
∩E�

W

d(e) . As the arcs in P�
E
∩ E�

W
 are the same as those in PE ∩ EW , but 

they are just reversed and with the same walking distance, ∑
e∈P�

E
∩E�

W

d(e) =
∑

e∈PE∩EW
d(e).

To complete the proof, we finally show that the departure time in the 
TPAT and the arrival time in the TPDT have opposite values. Recall that 
∀i, 1 ≤ i ≤ q, � �

i
= −�q−i+1 . Especially for i = 1 , � �

1
= −�q , which means that maxi-

mizing � ′
1
 is the same as minimizing �q . 	�  ◻

This theorem and proof also introduce a way to solve the TPAT using an already 
implemented TPDT algorithm. By reverting the input data (graph and timetable) and 
applying the TPDT algorithm, and finally reverting the solution option back to the orig-
inal values, we are able to solve the TPAT as efficiently as the TPDT, using the algo-
rithm described in the next section.
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5 � A*‑guided algorithm with Pareto dominance‑based elimination

The solution process for the problem described in Sect. 3 is guided by an A* pro-
cedure over the graph defined by the bus route network. For that, we use a trip time 
matrix similar to the one introduced by Delling et al. (2012). As in Dijkstra’s Short-
est Path Problem, labels are selected among a set of open labels and expanded over 
the graph during the solving process. Each label L is related to a given node vl of the 
network and its path Pl = (v1v2 ⋯ vl) of length l (with v1 = s ) and contains the same 
information as for a solution option path P, namely: the time of arrival at the current 
node �l , the number of transfers b(L) and the total walking distance d(L).

During its processing, the algorithm maintains a priority queue of open labels 
and in the main loop, an open label is selected and expanded, creating new open 
labels defined from the label node’s outgoing edges that are in turn inserted in the 
priority queue.

5.1 � Label expansion

A label expansion is the generation of new labels from the current label and all the 
neighbour edges, using all the bus routes available on these edges as well as the 
walking edges.

The selection for the next label to be expanded is based on the minimum expected 
arrival time at the target node t and considers the objective of minimizing the arrival 
time �q as a driver for the search. Consequently, the first solution options found 
are among the Earliest Arriving ones overall, regardless of the values of the other 
objectives.

The expected arrival time at the target node t from label L is defined as 
�(L) = �(L) + �(vl, t) , where:

•	 �(L) = �l is the arrival time at the label node vl (see its definition in Sect. 3.3),
•	 �(vl, t) is an estimate of the duration of a ride between vl and t.

The time on the path’s first node is �1 = �  and if l ≥ 2 , �l depends on the kind of 
incoming edge:

•	 if (vl−1vl) ∈ EW then �l is computed using the value �l−1 from the father label: 
�l = �l−1 + �(vl−1vl),

•	 if (vl−1vl) ∈ ER then �l is the time read in the timetable matrix corresponding 
to a route rl−1 and a trip ul−1 on node vl : �l = �

rl−1
ul−1,vl

 where rl−1 ∈ R(vl−1vl) and 
1 ≤ ul−1 ≤ nrl−1.

The duration of a ride between any node v and the target node t is estimated as 
�(v, t) =

d(v,t)

�
 , where:

•	 d(v, t) is the geographical distance between nodes v and t,
•	 � is a speed parameter called A* speed.
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The value � = 0 means that the next label to be expanded is chosen only according 
to its distance to the target node (and disconsidering its current time), whereas set-
ting � = +∞ means chosing according to the label’s current time and disconsider-
ing its geographical proximity. Any value in between balances both attributes. This 
value should be chosen carefully: unless this value is sufficiently high, the expected 
arrival time at the target �(L) is not guaranteed to be a lower bound of the actual 
arrival time at t of any s-t path generated from label L. For example, if we set � as 
the maximum possible speed for a city bus (e.g. 80 km/h), �(L) will always be a 
lower bound for the actual arrival time at t for any label generated from L which 
proves the admissibility of our A*-based heuristic. However, chosing a too high 
value can provide a poor lower bound in most cases as a bus will not always be 
available at once at the node and it will rarely go straight to the target node at maxi-
mum speed. The tradeoff between the algorithm’s processing time and the solution 
quality through choices of values for � will be discussed in Sect. 6.

When creating a new label from the current label and all the current node’s 
neighbour edges, we need to determine which will be the first possible trip of each 
outgoing route at the time given by the label. Recall that for each route r ∈ R , each 
column of matrix �r (sequence of trip departure times in the same node) is sorted in 
increasing order, as stated in inequality (2). In case of a transfer, the next possible 
trip of each route going through a given node can be found solving a binary search 
over the trips in the route timetable. Otherwise, the trip of the next label can be the 
same as the current label’s trip.

5.2 � Stopping conditions

Unlike usual A* algorithms, our algorithm does not stop at the first solution option 
it finds. Instead, it carries on the search until it finds some acceptable solution 
options that, for each criterion, have a better or “similar” value when compared to 
the first option found. “Similar” here means that a higher value is tolerated if the dif-
ference with the reference value is low. The maximum difference is predetermined 
for each criterion. For example, independently of the values for the other criteria, 
it will eventually reject an option with five transfers when the first solution option 
found has a single one. On the other hand, a solution option with two transfers (only 
one more than the first option) but better values for the other criteria is considered as 
acceptable.

The algorithm main loop stops whenever:

•	 no more labels are available to be expanded (empty priority queue),
•	 the number of solution options (s-t paths) found so far have reached a predefined 

quantity (e.g. 10 options),
•	 the number of expanded labels have reached a predefined quantity (e.g. 100,000 

expanded labels).

The last condition is similar to a time limit condition but the fact of using the num-
ber of expanded labels instead of an actual time limit (e.g. 1 s) allows the algorithm 
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to remain deterministic, i.e. to always return the same answer given the same input. 
The value for the maximum number of expanded labels is tuned beforehand accord-
ing to each city bus network, so that the processing time for most requests is less 
than 1 s.

5.3 � Heuristic label pruning

Beside the stopping conditions, some labels are pruned during the algorithm pro-
cessing if one of the following values of the label is much higher compared to the 
value of the first option found:

•	 its estimated time to target �(L) (e.g. over 1h30),
•	 its number of boardings b(L) (e.g. over 2 more boardings),
•	 its total walking distance d(L) (e.g. over 1 km).

The first solution option found is used as a reference for this heuristic label pruning 
as it is one of the most likely to be chosen by the passenger, being one of the earliest 
arriving solution options. Once the label selection in the main loop is guided by the 
minimum expected arrival time to target, meaning that the expected arrival time to 
target is expected to rise along the successive label selections, the first condition can 
also be triggered as a stopping condition for the main loop.

In order to avoid pruning labels with just slightly worse criterion values which 
can turn out to be very good options later, we introduce an equality threshold for 
two criteria: the arrival time (90 s) and the walking distance (30 s). For instance, two 
labels are considered to have a similar arrival time if the difference between their 
respective arrival times is lower than 90 s. In practice, when deciding between two 
possible solution options arriving with a difference of less than 90 s, the passenger 
will doubtlessly consider the other criteria (number of transfers, walking distance) to 
make up his mind.

5.4 � Pareto dominance

Each time a new label is generated through its predecessor’s expansion, it is submit-
ted to a Pareto dominance-based elimination on its node. This label is compared, for 
every criterion, to all the previously generated non-dominated labels on the same 
node and coming from the same bus route. When comparing each objective value, 
the same thresholds as the ones described previously are considered. Whenever a 
label is not worse than another one on every criterion but is better for at least one 
criterion, it is said to dominate the other label. Every dominated label is discarded 
from the graph.

Figure 7 plots feasible options or labels (squares and circles).
The green squares are the Pareto-optimal options of this set of points, and the 

solid line depicts the Pareto frontier. Every option in the upper right corner (red 
circles) is dominated by at least one Pareto-optimal option. When considering the 
threshold to compare the options, the Pareto frontier becomes the strip between 
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the original Pareto frontier and the dashed line to its right. In this case, the option 
depicted by the red square becomes Pareto-optimal.

If two non-dominated labels have the same sequence of bus routes (recall the def-
inition of R∗(P) in Sect. 3.4), their last transfer is compared according to the transfer 
location preference introduced in Sect. 3.6. If one of the transfers is preferable (at a 
terminal while the other one is not, or at a previous node), the label corresponding to 
the other one is discarded.

6 � Results and choice of value for the A* speed

Tests were performed in two Brazilian cities where our Trip Planner is available for 
the population: Florianópolis and Guarujá. Table 4 gives an insight on the size of 
the problems related to these cities.

Fig. 7   Example of Pareto frontier considering two criteria: arrival time and total walking distance

Table 4   Problem size for the 
tested cities

City Bus stops Links Routes Daily trips

Florianópolis 2512 23575 306 7854
Guarujá 697 6855 64 2364
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For both cities, we ran the algorithm for a set of previously chosen origin-desti-
nation locations over the network and for requests at a specific day and several times 
along the day, so as to cover the whole timetable. The origin-destination pairs in the 
test were chosen according to their high processing time over a big set of randomly 
chosen origin-destination pairs, for a request at a specific time. The running times 
were obtained on a standard PC with 8GB RAM and 4-core Intel i7-4510U CPU, 
2.00GHz, 4MB cache.

Figure 8 depicts the tests carried on in Florianópolis with the speed parameter � 
of the A* heuristic (see Sect. 5) varying between 0 and +∞ . Each point in the chart 
is an average value over a set of 180 requests as described above (several origin-
destination pairs and several times along the day). The average number of solution 
options gives an insight of the quality of the algorithm. Obviously, similar solution 
options, such as two options with the exact same routes and trips but distinct get on/
off stops, are considered only once.

Figure 8 shows that in Florianópolis, the average processing time increases with 
the A* speed, but the number of solution options decreases after a maximum value 
obtained around � = 10 . Interestingly, this value of the A* speed does not make the 
A* heuristic function admissible because it will not always give a lower bound on 
the actual arrival time at the target location. This is especially the case when, con-
sidering a label location and time, there is a bus just about to arrive at this location 
that can take the passenger directly to the target location (as it will probably drive 
faster than 10 km/h). However, the tests empirically show that this value is among 
the best ones for the variety of options and yields an acceptable processing time 
(around 1140 ms).

Figures 9 and 10 show maps of label expansion for the cases � = 3 and � = 10 , 
respectively, for the same request as the example in Sect. 2. The origin and destina-
tion of the request are the green and red squares, and each expanded label during the 
algorithm is depicted as a circle with a color gradient between yellow and purple, 

Fig. 8   Influence of the speed parameter of the A* procedure on the processing time and number of solu-
tion options in Florianópolis, Brazil
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depending on the step in which the label was expanded (purple for a later step). The 
higher the value of � , the more labels are expanded along the algorithm even if some 
label expansions look useless. This explains why the average processing time tends 
to rise for high values of the A* speed �.

Figure 11 plots a similar chart as above for the tests run in Guarujá over a set 
of 650 requests for each value of the A* speed � . In this case, both the number of 

Fig. 9   Label expansion map for a request in Florianópolis and � = 3

Fig. 10   Label expansion map for a request in Florianópolis and � = 10
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solution options and the processing time remain somewhat constant for 𝜎 > 20 . 
For 𝜎 < 20 , the number of options rises continuously but unlike the Florianópolis 
case, the processing time peaks around � = 2 (its value is then less than 800 ms) 
and after � = 20 it remains quite constant at about 450 miliseconds. The peak can be 
explained by the fact that the number of daily trips per route (36.94) is higher than 
for Florianópolis (25.67): for a small value of � , the algorithm focuses on the label 
geographical proximity. At a given node, it is likely to expand more labels from a 
given route on later trips so that it gets geographically closer to the destination node. 
The constant behaviour after � = 20 (instead of rising) can be explained by the small 
graph for Guarujá: labels do not expand as much as in the Florianópolis case before 
the algorithm reaches one of the stopping conditions.

As for Florianópolis, � = 10 is a good setting but for Guarujá it seems that � = 20 
or higher is slightly better. These values of the A* speed parameter � give a good 
balance between the processing time and the solution quality in both cases.

From the Guarujá test details, we noted that distinct values of 𝜎 > 20 are very 
likely to return exactly the same options, unlike the Florianópolis case. The pro-
cessing time is also always lower in Guarujá than in Florianópolis (which can be 
explained by the problem sizes given in Table 4), but the average number of options 
is higher in Guarujá. This is certainly because of the structure of the bus route net-
work: in Guarujá there are lots of routes sharing subroutes with each other, whereas 
in Florianópolis some remote areas are served by a single route.

7 � Conclusion and perspectives

In this paper, we described a multi-objective Bus Passenger Trip Planning Problem 
and explained how it can be solved, either for its arrival time or departure time ver-
sion, through an A*-based algorithm where Pareto-dominated labels are discarded. 

Fig. 11   Influence of the speed parameter of the A* procedure on the processing time and number of 
solution options in Guarujá, Brazil
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The tests show that using the right value for the A* speed (10 for Florianópolis, 20 
for Guarujá) optimizes the algorithm performance as well as the quantity and quality 
of the options given to the user.

We focused on the impact of changing the A* speed value over the solution qual-
ity. Other parameters, such as the equality threshold values, also have a significant 
influence on the result and could be tested in the same way. We are also aware that 
the algorithm may be even more powerful with some improvements, such as pre-
processed transfer options, with no need of constant lookup in the timetable. Fur-
thermore, in the A* procedure, the estimated time from a given node to the target 
could be computed using the bus route network and the timetable so as to get a bet-
ter lower bound and possibly to avoid the need of an A* speed parameter. However, 
the way this has to be performed should be carefully elaborated because the algo-
rithm’s A* admissibility is somewhat deteriorated by the stopping conditions, the 
Pareto-dominance and the fact that the A* evaluation function is based on a single 
criterion.

Still, our Trip Planning tool has been continuously available in several Brazilian 
cities for several years and provides a wide range of solution paths within a couple 
of seconds or less. Whoever uses the Trip Planning tool, even longtime users of the 
bus transit network, can come up with some surprising route options. It is a good 
incentive for public transport in traffic-crowded cities like Florianópolis: being the 
home city of the authors, we can only confirm the benefit of having a reliable Trip 
Planning tool which contributes to the better use of bus transportation.
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