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Abstract With increasing passenger flows and construction scale, metro systems in

metropolises have entered a new era of networking operation and become the most

effective way to alleviate and decrease traffic congestion. However, frequent

occurrence of random failures and malicious attacks pose a serious threat to metro

security and reliability. Thus, it is necessary to quantitatively evaluate the vulner-

ability of the metro network to different failures or attacks from a networking

perspective. Based on the complex network theory, this study took the Shanghai

Metro Network (SMN) as an example to investigate vulnerability of a weighted

metro network in responding to random failures as well as malicious attacks. In

particular, compared to topological networks, the vulnerability of weighted net-

works was analyzed to investigate how traffic and spatial constraints influence the

transport system’s vulnerability, since topological features of complex networks are
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often associated with the weights of the edges and spatial constraints. Simulation

results show that the SMN is robust against random failures but fragile for malicious

attacks. The vulnerability analysis of weighted properties shows that all targeted

attacks are capable to shatter the network’s communication or transport properties at

a very low level of removed nodes and the highest betweenness attack strategy is the

most effective mode to cause destructive effects on SMN among five attack or

failure strategies. The inclusion of passenger flows provides evidence for the view

that topological networks cannot convey all the information of a real-world network

and traffic flow in the network should be considered as one of the key features in the

finding and development of defensive strategies. Our results provide a richer view

on complex weighted networks in real-world and possibilities of risk analysis and

policy decisions for the metro operation department.

Keywords Metro safety � Vulnerability analysis � Complex network � Passenger

flow � Robustness

1 Introduction

Due to the increasing traffic volume and growing demands for land because of urban

construction and development, many metropolises have continually increased

investments in construction of metro lines to relieve serious traffic congestion. With

more and more new lines being added into service, many metro systems such as

New York City Subway, Shanghai Metro, and Tokyo Metro have transformed into

complex metro networks that possess high station densities and intricate inter-

station coupling relationships leading to a new era of networking operations

(Angeloudis and Fisk 2006; Xu and Sui 2007; Yang et al. 2015). However, recent

history has shown that metro systems entail dangerous environments in case of

emergencies due to the comparatively enclosed structure and large passenger flows

in metro systems. Malicious attacks such as targeted destructions and retaliatory

disruptions to the metro system have occurred frequently in recent years; such

incidents could result in the functionality loss of the entire system and cause

considerable casualties and socio-economic loss. For example, the terrorist attacks

that happened in the Lubyanka metro station and Park Kultury metro station of

Russia in 2010 killed at least 40 people. In addition, the frequent occurrence of

random failures shows that unreasonable planning as well as inadequate safety

precautions would impair the overall reliability of a metro system (Albert and

Barabási 2002; Newman et al. 2001; Wang 2013; Zhou et al. 2014). It is apparent

that increasing size and complexities are making metro systems more dependent on

systematic vulnerability analysis and formulation of corresponding coping strategies

to increase the robustness of metro networks. However, transit planners pay more

attention on traditional characteristics, such as geography, demand, cost and others;

none seems to address the network design in a direct way, which becomes

increasingly important as transit systems grow. Similarly, transit policymakers and

operators considered more about station local properties (such as passenger flows,
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the number of connected stations) rather than its position and role in the whole

metro network. Therefore, it is necessary to conduct a comprehensive analysis of the

vulnerability of metro networks from a holistic perspective.

During the past few years, graph and complex network theories have been used to

study large-scale transportation infrastructures (railways, highways and airlines) and

have become a powerful tool to identify the vulnerable (weak) components (e.g.,

links or nodes) in a transport network from a systematic view (Ouyang et al. 2014;

Taylor et al. 2007; Berdica and Mattsson 2007; Guimerá and Amaral 2004; Wang

et al. 2011). By examining public transportation networks of fourteen major cities in

the world, Berche et al. (2009) identified public transport network structures which

are especially vulnerable and others, which are particularly resilient against attacks.

Derrible and Kennedy (2010) analyzed the complexity and robustness of 33 metro

systems and provided insights/recommendations for increasing the robustness of

metro networks. Laporte et al. (2010) presented an integer linear programming

model to design public transit networks in the presence of a link failure and a

competing mode. Zhang et al. (2011) investigated the connectivity, robustness and

reliability of the subway network by graph theory and complex network theory.

According to the analysis and discussion, the study found that the subway network

is robust against random attacks but fragile for malicious attacks. Han et al. (2012)

analyzed urban mass transit accidents from three aspects, including interference,

exposure and vulnerability. They regarded vulnerability as inherent defects of the

system and established a theoretical safety insurance mechanism. Yuan et al. (2012)

reviewed the statistics of metro accidents and proposed the concepts of physical,

structural and social vulnerabilities of metro network systems. Nevertheless, these

studies simplified the metro networks with graph theory and considered only the

network topology. Thus, they were lacking consideration on dynamic properties of

metro systems.

Other approaches to vulnerability analysis of metro networks were also

employed. Cats and Jenelius (2012) proposed a dynamic and stochastic notion of

public transport network vulnerability and developed a more refined model to assess

public transport network vulnerability by considering supply and demand interac-

tions. De-Los-Santos et al. (2012) provided rail transit network robustness measures

from the user’s point of view. Based on the work of predecessors, Perea and Puerto

(2013) discussed and extended a game-theoretic framework for the robust railway

network design against intentional attacks. Rodrı́guez-Núñez and Garcı́a-Palomares

(2014) presented a methodology for analyzing the criticality and vulnerability of a

public transport network. Based on the experience of the 7/7 London bombings and

other subway incidents, Bruyelle et al. (2014) identified critical systems of metro

coach and proposed enhancements to the robustness of subway systems. Taking the

Beijing Subway system as an example, Yang et al. (2015) assessed the robustness of

a subway network in face of random failures as well as malicious attacks. The

research results revealed that the Beijing Subway system exhibits typical

characteristics of a scale-free network, with relatively high survivability and

robustness when faced with random failures, whereas error tolerance is relatively

low when the hubs undergo malicious attacks. Cats et al. (2015) presented and

applied a method to explicitly account for exposure in identifying and evaluating
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link criticality in public transport networks. Chopra et al. (2016) presented a

comprehensive, multi-pronged framework that analyzed information on network

topology, spatial organization and passenger flow to understand the resilience of the

London metro system. Although these studies provide useful insights on network

properties that effect reliability and vulnerability of metro systems, an incorporation

of passenger flow and geographical space would further enhance network models

and provide a richer view on vulnerability analysis of urban rail transit networks.

Simulating different station failure situations (single node-multiple nodes-network)

under different attack strategies could help to identify critical nodes in the network,

which was particularly useful for the rail transit planners and managers.

Therefore, this paper conducts a systematic vulnerability analysis of urban rail

transit to provide theoretical support to the planning and operation of urban rail

transit networks. The paper focuses on a weighted metro network with traffic and

geographical space to explore how traffic and spatial constraints influence the

transport system’s vulnerability. Different attack strategies including malicious

attacks and random failures are discussed to identify the most effective mode to

destroy the whole metro network. In particular, the topological, dynamic and

damage-depending measures that can be used to identify the most crucial nodes in a

weighted network are discussed and compared. The functionality of the whole

network depends on the protection of these crucial nodes. Moreover, the

vulnerability of weighted networks was analyzed compared to topological networks.

According to the findings in this study, several measures are proposed to strengthen

the structural robustness of a metro network, which may help in the development of

adaptive reactions aimed at dealing with targeted attacks.

2 Background

2.1 Shanghai Metro System

Shanghai is one of the largest cities in China, with more than 20 million people.

With a rapidly increasing population, urban traffic congestion in Shanghai becomes

even worse which needs to be solved immediately. In order to enhance capacity and

accessibility of public transportation, a massive network by a considerable amount

over 500 km is constructed and the traffic congestion of ground transportation has

been reduced. Until December, 2014, the Shanghai Metro Network (SMN) was the

world’s largest rapid transit system by route length (Riedel 2014), with 14 lines, 286

stations, 39 transfer stations and a mileage totaling more than 540 km (Fig. 1). It

also ranks second in the world by annual ridership after Beijing, with 2.8 billion

rides delivered in 2014. The newest daily ridership record was set at 10.286 million

on December 31, 2014, while over 8 million people use the system on an average

weekday.

The SMN consists of 286 nodes denoting stations and 317 edges accounting for a

link connecting two stations which are adjacent to each other. As already observed

in previous literatures (Zhang et al. 2011), the topology of the network exhibits both

scale-free and small-world properties. Datasets that are provided by the Shanghai
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Shentong Metro Company, list the hourly in and out passenger flows for each station

and passenger flows between adjacent stations. In this study, passenger flows during

morning peak hours from 7:00 to 9:00 in a typical weekday are analyzed, during

which time the highest volume on a weekday could be observed.

2.2 Fundamental concepts of network vulnerability

There is no commonly accepted definition of transport system vulnerability

(Mattsson and Jenelius 2015). The definition suggested by Berdica (2002) is often

cited by other literatures: ‘‘vulnerability in the road transportation system is a

susceptibility to incidents that can result in considerable reductions in road network

serviceability.’’ This definition can also apply to other modes of transport. Luathep

et al. (2011) deem that vulnerability analysis principally focuses on identifying the

critical components of the network that result in the most adverse effect on network

Fig. 1 Schematic map of Shanghai Metro Network (Source: The website of Shanghai Shentong Metro
Company)
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performance when they are subjected to random failures or malicious attacks.

Berdica and Mattsson (2007) propose that vulnerability in transport networks can be

seen as overall framework through which different transport studies could be

conducted to determine how well a transport system would perform when exposed

to different kinds and intensities of disturbances. Berche et al. (2009) note that

vulnerability is essential to assess the fault tolerance of a local station as well as a

global network. The notion of attack vulnerability is defined as the survivability of a

metro network under intentional attacks by Yang et al. (2015). In this study, the

concept of network vulnerability is used to describe a lack of serviceability of a

metro network when subjected to various threats and hazards. Threats and hazards

are the sources of potential damage for a metro network. Hazards refer to accidental

events (such as natural disasters and system failures), while threats are related to

intentional events (for example, terrorist attacks).

2.3 The definition of various failures

A metro network system generally encounters various emergencies and complex

external environments, such as natural disasters, system failures and terrorist

attacks, and can be categorized into two types of incidents, i.e., random failures and

intentional attacks (Kyriakidis et al. 2012; Wang et al. 2014; Wang 2013). A metro

accident is most often due to several different precursors, varying from a natural

error to a malicious attack (Kyriakidis et al. 2014; Wang and Fang 2014). Due to the

uncertainties of these precursors, it is extremely difficult to quantitatively specify

the corresponding destructive power for each failure or attack. As a consequence, an

intentional attack in this paper is defined as a malicious or targeted destruction

manipulated by artificial forces, while a random failure is specified as the

disfunction of a network caused by failure on one or several nodes with a random

probability (Ghedini and Ribeiro 2011; Zhang et al. 2012). According to the

definition, the main difference between these two incidents is that the probability of

a random failure is equal among all stations while an intentional attack generally

happens to hub stations with high degree or betweenness centrality. Different

precursors of these two incidents are summarized in Table 1.

3 Methodology

3.1 Construction of the weighted SMN model

To analyze various properties of urban rail transit systems one should define a

proper network topology to describe the structure of the SMN network. Metro

systems have been simplified as graphs by using various network representations in

previous literature, such as space L, space P, space B, and space C network

topologies (Sienkiewicz and Hołyst 2005; von Ferber et al. 2007; Xu et al. 2007a, b;

Berche et al. 2010). Each network topology supplies its unique topological insights

with respect to metro systems. For instance, space L is mainly applied to investigate

topological properties and vulnerabilities of metro systems while space P is widely
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used to explore transfer properties like the role of the metro line on transfer times

(von Ferber et al. 2007).

As shown in Fig. 2, space L network topology consists of nodes representing

stations and edges connecting physically adjacent stations, in other words, an edge

between two nodes exists if there is at least one line that provides service to two

consecutive stations. No multiple links are allowed (Berche et al. 2009). The node

degree k in this topology is just the number of edges that a node shares with others

while the distance l is the minimum number of links traversed from one node to

another. Space L topology is an intuitive geographical representation of the metro

system, and allows us to simulate link failures and analyze their consequences in the

Table 1 Summary of common behaviors of failures and attacks for a metro system

Network

failure

Precursors categories Examples

Random

failure

Technical failures Cracked rail/other serious rail defect, broken wheels, loss

of brake function, Signal failures, power failure, train

doors failure

Human performance—

passenger and metro

workers

Congestion, suicide, fall onto track, falls on escalators, fall

on stairs, people hit by train, unconscious destruction due

to drunkenness, smoke in station/train, passenger

carrying dangerous or flammable goods, caught in train

doors, wrong operation by driver, exceeding speed

limits, signals passed at danger (SPADs)

Management actions Station totally closed, Station access closed, Temporary

line maintenance

External environment Severe weathers, object on track, object exceeding

clearance limit

Intentional

attack

Malicious or targeted

destruction

Terrorism, act of vandalism, passenger carrying dangerous

or flammable goods, trespass, set fires, gun shooting,

group fighting

6

7

3

8

9

1

2

4
5 5

4

2 1

3

6

8
9

7

Line A
Line B

Space L (b)(a) Space P

Fig. 2 Explanation of the space L (a) and the space P (b)
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most simplistic manner (Chopra et al. 2016). In the space P, although nodes are the

same as in the space L, here an edge between two nodes means that there is at least a

direct metro line connecting them. Consequently, the node degree k in this topology

is the total number of nodes reachable using a single line and the distance can be

interpreted as ‘‘the minimum number of line changes ?1’’ to be made by a trip

maker in order to successfully get from one station to another. This main

characteristic allows us to specifically discuss transfer properties of the metro

network. Consequently, the Space L representation of the SMN was chosen for our

analysis.

Up to now, most studies have focused on unweighted networks, i.e. networks that

have a binary nature, where the edges between nodes are either present or not.

Nevertheless, along with a complex topological structure, many real networks

display a large heterogeneity in the capacity and the intensity of the connections.

Therefore, the weighted network was introduced to describe the characteristics and

properties of real networks. A weighted graph Gw ¼ ðV ;E;WÞ, where each edge

carries a numerical value measuring the strength of the connection, consists of a set

V ¼ fviji ¼ 1; 2; . . .;Ng of nodes, a set E ¼ feij ¼ ðvi; vjÞji; j ¼ 1; 2; . . .;N; i 6¼ jg
of edges and a set of weights W ¼ fwijji; j ¼ 1; 2; . . .;N; i 6¼ jg that are real numbers

attached to the edges. In matricial representation, Gw could usually be represented

by the so-called adjacency weights matrix Aw with adjacency element aij being

defined as

aij ¼
wij; ðvi; vjÞ 2 E

0 or 1; ðvi; vjÞ 62 E

�
; ð1Þ

where wij is the weight of the edge connecting node vi to node vj, and aij ¼ 0 or 1
depends on whether the weight of the edge is dissimilar or similar. The dissimilar

weight means that the higher the weight is, the larger the path length and the more

aloof the connection between two nodes, for example, the distance in a postman

problem. Conversely, the higher the weight is, the smaller the path length and the

more intimate the connection between two nodes, the more similar the weight of, for

instance, cooperation frequencies in scientific collaboration networks. Therefore, for

similar weights, if nodes i and j are connected by node k, the distance

dij ¼ wik þ wkj. For dissimilar weights, the distance is inversely proportional to the

edge weight, thus dsik ¼ 1
wik

and the distance between nodes i and j could be calcu-

lated by the equation dsij ¼
wik�wkj

wikþwkj
. Subsequently, based on complex network theory,

the stations of the SMN can be represented by the nodes of the network and the lines

directly connecting two stations can be virtualized into the edges of the network.

Many different quantities of the SMN could be considered as weight of the network,

including passenger flow, station spacing, travel time and so on. Moreover, it is

assumed that typical travel is bi-directional, and hence the weight wij of one edge

between a pair of nodes (stations) i and j is defined to be the sum of passenger flows

in both directions and wij ¼ wji.
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3.1.1 Node degree and strength

The most prominent feature of weighted complex networks is heterogeneity of

weights wij between pairs of nodes, which depicts the interactions between the

components in the system. For a given node i in an unweighted network, its degree,

ki ¼
PN

j aij, is the number of nodes it is linked to. Subsequently, in a weighted

network, a more meaningful measure of the network properties in terms of the

actual weights is obtained by introducing strength si, defined as

si ¼
XN

j¼1
aijwij: ð2Þ

From Eq. 2, the quantity si combines node degree ki with edge weight wij, and is

a natural measure of the centrality or connectivity of a node i in the weighted

network. For the SMN, the node strength simply accounts for the total passenger

flows handled by each station.

3.1.2 Weighted shortest paths

Shortest paths play an important role in the transport and communication within a

network. All the shortest path lengths of a graph G can be expressed as a matrix D in

which the element lij is defined as the minimum number of links traversed to get

from node vi to node vj. Characteristic path length, also known as average path

length, is defined as the average number of steps along the shortest paths for all

possible pairs of network nodes (Nawrath 2006) and can be expressed by

L ¼ 1

NðN � 1Þ
X

i;j2Vði 6¼jÞ lij: ð3Þ

In a generic weighted network, the path length between two nodes vi and vj can

be introduced as the function of weight wij, depending on whether the weight of the

edge be dissimilar or similar. In this study, the shortest path with the minimum

number of edges is not an optimal one. It then defines the weighted shortest path

length dij as the minimum value of the sum of edge lengths throughout all the

possible paths from node vi to node vj, where the edge length refers to station

spacing. It is obvious that the station spacing is a dissimilar weight. Subsequently,

the average shortest path length can be defined as

L ¼ 1

NðN � 1Þ
X

i;j2Vði 6¼jÞ dij: ð4Þ

3.1.3 Node betweenness

The communication of two non-adjacent nodes depends on the paths connecting

them. Consequently, a measure to investigate relevance of a given node can be

obtained by counting the fraction of shortest paths between pairs of nodes passing
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through it, and defining the so-called node betweenness. Together with the degree,

the betweenness is one of the standard measures of node centrality and quantifies the

influence and importance of a node in the network. More precisely, the betweenness

bi of a node i is defined as (Boccaletti et al. 2006):

bi ¼
X

j:k2V;j 6¼k

njkðiÞ
njk

; ð5Þ

where njk is the total number of shortest paths from j to k, and njkðiÞ is the number of

these shortest paths that pass through the node i.

In weighted networks, unequal link capacities make some specific paths more

favorable than others in connecting two nodes of the network (Dall’Asta et al.

2006). Thus, it seems natural to generalize the notion of betweenness centrality

through replacing shortest paths between pairs of nodes with their weighted

versions. Similar to Eq. (5), the weighted betweenness bi of a node i can be defined

as:

bwi ¼
X

j:k2V ;j6¼k

nwjkðiÞ
nwjk

; ð6Þ

where nwjk is the total number of weighted shortest paths from j to k, and nwjkðiÞ is the

number of them that pass through the node i. In the particular case of wij ¼ 1 for all

edges, the weighted shortest path length dij reduces to the minimum number of

edges necessary to go from node vi to node vj. For metro systems, node betweenness

represents status and influence of a station within the network, and central stations

are part of more shortest paths than peripheral stations.

3.2 Attack strategies and random failure

An attacking strategy describes the way that an adversary attacks a network, while a

random failure is specified as the disfunction of a network caused by accidental

incidents. In case of a random failure each node or edge fails with an equal

probability. On the contrary, in a malicious attack, an adversary preferentially

attacks the target that he believes will maximize the destructive effect on network

integrity and functionality. A complex network generally encounters two types of

incidents, node attack and edge attack. Considering characteristics of metro

systems, a node attack strategy is adopted, that is, attacking a network by removing

a node as well as its incident edges from the network. For metro systems, a node

removal means that the station is broken down completely and cannot restore

function in the short term. Therefore, passengers in the station and travelling on its

incident edges cannot reach their destination. Moreover, it is assumed that the

purpose of adversaries is to maximize the destructive effect and destroy the network

as soon as possible. For this purpose, adversaries first need to evaluate the

importance of a node for identifying the most important nodes in the metro network.

As a consequence, the ranking mechanism of node importance is crucial for

generating an attacking strategy. In general, different adversaries sort the node

importance from different aspects, and resulting in different destructive effects.
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Based on the different definitions for the centrality ranking of the most important

nodes, five different deletion strategies are introduced to investigate the vulnera-

bility of the metro network when subjected to malicious attacks or random failures.

Moreover, node centrality measures will be recalculated after each attack. This has

been shown to be the most effective strategy (Petter et al. 2002; Dall’Asta et al.

2006), as each node deletion will give rise to a change in the centrality properties of

the other nodes. More precisely, the malicious attack strategies and random failures

are designed as follows. (1) The malicious attacks according to nodes rank in terms

of degree, strength, topological betweenness, and weighted betweenness. That is,

from the initial state, the most important node and its incident edges will be deleted

and all the properties of weighted networks can be recalculated after a deletion, and

the attacks continue. (2) Random failures. The nodes are deleted randomly and the

properties of weighted networks can be recalculated after each attack. The nodes

will be removed from the network one by one, subjected to these five different

attack or failure strategies.

3.3 Assessment model for overall performance of a network

When investigating the assessment model, another key issue to consider is how the

global performance of a network under various attacks is measured. Network

vulnerability can be characterized in many ways, such as by observing the change of

relative size of maximal connected subgraph while nodes are continuously attacked

one by one (Crucitti et al. 2003; Berche et al. 2009; Ghedini and Ribeiro 2011). A

fast decrease of the largest component size indicates that a network is highly

vulnerable. The network performance can also be evaluated by the network

efficiency, which is performed by computing possible shortest distance between any

two nodes and represents the communication functionality of the network (Zhang

et al. 2011; Yang et al. 2015). Therefore, these two indexes were combined to

explore how the performance of the SMN responded to different accidents.

3.3.1 Relative size of the largest connected sub-graph

If any two nodes in a graph are connected, the graph G is called a connected graph.

When nodes are under attack and deleted from the network, the entire connected

graph will disintegrate into multiple subgraphs and disconnected parts (Fig. 3). The

largest connected subgraph is the one that has most connected nodes. In the

unweighted networks, the largest connected cluster LCC is defined by the relative

size of the maximal connected subgraph and can be described as follows

LCC ¼ N=N0; ð7Þ

where N is the number of nodes on the largest connected subgraph after attacks, and

N0 is the number of nodes on the largest connected graph of the initial network. In

order to assess the reliability and robustness of the weighted networks, the strength s

is integrated with the largest connected cluster for the weighted case and LCCw is

defined by the equation
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LCCw ¼ S=S0; ð8Þ

where S is the sum of the strength of nodes on the largest connected subgraph

after attacks, and S0 is the sum of the strength of nodes on the largest connected

graph of the initial network. This quantity measures the structural integrity of the

network in reference to strength in local scope, as it refers to the relative traffic or

passenger flow that is still handled in the maximal connected component of the

network.

3.3.2 Network efficiency

The characteristic path length is a natural measure of the efficiency of a network,

and has large implications for the transport and communication in a network.

However, when a network is attacked and nodes become disconnected, the

shortest path length will be infinite for two unconnected nodes stored in an

adjacent matrix and cannot be computed. To overcome this problem, an

alternative approach, the so-called ‘‘network efficiency’’ that is useful in many

cases is defined as follows:

E ¼ 1

NðN � 1Þ
X 1

dij
: ð9Þ

This quantity E is an indicator of the traffic capacity of a metro network, and

avoids the divergence of the characteristic path length. It helps to explore how the

topological properties of the SMN responded to different accidents in global scope.

Metro systems with high network efficiency mean that travel should be fast and

convenient under normal operating conditions. In weighted networks, it seems

natural to generalize the notion of network efficiency through replacing the shortest

paths with their weighted versions. The spatial attributes of the SMN are embodied

in the physical spatial distance, measured in kilometers, characterizing each

connection.

Fig. 3 Structures of the connected graph before and after node removal
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4 Results

4.1 Station vulnerability

In a complex transportation system, not all stations are equivalent. Conventional

researchers usually regarded the degree centrality of a node as the only

measurement for evaluating the significance of the node. In addition, betweenness

is also an effective measurement of the global function of a node and has been used

as a global geometric factor for node importance evaluation. However, there are few

studies on node importance that is measured by damage rather than degree or

betweenness.

Tables 2 and 3 show the percentage of functionality loss of the entire network

when a station is removed from the network. As shown in Tables 2 and 3, the station

with the largest strength and betweenness in the SMN is People’s Square, which has

six edges connecting to other stations and undertakes nearly 0.7 million passengers

on morning rush hours. However, its damage value of the largest connected cluster

(LCCw) and global network efficiency (GNE) is 5.00 and 3.71%, which are both

lower than Shanghai Railway Station, Caoyang Road and Zhenping Road. The

station resulting in the largest damage of LCCw in the SMN is Shanghai Railway

Station, whose damage is 6.58%, implying that 6.58 percent of passenger flows rely

on Shanghai Railway Station, which is their unique choice to connect to other

stations.

The top ten stations with the largest damage of LCCw and network efficiency are

shown in Table 4. The damage of LCCw depicts the level that the network is

divided. Generally speaking, the removal of one node will not have a great influence

on the integrity of the network. But, it can be seen from Table 4 that the network

disintegrates into smaller sub-networks, disconnected parts because of the closure of

station, which would have a major effect on regular operations of SMN. Of these,

the most serious one is Shanghai Railway Station, which would affect about 6.58%

Table 2 Top 10 stations with the largest strength

Rank Node name Damage of LCCw (%) Damage of GNE (%) Degree

1 People’s Square 5.00 3.71 6

2 Xujiahui 3.67 2.71 6

3 Century Avenue 3.75 6.90 8

4 East Nanjing Road 2.96 2.22 4

5 Jing’an Temple 2.90 2.18 4

6 Shanghai Railway Station 6.58 7.60 4

7 Changshu Road 2.82 1.76 4

8 Zhongshan Park 2.68 2.61 4

9 Jiangsu Road 2.55 1.60 4

10 South Shaanxi Road 2.52 1.56 4
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of passenger flows. Meanwhile, it was found that stations connected radial metro

lines and core areas usually result in serious damage of subgraph, such as Shanghai

Railway Station, Yishan Road and Caoyang Road, as shown in Fig. 4. If such sorts

of stations are temporarily off-line due to malicious attacks, the stations of radial

lines away from central areas would lose contact with other stations in the network.

Whereas for stations in the core areas, even the deletion of hub stations may not

Table 3 Top 10 stations with the largest betweenness (weighted)

Rank Node name Damage of LCCw (%) Damage of GNE (%) Degree

1 People’s Square 5.00 3.71 6

2 Xujiahui 3.67 2.71 6

3 Century Avenue 3.75 6.90 8

4 Shanghai Railway Station 6.58 7.60 4

5 East Nanjing Road 2.96 2.22 4

6 Caoyang Road 6.05 8.56 4

7 Zhenping Road 5.38 8.29 4

8 Hailun Road 1.39 3.03 4

9 Oriental Sports Center 4.25 7.81 5

10 Changshu Road 2.82 1.76 4

Table 4 Top 10 stations with the largest damages

Rank Node name Damage of

LCCw (%)

Degree Node name Damage of

GNE (%)

Degree

1 Shanghai Railway

Station

6.58 4 Siping Road 9.64 4

2 Yishan Road 6.50 5 Caoyang Road 8.56 4

3 Caoyang Road 6.05 4 Zhenping Road 8.29 4

4 Zhenping Road 5.38 4 Oriental Sports

Center

7.81 5

5 People’s Square 5.00 6 Shanghai Railway

Station

7.60 4

6 Guilin Road 4.74 2 Fengqiao Road 7.29 2

7 Shanghai South

Railway Station

4.50 3 Yishan Road 7.07 5

8 North Zhongshan

Road

4.42 2 Century Avenue 6.90 8

9 Oriental Sports

Center

4.25 5 Langao Road 6.88 2

10 Fengqiao Road 4.20 2 Hongkou Football

Stadium

6.76 4
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cause disconnection and division of network and have a relatively small impact on

the integrity of the network, such as Xujiahui. This phenomenon can also be

explained by the metro network route. Taking Caoyang Road as an example, it

serves as a link connecting Line 11 and downtown. If Caoyang Road was attacked,

the stations located north of Caoyang Road had no other route to enter the inner city,

which would lead to traffic congestion in Caoyang Road. Similarly, if Xujiahui was

attacked, although many passengers would be affected, the remaining network could

supply enough alternative route choices for passengers, so a large amount of

passengers can still arrive at their destinations through other alternative routes.

Similar patterns were also observed in network efficiency and secondly, it is

interesting to find that some stations that are highly connected, such as Century

Avenue, Xujiahui, have relatively small damage values. In contrast, some stations

with large damages, such as Guilin Road and North Zhongshan Road, have quite

small degrees. These results reveal that transfer sites may not have much more

influence than regular stations. It is different from conventional views that value

transfer sites and undervalue regular stations. After a comprehensive investigation,

Fig. 4 Locations of stations with the largest damages of Shanghai metro

Vulnerability analysis of urban rail transit… 515

123



it was found that these kinds of regular stations can result in division of networks

and deserve more attention. The above analysis provides a new perspective to

examine the essentiality of a station and clearly shows that the essentiality of a

station can be characterized by its damage, not just degree centrality or betweenness

centrality.

4.2 Vulnerability of multiple stations failure

Accidents often affect more than one station. Firstly, the failure of a station may

affect a continuous section and cause multiple stations failure at the same time.

Secondly, terrorists often attack several metro stations simultaneously. For example,

the July 7, 2005 London bombings, four Islamist extremists separately detonated

three bombs in quick succession aboard London Underground trains across the city,

and later, a fourth on a double-decker bus in Tavistock Square. On March 29, 2010,

similar suicide bombings were carried out by two women during the morning rush

hour, at two stations of the Moscow Metro (Lubyanka and Park Kultury). Thirdly,

the impact of natural disasters also tends to spread to multiple stations. According to

the characteristics of urban rail transit operation accidents, this section discusses the

impact of multiple stations failure on the performance of SMN.

As seen in Table 5, multiple stations failure causes much more damage than a

single station failure. In particular, the failure of five stations identified by the

highest weighted betweenness i.e., People’s Square, Xujiahui, Century Avenue,

Shanghai Railway Station and East Nanjing Road, has affected about 37.63% of

passenger flows and caused nearly 43.13% loss of global network efficiency.

Secondly, multiple stations identified by the largest damages of LCCw and GNE

also have a great influence on the performance of SMN, indicating that these two

approaches can also help identify the key node in the network. Besides, the damage

caused by the highest weighted betweenness attack was significantly larger than that

caused by the highest betweenness attack, which implies that the introduction of

geographical space induces large betweenness centrality fluctuations and makes the

hubs become more central.

As discussed in Sect. 4.1, stations identified by the functional loss could cause

the largest damage on the SMN when a single station is attacked. But when multiple

Table 5 The influence of multiple stations failure on SMN performance

Index stations Damage of LCCw (%) Damage of GNE (%)

Top 5 stations with the largest strength 18.05 22.27

Top 5 stations with the largest degree 22.01 27.55

Top 5 stations with the highest weighted betweenness 37.63 43.13

Top 5 stations with the highest betweenness 22.96 27.80

Top 5 stations with the largest damages of LCCw 29.57 27.68

Top 5 stations with the largest damages of GNE 23.30 36.87
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stations are under attack at the same time, the highest weighted betweenness is the

most effective way to identify the crucial stations in the SMN. The presented results

suggest that the transit managers cannot only think about the station local properties

(such as passenger flows, the number of connected stations), but also its position and

role in the metro network and the interplay between weight dynamics (passenger

flow) and spatial constraints (geographical space).

4.3 Vulnerability of Shanghai Metro Network to different attacks

The vulnerability of the SMN is investigated in this section. As discussed in the

previous section (see Sect. 3.3), several topological parameters including the

weighted largest connected cluster, and network efficiency were applied to assess

the changes of the characteristics for subjection to five different deletion strategies.

Figure 5 portrays the changes in the weighted largest connected cluster subjected to

four malicious attack strategies as well as random failures and the weighted largest

connected cluster is calculated by using formula (5). As expected, all intentional

attack strategies result in a rapid breakdown of the SMN with a very small threshold

value of the fraction of removed stations, while the random failures result in the

minimum damage among five different station failure modes. In addition to the

initial phase, the damage caused by the highest weighted betweenness and

topological betweenness attack is precisely the same, showing that they share the

similar order of node removal. It is interesting to find that the LCCw decreases faster

upon removal of nodes with the highest betweenness instead of nodes with the

largest strength and degree. This implies that it is more effective to destroy the SMN

by deleting nodes which are identified as central according to global (i.e.

betweenness) properties rather than local properties (i.e. degree, strength).

Therefore, it is necessary to protect not only the hubs but also strategic points

such as bridges and bottleneck structures in order to maintain the structural integrity

Fig. 5 The changes of LCCw with different malicious attack strategies and random failures
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of a network. Figure 4 also shows that the SMN is very fragile when subjected to

malicious attacks, and it is robust against random failures.

The network efficiency is a better metric to measure the global connectivity of

the network. Figure 6 shows the changes of the network efficiency for a metro

network subject to four malicious attack strategies as well as random failures.

With the increase of the fraction of the removed nodes, the network efficiency

decreases when subjected to different attack rules. The highest betweenness

attacks cause the maximum damage to the network and the highest weighted

betweenness and topological betweenness attack also cause the same function-

ality loss to the network except the initial state, which probably implies that

station spacing has less effect on the network than the one caused by passenger

flows. Furthermore, the damage caused by the largest strength and largest degree

attacks are slightly smaller than that caused by the highest betweenness attacks.

The network efficiency can be preserved by random failures. So it can be known

that the nodes with large betweenness and strength are more important than the

nodes with small betweenness and strength to the connectivity of the network.

Figure 5 also shows that the highest betweenness attacks will generate more

isolated nodes than the other three malicious attack strategies. Therefore,

according to Figs. 5 and 6, we can declare that the highest betweenness attack

strategy is the most effective mode to destroy the SMN, so the nodes with high

betweenness must be given more protection. This result is consistent with

previous studies (Dall’Asta et al. 2006; Zhang et al. 2011). Certainly, the nodes

with large strength are very important to the network, as the damage caused by

the largest strength attacks is slightly lower than the damage caused by the

highest betweenness attack.

Fig. 6 The changes of the network efficiencies under malicious attacks and random failures
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4.4 Comparison of weighted and topological networks vulnerability

Currently, most relevant studies in this field were conducted in the view of topology,

which meant they considered each station as a simple node in graph theory. The

traffic of a station and cost of travel time were rarely considered in previous

literatures. It is therefore interesting to quantify the difference between weighted

and topological networks vulnerability. As the global network efficiency varies with

different networks, the relative size of the largest connected component is adopted

to evaluate the vulnerability of weighted and topological networks. Figure 7 shows

the behavior of LCCw and LCC of all cases. Within this figure, WS represents the

largest strength attack on the weighted network, WD the largest degree attack on the

weighted network, WB denotes the highest betweenness (weighted) attack on the

weighted network and WR denotes random failure on the weighted network.

Similarly, TS, TD, TB and TR represent the largest strength attack on the

topological network, the largest degree attack on the topological network, the

highest betweenness (weighted) attack on the topological network and random

failure on the topological network, respectively.

From Fig. 7, it is interesting to observe that the functionality decrease of

weighted networks caused by intentional attack strategies is even faster and more

pronounced than thought by considering only topological properties. This indicates

that the purely topological measure of the relative size of the largest connected sub-

graph does not convey all the information of a real-world network. In other words,

the functionality of a metro network could be temporarily endangered in terms of

passenger flows even though the physical structure of the network is still globally

well-connected. This implies that weighted networks are more fragile than

topological networks when subject to malicious destructions. All intentional attack

strategies are very effective in damaging the network, reaching the complete

destruction at a very low level of removed nodes. As seen in Fig. 6, the maximum

Fig. 7 Effect of malicious attacks and random failures on weighted and topological network
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damage is still achieved by the highest betweenness attack which leads to a very fast

decrease of the giant component size both for topological and weighted networks.

Whereas, the network may unfortunately be damaged by using attack strategies

based on local quantities (i.e. degree, strength) which are more easily obtained and

calculated. Figure 5 also shows that the random failure causes slightly more damage

to the weighted network than the topological network. This is probably due to a few

hub stations dominating their topology and traffic, such as People’s Square and

Xujiahui. Any node that fails probably has small degree and strength (like most

nodes), which is expendable and has less effect on the structural integrity and

functionality of a weighted network. The flip side is that the weighted networks are

vulnerable to intentional attacks on the hub station. Despite the existence of a few

highly connected nodes (hubs) which leave the network vulnerable to attacks, a

decentralized network structure and high redundancy may help to improve

robustness and network efficiency under normal circumstances or in the case of

failures.

5 Discussion

5.1 Improving robustness of a metro network against failures

In the modern society, it is known that transit networks have a significant impact on

the city, so more attention should be paid on the robustness of a metro network. In

other words, the planning of the topological structure is a critical issue of great

operational significance for a subway system (Yang et al. 2015). In this study, the

topological features and sensitivity of the SMN to random failures and malicious

attacks were investigated. The failure tolerance and attack vulnerability were

measured by the relative size of a large component and global network performance.

Quantitative results in Sect. 4.1 show that the SMN is robust against random

failures but fragile for malicious attacks. In addition, the highest betweenness attack

protocol is the most effective mode to destroy the SMN. Then, it is natural to ask

how to improve the robustness of a metro network. General solutions seem to

protect the crucial stations in metro systems and build more interchange stations.

However, the positions and the number of interchange stations deserve to be further

discussed. The backbone network of the Shanghai Metro System had been well

constructed and entered a new era of networking operation. Its network structure

will not change significantly and the robustness of these metro networks can be only

improved by adding new links and optimizing the network structure.

According to research by Motter and Lai (2003), it is found that the heterogeneity

of the networks makes them particularly vulnerable to attacks in that a largescale

cascade may be triggered by disabling a single key node. In turn, the hub nodes and

load are distributed very evenly in the network, resulting in the high robustness

against failures. This finding could be illustrated by our contrastive analysis of

weighted and topological network. It is interesting to observe that all intentional

attack strategies are very effective in damaging the network (both weighted and

topological) and the weighted version of SMN is more vulnerable than its
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topological network when subjected to intentional attacks. This implies that the

current topological network of SMN is heterogeneous and the introduction of

passenger flow exacerbates the heterogeneity of the networks. Thus, traditional

transit planners should not only consider such characteristics as demography,

geography, demand, cost and others, but also the layout and structure of a network.

The layout of Tokyo Metro provides good experience for Shanghai Metro. It has 13

lines (of all types), with 215 stations; 58 of these stations are transfers, hence a ratio

of 26.98%, which is significantly high. All lines intersect at multiple points,

resulting in that interchange stations distribute evenly throughout the whole system

and load on each line is approximately equal. These span-uniform interchange

stations enable the metro to offer sufficient alternative routes for passengers when

subject to attacks. Furthermore, the well-distributed transfer stations and lines

ensure that a local disruption cannot impair the global structure of a metro system

severely. Thus, it can improve the network robustness against failures by making the

network structure and passenger flow more homogeneous.

The exposure of the stations has been obtained from data on criticality. As seen in

Fig. 6, over half of the top 10 stations locate on or next to the circular line (line 4),

indicating that the circular line plays an important role in the SMN. It serves as the

link between urban and rural areas and provides multiple alternative routes. Circular

lines play a key role in the metro network because it is the most effective way to

create new transfer stations that will further increase the connectivity and robustness

of a network. In this regard, transit planners and managers can consider to build

another circle line or (semi)-circle line to connect peripheral regions and relieve

heavy stress of crucial stations on line 4.

The results obtained are also of high interest in metro operation and management.

For a single station, the functional loss of the metro network is the most effective

and direct method to identify crucial stations. While multiple stations are attacked

simultaneously, the highest weighted betweenness attack causes the largest damage

to the SMN. Therefore, under a constrained budget, the policymakers should consult

the ranking of crucial stations in different situations, which will allow them to

prioritize the allocation of financial and other constrained resources. For example,

metro operators and relevant government agencies may decide to protect the top one

to five vulnerable stations, depending on the amount of available resources.

According to our results and previous research (Zhang et al. 2011), the highest

betweenness attack protocol is the most effective mode to destroy the whole SMN.

This evidence brings both good and bad news concerning the protection of large-

scale metro systems. On one hand, the planning of an effective targeted attack only

needs to gather information on the initial state of the network. On the other hand, the

identification of crucial nodes to protect is an easier task that somehow is weakly

dependent on the attack sequence. As a consequence, the stations with high

betweenness must be given more protection.

5.2 Generality and future work

The vulnerability of a metro network against various malicious attack strategies and

random failures is an extremely complicated issue, and comprehensive studies are
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required to be carried out by combining relevant scientific theory. This paper aims

to investigate the underlying relationship between the structure of the SMN and its

vulnerability by introducing complex network theory. Several traffic characteristics

such as passenger flows, station spacing are considered in the study of the

vulnerability of weighted networks to different malicious attack strategies, and

simulation results show that weighted complex networks are more fragile than

expected through comparative analysis with topological networks. Although only

taking the SMN as an example, this investigation and the practice are possible to be

applied to the network design and safety management of other large-scale metro

systems. Note that different metrics used for node removal scenario analysis will

have different rank order for the most important nodes in the network, so it is

difficult to say which is more crucial. So it should use these different metrics case by

case. The current results could supply a systematic and detailed case for future

research, which can be incorporated into more complex networks such as bus

transport. Besides, the capacity of station and dynamic traffic redistribution after

failures and attacks should be considered and further studied in order to assess the

vulnerability of a metro network more accurately.

6 Conclusion

To summarize, this paper investigates the vulnerability of a weighted metro network

with traffic and geographical space by using complex network theory, aiming to find

reasonable measures to improve the robustness of metro systems. The Shanghai

metro, a typical resource of metro network research, is taken as an example to

examine how a metro system responds to four malicious attack strategies as well as

random failures and how traffic and spatial constraints influence the system’s

robustness.

1. The study of the vulnerability of weighted networks to various malicious attack

strategies and random failures shows that the SMN is robust against random

failures but fragile for malicious attacks and the highest betweenness attack

strategy causes the most damage to SMN among four attack modes. In addition,

when the traffic characteristics are taken into account, the weighted metro

network becomes more fragile than expected from the comparison with

topological quantities and the structural integrity of the weighted network is

vanishing before the topological network is fragmented.

2. A new indicator for node importance evaluation is proposed, which could apply

to identify hubs, bridges and bottlenecks for a metro network.

3. For a single station, the functional loss of the metro network is the most

effective and direct method to identify crucial stations. While multiple stations

are attacked simultaneously, the highest weighted betweenness attack causes

the largest damage to the SMN. Therefore, under a constrained budget, the

policymakers should consult the ranking of crucial stations in different

situations, which will allow them to prioritize the allocation of financial and

other constrained resources.
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4. Circular lines play a key role in the metro network because it is the most

effective way to create new transfer stations that will further increase the

connectivity and robustness of a network. In this regard, transit planners and

managers can consider building another circle line or (semi)-circle line to

connect the current lines and improve the network efficiency.

Although this work could make a contribution to the assessment of the

vulnerability of the metro system, due to the limitation of the passenger flow, the

analysis of metro network vulnerability is only based on the analysis over the SMN

and exposes several insufficiencies. In our further research, the dynamic vulner-

ability analysis of metro systems, a corresponding study of passenger flows, the

frequency of threat occurrence and the mechanism of network disruption, would

integrate with the current work to provide an improved risk assessment model and

safety management strategies for metro systems.
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