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Abstract
A critical step in the design of urban transport networks is the determination of 
the routes and the frequencies of buses. This situation entails a highly combinato-
rial optimization problem with a complex computational solution, even for small 
instances. Several studies have addressed such a situation, minimizing travel times 
as the main objective. However, the growing trend toward the development of sus-
tainable transport operations requires that the design of the network also considers 
the emissions of toxic gases that result from combustion, which leads to a new vari-
ant of this type of problem, called the pollution transit network design problem. In 
this paper, the problem is formulated as a biobjective mathematical programming 
model. Complex problem instances are proposed for this problem, and by using a 
multi-objective genetic algorithm, we approach the unimodal and bimodal version 
of the problem by taking into account the elastic demand between buses and cars. 
By using the proposed mathematical programming model and the genetic algorithm 
for small and large problem instances, respectively, we show that the generated pol-
lutant emissions are drastically reduced without increasing travel times or costs.
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1 Introduction

The design of transit systems has a strong impact on the quality of life for inhab-
itants of modern cities. This impact involves travel time, noise, congestion, acci-
dents, and pollution. Designing these systems is particularly difficult because 
of the multiple objectives and constraints that must be taken into consideration 
(Ceder 2015; Vuchic 2005). This has led to the transit network design problem 
(TNDP), which has multiple definitions, the most common of which consists of 
determining the frequencies and the set of routes that make up a transit network 
operated by buses to minimize the total travel time for all passengers (Farahani 
et al. 2013; Guihaire and Hao 2008; Kepaptsoglou and Karlaftis 2009). The tran-
sit network is designed over an infrastructure network that represents streets and 
potential bus stops, and a fixed matrix demand between the stops or between 
separated centroids. Once the routes have been determined, the allocation of a 
heterogeneous bus fleet that considers different technologies should be optimized 
(Jiménez and Román 2016). The TNDP has been formulated as a mathematical 
model considering integer and real variables. However, today, transport systems 
must be designed to offer users service with low levels of congestion and taking 
into account environmental considerations.

The mathematical models that represent the TNDP are complex; therefore, the 
search for an optimal solution for large problem instances is a challenging task 
(Magnanti and Wong 1984). These characteristics make it difficult to formulate 
a problem that considers all variables from the real world (Newell 1979). Some 
recent studies have formulated the TNDP as linear integer programming models 
that minimize the total travel time in unimodal networks, considering only buses 
and solving the problem with exact methods (Cancela et  al. 2015; Wan and Lo 
2003). In a study by Zhang et al. (2014), a non-linear model that maximizes the 
profit in a multimodal network (buses and cars) is formulated and solved using an 
active-set algorithm. Both linear and non-linear programming models tested sim-
plified small and medium non-congested networks. To increase the quality of the 
solutions, column generation methods have also been proposed (Borndörfer et al. 
2007; Schöbel and Scholl 2006); however, the required computation time remains 
high.

To find a solution for the TNDP, most researchers address the problem using 
metaheuristics. Because of the NP-hardness of the problem (Magnanti and Wong 
1984), traditional methods have difficulties finding optimal solutions. Mathemati-
cal models typically include integer variables, non-linear equations, and logical 
constraints; thus, if a model can be proposed for a specific real situation, it is hard 
to solve it to optimality. Metaheuristics, such as genetic algorithms, handle such 
characteristics in a better way (Chakroborty 2003). In fact, several studies propose 
genetic algorithms or hybrid evolutionary algorithms to address the mono-objec-
tive TNDP, minimizing the cost of passengers or a weighted cost between the 
cost of passengers and the cost of operators. These approaches consider specific 
mutations and crossover operators to take advantage of the characteristics of the 
problem (Wang and Lin 2010; Zhao et al. 2015). Other studies consider several 
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objectives and propose metaheuristics to find efficient Pareto solutions that mini-
mize passenger travel time and operator costs. Thus, Mumford (2013) and John 
et  al. (2014) propose evolutionary algorithms for the TNDP that consider only 
the definition of routes, using specific operators and heuristic techniques that 
support the process. Also, a multi-objective metaheuristic has been developed to 
determine the definition of both routes and frequencies, approaching a more com-
plex problem (Arbex and da Cunha 2015; Mauttone and Urquhart 2010). Nikolić 
and Teodorović (2014) address the multi-objective problem by developing a 
bee colony algorithm to optimize three objectives using a prioritization method 
and a lexicographic order, obtaining only one solution. All these metaheuristic 
approaches proved to be efficient in finding quality solutions to larger instances 
compared to exact methods; however, such studies considered only one mode of 
transportation (buses) and did not include environmental considerations.

Although the impact that transit systems have on the pollution in cities is known, 
the inclusion of this aspect into the models has gained relevance only in recent years. 
In fact, transit systems are considered an important tool to reduce  CO2 emissions, 
which are one of the most significant components in Greenhouse Gases (GHG). Fur-
thermore, the transportation sector is one of the largest contributors to global GHG 
emissions; therefore, the reduction of pollution is an important aspect to consider 
when designing transportation systems (US EPA 2014). Many studies have regarded 
this issue with freight transportation, and the minimization of GHG emissions has 
led to the green vehicle routing problem, which includes environmental considera-
tions in the classic vehicle routing problem (which differs from the TNDP) (Prade-
nas et al. 2013; Demir et al. 2014; Lin et al. 2014; Toth and Vigo 2014; Sanchez 
et  al. 2016; Bravo et  al. 2019). Also, other studies in the field of green logistics 
have attracted much interest from governments and companies trying to reduce their 
impact on the environment (Sbihi and Eglese 2010). However, the reduction of  CO2 
emissions has received less attention in the design of public transportation systems. 
To the best of our knowledge, the study by Pternea et al. (2015) is the only related 
work that estimates the GHG emissions of buses in an objective function that maxi-
mizes the general welfare. Pternea et al. (2015) proposed a heuristic method to solve 
the problem of maximizing the general welfare in a network that does not consider 
traffic congestion. Also, a multi-criteria approach has been proposed for the decision 
making in an urban transport network design that includes environmental consid-
erations; however, the approach is not intended to design a complete transit network 
(Pérez et al. 2015).

The consideration of various modes of transportation leads to a variation of the 
TNDP that represents more realistic situations. The research by Gallo et al. (2011) 
proposed a scatter search algorithm to optimize the frequency of a subway line with 
elastic demand distributed between metros, buses, and cars in a real-sized network. 
Although the algorithm does not design a complete network, it proposes an assign-
ment method of passengers into the different modes. Additionally, Miandoabchi 
et al. (2012) proposed a multi-objective evolutionary algorithm to design a network 
that considers cars and buses. The solution to the problem allows for defining the 
number of tracks, the direction of new or existing streets, and the bus routes, without 
considering frequencies. An approach for the design of rapid railway networks that 



192 J. Duran et al.

1 3

considers the elastic demand between competing modes (Cadarso and Marín 2017; 
Canca et al. 2016) and multimodal models that allow the design of a transit network 
composed of traditional buses, electric buses, and cars (Beltran et  al. 2009) have 
also been proposed. The different transport modes considered have different levels 
of  CO2 emissions and, consequently, when included in the design of the system, 
generate different non-dominated solutions. Also, the design of a biobjective system 
instead of a mono-objective system generates better compromise solutions, resulting 
in greater flexibility for the system’s operational management.

Here, we present a biobjective approach to finding solutions in the Pareto fron-
tier according to the design of a multimodal transit system on a congested network 
and considering the minimization of  CO2 emissions. This problem is called the pol-
lution transit network design problem (P-TNDP) and consists of determining the 
routes and frequencies of a public transport network operated by buses, consider-
ing congestion and minimizing both total travel time and emissions. Evaluating only 
one mode of transport, omitting the capacity of buses, and treating speed and fre-
quency as discrete variables, we obtain a particular problem that we call P-TNDPa, 
for which a mathematical programming model is proposed. To evaluate the simpli-
fications adopted in this mathematical model, a second problem, P-TNDPb, is con-
sidered, which also evaluates one mode of transport but considers bus capacity and 
continuity in speed and frequency variables. The bimodal situation is studied by the 
problem P-TNDPc, which is an extension of the P-TNDPb and includes buses and 
cars. Because the mathematical model obtains solutions only for small P-TNDPa 
instances, a multi-objective genetic algorithm (MGA) is designed to find solutions 
for the P-TNDPb and P-TNDPc.

2  Biobjective mathematical programming model for the P‑TNDPa

The proposed model achieves the minimization of both the total travel time and  CO2 
emissions in a space of constraints defined by the fleet size and road congestion. The 
model also includes a user cost function and the set of constraints associated with 
the allocation problem.

The mathematical formulation is based on the network G = (V ,E) that represents 
a physical infrastructure network. Each node v ∈ V  represents a bus stop connected 
by edges that represent bidirectional streets. Each edge e = (i, j) ∈ E is associated 
with a distance le and a practical capacity �e that indicates the number of buses that 
can run on a street per time unit without experiencing congestion. There is a set of 
possible routes denoted by r ∈ R , where Er ⊆ E is the set of edges that conform 
the route r and Re ⊆ R is the set of routes that pass through the edge e . The travel 
demand is considered to be inelastic and is given by an origin–destination (OD) 
matrix D = {dij} , where i and j represent the stop nodes, and the value dij indicates 
the number of passengers to be transported from vertex i to vertex j per time unit. 
In addition, the demand is also represented by a vector K, where each OD pair is 
associated with a k ∈ K , defining �k = dij and identifying the vertices of the origin 
and destination as Ok = i and Dk = j , respectively. For the physical network, routes 
or lines are defined as sequences of adjacent nodes given that they circulate in both 
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directions. A parameter B, which represents the maximum number of buses that can 
be used in the network, is also considered.

A classical assignment model of optimal strategies is used (Spiess and Florian 
1989). To formulate this model, a trajectory network GT = (N,A) is constructed. For 
every route r ∈ R that passes through a vertex v ∈ V  , a node nrv ∈ N is generated. In 
addition, for every OD pair, its respective origin and destination nodes are created. 
Additionally, the arcs a ∈ A are divided into three exclusive groups as follows: travel 
arcs AV , which model the movement of the passengers inside the buses; waiting arcs 
AW , which model the passengers who are waiting and transferring between differ-
ent routes in a particular node; and destination arcs AD , which represent the end 
of a trip, such that A = AV ∪ AW ∪ AD . For a particular node n, the sets A+

n
,A−

n
⊂ A 

are defined with the outgoing and incoming arcs from (to) that node, and the set 
AW+
n

⊂ AW is defined with the outgoing waiting arcs from that node. In addition, we 
define the parameter bnk , which assumes the value �k for the source node, −�k for the 
destination node and 0 for the intermediate nodes. As an example, Fig. 1a shows a 
physical network with five vertices and six edges on which three routes are defined. 
Figure 1b shows the network of trajectories corresponding to an OD pair.

To obtain a linear model, the frequencies and speeds of buses are discretized. In 
the case of the frequencies, a set of parameters � = {�f } , indexed by f ∈ F, is 
assigned and indicates the possible values of frequencies to be assigned to the 
routes. This change requires adding parallel waiting arcs in the trajectory network. 
Note that each waiting arc a ∈ AW is associated with a unique frequency f denoted 
by f (a) . Similarly, for the speeds, a set of parameters � = {�u} , indexed by u ∈ U 
and containing the possible values of the average speed, must be generated in 
decreasing order. A set of utilization factors of arcs � = {�u} is generated in 
increasing order where �1 = 1 . It is assumed that the speed is constrained by the 
capacity of the arcs. Therefore, each edge has a practical capacity �e indicating that 
the bus lines can operate at an optimum speed �1 . If the flow of buses increases over 
the practical capacity by a factor of �u , then the speed of all routes in that edge will 
decrease to the respective �u value. This change requires the addition of parallel 
travel arcs for each of the possible speed values, making the cost of each arc equal to 
ca =

le(a)

�u(a)

 . Note that each travel arc a ∈ AV is associated with a unique route r , edge e 
of the physical network and speed level u , denoted by r(a) , e(a) and u(a), 
respectively.

1

2

3

4 5

r1

r2

r3 D O

D

Travel arc u1

Travel arc u2

Wait arc f1

Wait arc f2

Destination arc

(a) (b)

Fig. 1  Example of physical network (a) and trajectory network (b)
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Considering a GT = (N, A), a P-TNDPa is formulated with functions (1)–(20). 
The first objective and a subset of constraints are based on the model proposed by 
Cancela et al. (2015). We additionally consider  CO2 emissions and traffic conges-
tion. The model is formulated according to the following decision variables:

– xr = 1 if the route r is part of the solution, otherwise, xr = 0.

– yrf  = 1 if the frequency �f  is assigned to the route r, otherwise, yrf = 0.
– zeu = 1 if the edge e operates in a speed interval u, otherwise, zeu = 0.
– qrefu = 1 if the frequency �f  is assigned to the route r and if the edge e is operating 

in the interval u, otherwise, qrefu = 0.
– vak = is the number of passengers who travel through arc a [pas/h] corresponding 

to the k-th OD pair.
– wnk = is the waiting time multiplied by the demand in node n corresponding to 

the k-th OD pair.

Additionally, we consider xr(a) as the variable associated with the route that gener-
ates arc a. In the same way, ze(a)u(a) refers to the vertex and speed interval that gener-
ates arc a, whereas yr(a)f(a) refers to the path and frequency of arc a.

(1)Minx,y,z,q,w,u Z1 =
∑

k∈K

(

∑

a∈A

cavak +
∑

n∈N

wnk

)

(2)Minx,y,z,q,w,u Z2 = 2
∑

e∈E

∑

u∈U

∑

r∈Re

∑

f∈F

EMu

le

�u

�f qrefu

(3)

Subject to∶

2
∑

f∈F

�f

∑

a∈AV

le(a)

�u(a)

qr(a)e(a)fu(a) ≤ B

(4)
∑

a∈A+
n

vak −
∑

a∈A−
n

vak = bnk ∀n ∈ N, k ∈ K

(5)vak ≤ �f (a)wnk a ∈ Aw+
n
, n ∈ N, k ∈ K

(6)vak ≤ �kxr(a) ∀a ∈ A, k ∈ K

(7)vak ≤ �kze(a)u(a) ∀a ∈ AV
, k ∈ K

(8)vak ≤ �kyr(a)f (a) ∀a ∈ Aw
, k ∈ K

(9)
∑

r∈Re

∑

f∈F

�f yrf ≤ �e

∑

u∈U

�uzeu ∀e ∈ E
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The proposed formulation has two objectives: objective function (1) repre-
sents the minimization of the total travel time, considering vehicle travel time, 
waiting time and penalization for transfers (cost of waiting arcs); objective func-
tion (2) represents the minimization of the  CO2 emission rate of the system, 
where EMu is the emission rate (kg of  CO2/h) generated by buses operating at 
interval speed u.

Constraint (3) establishes a maximum for the size of the bus fleet required 
to operate the system. Constraints (4) and (5) correspond to the assignment 
model and divide the passenger routes among the possible routes and determine 
the waiting times. The former corresponds to the passenger flow balance at the 
nodes, while the latter relates the waiting time at each node to the frequency 
of the routes. Constraints (6)–(8) ensure that passengers use only the routes 
selected in the solution according to respective speeds and frequencies. Con-
straints (9) correspond to the utilization of the capacity of the arcs, which varies 
according to the speed range selected for each arc, thus representing congestion 
in the streets. Constraints (10) indicate that for each selected route, a frequency 
should be assigned. Constraints (11)–(14) ensure the coherence of the values of 
the variables qrefu and zeu . Finally, constraints (15)–(20) indicate the values that 
each of the variables can take.

(10)
∑

f∈F

yrf = xr ∀r ∈ R

(11)
∑

u∈U

qrefu = yrf ∀r ∈ R; f ∈ F; e ∈ Er

(12)
∑

f∈F

qrefu ≤ zeu ∀e ∈ E; u ∈ U; r ∈ Re

(13)
∑

u∈U

zeu ≤
∑

r∈Re

xr ∀e ∈ E

(14)
∑

u∈U

zeu ≤ 1 ∀e ∈ E

(15)vak ≥ 0 ∀a ∈ A, k ∈ K

(16)wnk ≥ 0 ∀n ∈ N, k ∈ K

(17)xr ∈ {0, 1} ∀r ∈ R

(18)yrf ∈ {0, 1} ∀r ∈ R, f ∈ F

(19)zeu ∈ {0, 1} ∀e ∈ E, u ∈ U

(20)qrefu ∈ {0, 1} ∀r ∈ R, e ∈ E, f ∈ F, u ∈ U.
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3  A multi‑objective genetic algorithm for the P‑TNDPb 
and the P‑TNDPc

To determine the Pareto solutions of large P-TNDPb and P-TNDPc instances, we pro-
pose a multi-objective genetic algorithm (MGA) that operates in genotype–phenotype 
mode. The genotype of a solution is a binary string that represents its characteristics, 
whereas the phenotype is the feasible solution. Specifically, the genotype is a string in 
which each element has value 1 if the route is included in the solution or 0, otherwise. 
As the phenotype, an algorithmic module is responsible for performing the elementary 
operations on the genotype and another independent module is involved with the con-
struction and evaluation of a feasible solution. The evaluation of the solutions is per-
formed with measures of quality and diversity using the dominance depth ranking and 
crowding distance operators (Talbi 2009). Dominance depth ranking divides the popu-
lation into subsets of solutions that are ordered and ranked according to the dominance 
between sets. Crowding distance operators measure the diversity in the Euclidean space 
of both objective functions as the area of the rectangle defined by the left and right 
neighboring solutions of the current solution, so that a high value implicitly represents 
a high diversity of the solution. The evolutionary process is repeated for a fixed number 
of generations.

The genotype algorithmic module performs selection, variation and replacement 
operations. The tournament selection method is used, which consists of randomly 
selecting a small set of solutions to choose the best one in the set. To that end, the 
method first selects by the quality measure and then, in case of a tie, by the diversity 
measure. After selection, three crossover operators and two mutation operators are 
considered. The first uniform crossover operator swaps each gene between the parent 
solutions with a certain probability. Second, the one-point crossover operator selects a 
random point of the solution vector, and the segments beyond this point are swapped 
between both parents’ solutions. The third operator is the two-points crossover that 
consists of selecting two points of the parent solution and swapping the segment of the 
gene that results from both parents. The proposed algorithm includes three crossover 
operators, which are selected randomly in each case to increment the variability of the 
search process. Additionally, two mutation operators are considered. When a solution 
is selected to be mutated, the operator to be used is randomly determined. The first 
operator is the bit flip mutation, where each gene of the vector solution has a probabil-
ity to change from 0 to 1 and vice versa. The second operator is the one bit mutation 
for which exactly one gene of the vector solution is randomly selected to change from 
0 to 1 or vice versa. The replacement of the population occurs using the environmen-
tal replacement operator. From a population constructed with the union of the current 
population and their descendants, the individuals of the new population are selected 
according to the measures of quality and diversity.

3.1  Unimodal fitness evaluation for the P‑TNDPb

The fitness evaluation consists of solving an assignment subproblem to determine 
the total travel time and the resulting emission rate; then, the indicators of quality 
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and diversity of the generated solutions can be evaluated. The assignment method 
is based on the iterative algorithm by Nikolić and Teodorović (2014) and is modi-
fied to include traffic congestion. This method assigns passengers to paths with a 
maximum of one transfer. Consequently, if an OD pair is not connected by at least 
one transfer, the resulting solution is considered infeasible. In addition, if the pro-
cedure does not converge, the solution is also considered infeasible. The process 
assigns passengers with and without transfers into the different possible paths 
depending on the frequency of each route, prioritizing the paths without transfers. 
Thus, based on the flows of passengers assigned to each route, the frequencies 
and speeds are updated. Specifically, for each OD pair, the number of passengers 
is distributed on the routes with zero or one transfer. From this result, the number 
of buses in each route, the travel time and the average bus speed in each arc are 
calculated. The procedure iterates until the speeds and frequency values stabilize. 
The frequency of route r is determined so that the number of buses is sufficient to 
transport all assigned passengers, and it is given by fr =

Qr,max

�max×Cbr
 , where Qr,max is 

the maximum volume of passengers along the route, �max is the coefficient of 
maximum utilization, and Cbr is the bus capacity of buses operating on route r.

The number of buses required to operate route r is given by Nr =
fr×Tr

60
 , where 

Tr is the total travel time on route r. The number of buses that circulate through 
arc e in one direction is given by adding the frequencies of the routes, i.e., 
Fe =

∑

r∈Re
fr , where Re is the set of routes that pass through arc e. Let �e be the 

practical capacity of arc e and Te,0 be the free flow time of arc e given by 
Te,0 =

60×le

1000×vmax
 , where le is the length of the arc e and vmax is the maximum speed. 

Then, considering the congestion of the arcs, the travel time Te is computed by 
Eq. (21) and ve =

60×le

1000×Te
 . This function is selected to model traffic congestion due 

to its simplicity and low computational cost, which facilitates the MGA’s perfor-
mance estimation (Patriksson 2015). Other approaches can be used by simply 
replacing the traffic congestion evaluation module in the phenotype.

The evaluation of the first objective function in Eq. (1), which corresponds to 
the total travel time of the passengers, is calculated by adding the waiting time, 
bus travel time and an estimated fixed transfer time between lines. The waiting 
time of a passenger Wt depends on the frequency of the possible routes to be used 
for the passenger and corresponds to half of the time waited between the arrivals 
of two buses at the stop, i.e., Wt =

30
∑

r∈RAB,t
fr
 . The vehicle travel time is the sum of 

the travel times in each arc included in the journey. To evaluate the objective in 
Eq.  (2), emissions generated in an arc are obtained by multiplying the emission 
factor corresponding to the average speed of an arc by the flow of buses that cir-
culate on it. The emissions of the whole system are the sum of the emissions of 
each of the arcs multiplied by 2 because all routes and arcs are bidirectional. 
Then, the emissions on an arc ( Ea ) are given by Ea = 2 ×

∑

e∈E
E(ve)

Fe , where E(ve)
 

(21)Te =

{

Te,0, if Fe ≤ 𝜅e

Te,0 ∗ exp
(

Fe

𝜅e
− 1

)

, if Fe > 𝜅e
.
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is the emission factor corresponding to the speed ve and E is the set of arcs that 
form the network.

3.2  Bimodal fitness evaluation for the P‑TNDPc

To evaluate the fitness for the P-TNDPc, which considers two transportation modes, 
private cars and public buses, two travel assignment processes are performed, one 
for each mode of transportation. The procedure presented in Fig. 2 first determines 
the minimum travel time for each OD pair considering an arbitrary distribution of 
the demand for both modes of transportation. Then, based on the times obtained, 
the distribution of the demand is updated using a logit binomial model. Finally, the 
travel assignment is performed with the new demands and both objective functions 
are evaluated.

The assignment is performed sequentially, first by assigning the travel of cars 
considering that the bus routes operate with a certain initial frequency and then by 
assigning the passengers by the unimodal procedure described in Sect. 3.1. If any 
OD pair is not connected by paths with one or without transfers, all the demand is 
assigned to private cars. Unlike the unimodal method, the bus travel time Tb

e
 in arc e 

depends on the flow of both buses and cars and is obtained by Eq. (22), where �e is 
the practical capacity of arc e, Fb

e
 and Fc

e
 are the flow of buses and cars through arc e 

Initial car assignment

Initial transit assignment and 
frequency setting

Compute minimum time by 
mode

Modal split
Binomial logit model 

(attributes and 
coefficients)

Car assignment

Transit assignment and 
frequency setting

Compute objective functions

Routes,
Total demand

Initial demand 
distributionInitial frequencies

Fig. 2  Bimodal assignment procedure
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and Tb
e,0

 is the time of free flow for buses in arc e given by Tb
e,0

=
60×le

1000×vb
max

, where le is 
the length of arc e and vb

max
 is the maximum operating speed of the buses.

Car assignment is performed by means of an incremental assignment heuristic. 
The process consists of a fixed number of I iterations, and in each of them, part of 
the demand is assigned to the shortest path between each OD pair of nodes, updat-
ing the speeds in each iteration according to the congestion. Thus, the demand cor-
responding to a pair can be distributed among different paths. This heuristic requires 
low computational cost and, although the convergence to an equilibrium solution 
is not ensured, the resulting flow is good enough for practical purposes (Patriksson 
2015; Sheffi 1985). Because more than one person can travel by car, the proposed 
model considers an average number of passengers per car ( uc ), and the demand of 
cars in an OD pair is equal to the demand of travel by car divided by uc . The car 
travel times are computed similarly to buses.

After the initial travel assignment, the minimum travel time between each OD 
pair in each mode of transportation is determined. In addition, for public transpor-
tation, the average waiting time in the path corresponding to the minimum time is 
computed, and the case that corresponds to the penalty for transfer is determined. 
Next, the demand of every OD pair is divided by a binomial logit method between 
buses and cars, such as in Khan (2007). Thus, the utility of traveling by car is 
defined as a linear combination of the minimum travel time for the trip and a cost, 
which is considered constant. In turn, the utility of traveling by bus is a combination 
of in-vehicle travel time, estimated waiting time, cost of travel and access time to the 
stop. The last two elements are considered as constant.

To evaluate both objective functions, the total travel time is obtained by adding 
the car travel times to the bus travel times, the waiting times, and the transfer times. 
Car emissions are computed by the arcs, multiplying the flow by the factor corre-
sponding to the average speed of the cars in the arc and the total car emissions are 
added to the bus emissions.

4  Experimental design

The performances of the mathematical programming model and the genetic algo-
rithm are evaluated in the test instances generated from the networks used in state-
of-the-art studies and modified to include traffic congestion in the arcs. The net-
works considered in this paper come from studies by Cancela et al. (2015) with 5 
OD pairs; Wan and Lo (2003) with 9 OD pairs; and Mandl (1980) with 172 OD 
pairs. In these studies, the cost of each arc corresponds to the travel time between 
two nodes, but since the speed is variable in the P-TNDP, the cost must correspond 
to the distance. This distance is calculated by the speed equation, considering the 
maximum speed and assuming the time is equal to the cost value in the original 
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instance. Additionally, for each arc, the practical capacity is arbitrarily determined, 
which is different for the unimodal and bimodal cases. Figure  3 shows the three 
networks with the attributes of distance (d), unimodal practical capacity (UC) and 
bimodal practical capacity (BC) in each arc.

Seven test instances were generated for the P-TNDPa from the three networks 
presented in Fig. 3. Since the frequencies and speeds are discrete variables in the 
P-TNDPa, different instances were generated from the same network considering 
different values for each variable. The parameters used in these instances are pre-
sented in Table 1, where the columns correspond to the instance name, type of net-
work, possible values for frequencies (θf), possible values for speeds (φu), factors 
of capacity utilization ( �u ), emission factors for each speed (EMu), limit of buses to 
operate the network (B) and penalty time for transfers (p).

Five test instances were generated for the P-TNDPb and P-TNDPc. The difference 
between the instances is in the considered practical capacity (UC or BC). Additional 
parameters related to cars are required for the P-TNDPc. Details are presented in 
Table 2, where the columns correspond to the instance name, type of network, prob-
lem approached, bus capacity ( Cb ), average number of passengers per car ( uc ), pen-
alty for transfers (p), tolerance of convergence for frequency and speed ( cf  and cv , 
respectively), initial speed ( f0 ), and maximum speed of cars ( vc

max
 ) and buses ( vb

max
 ). 

Cells marked with “–” indicate that the parameter is not required in the P-TNDPb. 
In addition, there are other parameters that have the same value in all instances: the 
maximum utilization of the bus capacity ( �max ) is set to 1, the tolerance for path 
consideration ( ct ) is set to 1.5, the minimum frequency of the routes ( fmin ) is set to 2 
buses/h, and the maximum frequency ( fmax ) is set to 900 buses/h.

The proposed methods require generating a set of initial feasible routes (Farahani 
et  al. 2013; Kepaptsoglou and Karlaftis 2009). Because the total number of pos-
sible routes increases exponentially with the size of the network, a heuristic method 
is proposed based on the fact that the most attractive routes are those that directly 
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Fig. 3  Networks used: a Cancela et al. (2015), b Wan and Lo (2003) and c Mandl (1980)
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join the origin-destination pairs, i.e., routes without transfers. The algorithm by Yen 
(1971) that provides the m shortest routes between the pairs of nodes that concen-
trate most of the demand is used.

All the results were performed on an  Intel® Core i7 computer equipped with a 
processor of 3.2 GHz and 8 GB of installed RAM memory. The mathematical pro-
gramming model was implemented in GAMS and solved in CPLEX 12.6.1 (GAMS 
Development Corporation, 2014) using the ε-constraint method. The evolutionary 
algorithms were implemented in the C++ language using the ParadisEO software 
(Cahon et  al. 2004). The MGA was run 15 times per instance and obtained a set 
of 15 solutions per run that were non-dominated. Since it is a biobjective problem, 
the comparison between the non-dominated solutions set found in the different runs 
of the algorithms was performed by means of the hypervolume indicator, which 
includes the considerations for the quality and diversity of each set.

5  Results

The complex process of assigning parameters to the MGA was executed with Param-
ILS, a procedure that, through an iterated local search, determines the set of param-
eters that generate the best performance of the algorithm (Hutter et al., 2009). Using 
this process, we determined a set of 13 values (Table 3). The algorithm selects the 
values among a set of alternatives for each parameter, which were defined based on 
values commonly used in the literature.

The  CO2 emissions generated by a designed transit system can be reduced sig-
nificantly with a small increase in the total travel time. A transit network designed 
according to the proposed models produces significantly fewer emissions with a 
small increase in the total travel time compared to a solution for the TNDP. Figure 4a 

Table 1  Test instances for the P-TNDPa

Instance Type of net-
work

Parameters

�f
(buses/h)

�u

(km/h)
�u EMu

(kg of  CO2/h)
B (buses) p (h)

I1 Cancela et al. 
(2015)

[4; 8; 12] [36; 28; 20] [1; 2; 3] [42.8; 38.5; 
31.3]

80 0.05

I2 Cancela et al. 
(2015)

[4; 8; 12] [44; 36; 28; 
20]

[1; 2; 3; 4] [45; 42.8; 
38.5; 31.3]

80 0.05

I3 Cancela et al. 
(2015)

[2; 4; 8; 12] [36; 28; 20] [1; 2; 3] [42.8; 38.5; 
31.3]

80 0.05

I4 Cancela et al. 
(2015)

[2; 4; 8; 12] [44; 36; 28; 
20]

[1; 2; 3; 4] [45; 42.8; 
38.5; 31.3]

80 0.05

I5 Wan and Lo 
(2003)

[2; 8] [36; 28; 20] [1; 1.5; 2] [42.8; 38.5; 
31.3]

70 0.05

I6 Wan and Lo 
(2003)

[2; 8; 12] [36; 28; 20] [1; 1.5; 2] [42.8; 38.5; 
31.3]

70 0.05

I7 Mandl (1980) [8; 12] [36; 20] [1; 1.5] [42.8; 31.3] 100 0.05
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shows the sets of efficient solutions determined for the P-TNDPa and P-TNDPb on 
the same network using the mathematical programming model (instances I1–I4) 
and the MGA (instance J1). We found that reductions of approximately 40% can be 
obtained by increasing the total travel time by less than 5% compared to the solu-
tion that minimizes only the travel time, which corresponds to the upper point in 

Table 3  Control parameters of evolutionary algorithms

Parameter Description Selected value

Npob Population size 200
Gmax Maximum number of generations 1000
Gmin Minimum number of generations 100
Gstdy Number of generations without improvement 200
Pmut Mutation probability 1.0
Tbf Mutation rate of bit flip type 1.0
Pmpb Mutation probability per element in mutation of bit flip type 0.05
Tob Mutation rate of one bit type 1.0
Pcru Crossover probability 0.5
Tuc Crossover rate of uniform type 0.0
Topc Crossover rate of one point type 2.0
Ttpc Crossover rate of two point type 1.0
Ntor Tournament size in crossover process 6.0

Fig. 4  Results with mathematical programming model and MGA of Cancela et  al. (2015) network (a) 
and Wan and Lo (2003) network (b)
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each curve and represents the solution for the TNDP. Figure 4b shows the solutions 
obtained for the second network considered using the mathematical programming 
model (instances I5–I6) and the MGA (instance J2). In this case, it is possible to 
reduce emissions by 15% with a 1% increase in travel time, which is repeated in the 
bimodal instance. This demonstrates the importance and convenience of consider-
ing the second objective function: by only minimizing the total travel time, which 
is what most of the previous studies have done, the solutions obtained can still be 
improved with regards to  CO2 emissions without significantly increasing passenger 
travel time.

The comparison between the different approaches proposed shows that the MGA 
provides better solutions for the P-TNDPb than the exact methods for the P-TNDPa, 
although the P-TNDPb is more restrictive than the P-TNDPa. This is because the 
frequency and speed are discrete variables in the P-TNDPa, whereas they are contin-
uous variables in the P-TNDPb, providing greater flexibility and resulting in better 
use of the resources in the solutions. In Fig. 4a, the solutions found for the different 
instances of the P-TNDPa are depicted, suggesting that the increasing number of 
frequencies and possible speeds also increase the quality of the solutions obtained.

The MGA obtains similar results with respect to previous approaches proposed in 
the literature. Table 4 shows the results obtained in three studies that use the Mandl 
network (Bagloee and Ceder 2011; Cancela et  al. 2015; Nikolić and Teodorović 
2014). The comparison between the methods is not direct because each work 
approaches the problem with particular conditions. However, using the methods pro-
posed in Sect. 2, it is possible to recalculate the objective function from the sets of 
routes selected in each study. The three above-mentioned studies do not consider 
traffic congestion or the minimization of emissions. Also, the assignment method 
used in these studies is different since the first two permit more than one transfer. 
For the comparison, among the results obtained by Nikolić and Teodorović (2014), 
the solution that minimizes travel time was considered. The evaluation for each 

Table 4  Comparison of results of MGA and previous approaches applied in the P-TNDPb

Solution method Total time (min) Total emis-
sions (kg of 
 CO2/h)

Routes Buses q0 q1

Bagloee and Ceder (2011) (w/o cap) 207,814 2578 12 62 0.86 0.13
Cancela et al. (2015) (w/o cap) 191,027 2779 20 63 0.90 0.10
Nikolić and Teodorović (2014) (w/o 

cap)
190,798 3355 6 85 0.95 0.04

UEA time (w/o cap) 195,763 2872 25 62 0.91 0.09
UEA emissions (w/o cap) 200,131 2490 20 57 0.90 0.10
Bagloee and Ceder (2011) (w/cap) 237,553 2828 12 68 0.86 0.13
Cancela et al. (2015) (w/cap) 210,000 2946 20 67 0.90 0.10
Nikolić and Teodorović (2014) (w/cap) 221,009 3716 6 93 0.95 0.04
UEA Time (w/cap) 199,859 2892 25 62 0.91 0.09
UEA Emissions (w/cap) 204,212 2516 20 56 0.90 0.10
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problem instance was performed under free-flow conditions (instances denoted by 
without cap in Table 4) and congestion (instances denoted by with cap in Table 4), 
with the conditions considered in the optimization process of the previous studies 
in the first case and those of the MGA in the second the case. Although the results 
obtained are not the same as those reported in the studies, the values are close to 
the original values and correspond to an indicator for the MGA performance. The 
following aspects are indicated for each solution: the total travel time, the total emis-
sions rate of the system, the number of routes selected, the number of buses required 
to operate the network, the proportion of passengers that travel directly (q0), and 
the proportion of passengers who travel with one or more transfers (q1). The solu-
tions of the MGA correspond to the extreme points of the best Pareto frontier found, 
that is, the solutions that minimize the total travel time and the emissions rate. The 
results of the problem instances that consider no congestion indicate that the solu-
tions obtained in this study are competitive with respect to the other methods regard-
ing the total travel time, as seen in the second column of the first group of solutions 
in Table 4, where the difference between the best travel time found in the literature 
and the worst of the Pareto set obtained by the MGA is less than 5%. However, these 
were not the conditions considered by the algorithm for the optimization. Also, the 
percentage of passengers who travel without any transfer is the same as that of pre-
vious studies, approximately 10%. Furthermore, when traffic congestion was con-
sidered, the obtained solutions are better with respect to both the travel time and the 
rate of emissions, as seen in the second group of solutions in Table 4. The result-
ing solutions, although presenting a larger number of routes, require fewer buses to 
operate the network, implying an economic improvement in the obtained solutions. 
This is because, in the algorithm proposed, the number of selected routes is unlim-
ited, in contrast to the previous studies.

The solutions determined for the P-TNDPc by the MGA present shorter travel 
times and higher rates of emissions with respect to the solutions found for the 
P-TNDPb. This is because the demand is covered by cars, which circulate at higher 
speeds but with higher rates of emissions per passenger. Table  5 shows the solu-
tions corresponding to the set of efficient solutions of greater hypervolume found 
with the MGA for instance J5. For each solution, the total travel time (TT) and the 
division between the time corresponding to travel by cars  (TTc) and buses  (TTb) are 
expressed in minutes. Similarly, the rates of total emissions of the system (ET) and 
the division between emissions produced by cars  (ETc) and buses  (ETb) are pre-
sented in kg of  CO2/h. Moreover, the following aspects are also indicated: the num-
ber of selected routes, number of buses required to operate the network, proportion 
of passengers that travel directly (q0), proportion of passengers who travel with one 
or more transfers (q1), and the proportion of passengers who travel by car (qc). It can 
be seen that although the cars satisfy, on average, 37% of the demand, they represent 
just 27% of the total travel time but 66% of the total emissions. Therefore, it can be 
inferred that the passengers who travel by car travel faster but with a higher emission 
rate per passenger.

In the three problems considered, the solutions that minimize  CO2 emissions 
also have smaller numbers of buses in circulation, implying that emissions can be 
reduced without increasing the operational cost of the system. This situation, which 
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is repeated in the sets of non-dominated solutions found for both the unimodal and 
bimodal problem, can be observed in the 9th column of Table 5. Moreover, the 10th 
and 11th columns show that for the P-TNDPc, the solutions that minimize bus emis-
sions satisfy a greater proportion of the demand with respect to those solutions that 
minimize the travel time and increase the number of trips that include transfers. This 
is because, in the solutions in which travel times are minimized, more routes are 
selected and with greater frequencies to reduce waiting and transfer times. However, 
the used capacity of the buses in circulation is lower compared to that of the solu-
tions that minimize emissions. Furthermore, it is observed that the variation in the 
distribution of the demand between buses and cars is not highly significant, with 
variations of less than 10%. Therefore, most of the variations in time and emissions 
are produced by traveling with public transportation. This is mainly due to the dis-
tribution model selected and the coefficients assigned to the model, which have been 
extracted from a state-of-the-art study. However, in the case of being applied to an 
actual instance, the coefficients must be estimated on the basis of the specific cir-
cumstances of an instance to achieve a true representation of the local reality.

The MGA provided better solutions in less time than the exact method. Table 6 
shows the average running time required for the exact method (largest of the cor-
responding instances) and for the MGA. Notes that the running time required for 
the exact method corresponds to the generation of only one solution while the 
MGA generates a set of solutions in only one run. Moreover, the exact method was 
stopped after a predetermined running time. For the largest instance of the P-TNDPa 
in Cancela’s network (instance I4), each solution required more than 1000 s; a gap 
of approximately 10% was recorded between the found and feasible solutions. In 
turn, running the MGA on the same network (instance J1) provided a set of solu-
tions within an average of 140 s. In the case of Mandl’s network, the mathematical 

Table 5  Set of efficient solutions found with MGA in J5

Solution TT TTc TTb ET ETc ETb Routes Buses q0 q1 qc

1 184,423 45,354 139,069 8161 6074 2087 23 42 0.60 0.04 0.36
2 182,176 44,876 137,299 8388 6200 2188 27 41 0.60 0.04 0.36
3 180,014 45,056 134,958 8478 6224 2255 30 44 0.60 0.04 0.36
4 179,050 44,418 134,632 8605 6150 2455 33 47 0.61 0.03 0.36
5 176,015 44,000 132,014 8911 6105 2806 42 53 0.62 0.02 0.36
6 174,820 43,820 131,001 8998 6120 2878 45 50 0.61 0.03 0.36
7 172,061 43,469 128,592 9281 6187 3094 48 59 0.62 0.02 0.36
8 170,954 43,462 127,492 9347 6186 3161 49 60 0.62 0.02 0.36
9 166,776 48,548 118,228 9909 6866 3044 49 56 0.61 0.01 0.39
10 165,365 48,431 116,934 10,025 6849 3176 53 57 0.61 0.01 0.39
11 164,036 48,434 115,603 10,226 6850 3376 52 63 0.61 0.01 0.39
12 162,517 48,534 113,983 10,541 6863 3678 59 67 0.61 0.00 0.39
13 159,478 48,610 110,867 11,434 6873 4560 67 85 0.61 0.00 0.39
14 159,155 48,598 110,557 11,613 6872 4741 69 88 0.61 0.00 0.39
15 155,619 48,798 106,821 14,118 6946 7172 102 138 0.61 0.00 0.39
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programming model (instance I7) did not find any feasible solution within a 12-h 
period, whereas the MGA provided a set of efficient solutions after an average of 
190 s for the same network (instance J4).

6  Conclusions

In this study, we present mathematical models to design a multimodal transit sys-
tem considering congestion and  CO2 pollution simultaneously. Such situations are 
embedded in three instances of the P-TNDP: P-TNDPa P-TNDPb and P-TNDPc. A 
mathematical programming model and a multi-objective genetic algorithm are pro-
posed, considering the minimization of the total travel time and total emissions of 
the system subject to budgetary constraints. Although the TNDP has been exten-
sively studied in the literature, incorporating environmental objectives and the study 
of bimodal networks and congested networks have received less attention, and to 
the best of our knowledge, there have been no prior studies that include all these 
aspects in a single model. The proposed mathematical model and the evolutionary 
algorithms are solved with several test instances, which are constructed based on 
three physical networks used in the literature and adapted to include the capacity of 
the arcs, which is a necessary aspect of estimating emissions in relation to the con-
gestion in the arcs.

To find efficient Pareto frontier solutions, the ε-constraint method is applied to 
solve the mathematical programming model, whereas the MGA, which includes 
measures of quality and diversity, provides a set of solutions in a single run. The 
results show that for the studied instances, it is possible to achieve significant reduc-
tions of approximately 15% in the emissions of the public transportation systems 
by increasing the total travel time of the passengers by less than 2% relative to the 
solutions obtained with a single objective. This implies that solutions found in 
other studies could be improved by considering environmental objectives. Also, it 
is observed that the reductions in the emissions imply a reduction in the size of the 
fleet, which can imply a reduction in the operational cost of the system. By com-
paring the different solution methods, it is observed that the evolutionary algorithm 
provides better results than the mathematical programming model due to its greater 
flexibility.

The running times necessary to solve the mathematical programming model are 
high, even for small instances. Therefore, the proposed mathematical model is not 
suitable for the design of actual transit networks. In contrast, the evolutionary algo-
rithm provides good solutions in significantly shorter times than the exact method. 

Table 6  Running time Network Exact method (s) MGA (s)

Cancela et al. (2015) 1000.0 140
Wan and Lo (2009) 7200.0 150
Mandl (1980) 43,200.0 190
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Therefore, this method is suitable for applications to real instances. Furthermore, by 
using approximate methods, aspects of greater complexity can be easily included.

As for the future work, the MGA may be modified in several ways to get better 
and more meaningful results. A more sophisticated emission model may be applied 
that, for example, considers the acceleration process during the stops of the buses 
instead of only the average speed. Furthermore, other pollutants may be considered 
besides  CO2, such as  NOx, PM or VOC, which have impacts not only on the environ-
ment but also on human health. Regarding the solution technique, the MGA could 
be adapted to incorporate a problem-specific solution representation and variation 
operators, which take advantage of the characteristics of the problem to generate 
better solutions. Also, the MGA may be tested in larger instances to fully determine 
its potential to be applied in real life problems.
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