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Abstract Transit, although an important public transportation mode, is not thor-

oughly utilized in the United States. To encourage the public to take transit,

agencies have developed systems and tools that assist travelers in accessing and

using information. Transit data modeling and trip planner system architecture

developments have helped advance these systems, and the recent emergence of

transit trip planning algorithms promises further enhancement. Conventional transit

trip planning algorithms are usually developed based on graph theory. In order to

utilize these algorithms, certain assumptions must be made to support these algo-

rithms (e.g. buses always run on time). However, these assumptions may not be

realistic. To overcome these limitations, our study develops an innovative transit

trip planning model using chance constrained programming. Unlike previous

studies, which only minimized passenger-experienced travel time, our study also

considers transit service reliability. Additionally, in-vehicle travel time, transfer

time, and walking time are all included as elements of passenger-experienced travel

time. Our transit trip planning model avoids the assumptions of previous studies by

incorporating transit service reliability and is capable of finding reliable transit paths
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with minimized passenger-experienced travel time. The algorithm can also suggest

a buffer time before departure to ensure on-time arrivals at a given confidence level.

General Transit Feed Specification data, collected around Tucson, Arizona, was

used to model the transit network using a ‘‘node-link’’ scheme and estimate link-

level travel time and travel time reliability. Three groups of experiments were

developed to test the performance of the proposed model. The experiment results

suggested that the optimal anticipated travel time increased with increasing on-time

arrival confidence level and walking was preferred over direct bus transfers that

involved out of direction travel. The proposed model can also include additional

travel modes and can easily be extended to include intercity trip planning.

Keywords General transit feed specification � Chance constrained programming �
Transit travel time � Transit travel time reliability

1 Introduction

Transit trip planners are one of the most important web applications in advanced

public transportation systems (APTS) for increasing public transit ridership and

information broadcasting. Recently, most research on transit trip planners has

focused primarily on three areas. The first area is design of trip planning algorithms

(also known as transit path finding algorithms); the second is trip planner system

architecture design. For example, Sun et al. used a service-oriented architecture and

created a web-based transit trip-planning system (Sun et al. 2011). Cherry and

Hickman (2006) detailed a transit itinerary planner system using Arc Internet Map

Server (ArcIMS). The third area of research is transit data model development. For

example, in order to efficiently search for optimal transit paths, Huang and Peng

(2002a) developed an object-oriented geographic information system (GIS) data

model to support their proposed trip planning algorithms. Although system

architecture and data models are both important, trip planning algorithms are the

fundamental component of transit information services, facilitating trip planning

and producing optimal routes.

In practice, Google Maps provides a powerful trip planning tool that considers

various travel modes. However, few technical or white papers have documented

the details of the trip planning tool in Google Maps. OneBusAway (2015) is

another well-known trip itinerary planner that was designed primarily for surface

public transportation in five major US cities. Documents and papers discussing

OneBusAway have focused on improving transit attractiveness by providing real-

time transit information (Ferris et al. 2010; Brakewood et al. 2014, 2015).

Moreover, a leading open source trip planner, OpenTripPlanner (which relies on

open data standards, including the General Transit Feed Specification (GTFS) for

transit schedule data), was designed for multimodal trip planning (OpenTripPlan-

ner 2016). In academia, most previous research on trip planning has used mature

graph theory and graph theory-based shortest path algorithms because transit

networks can be simplified as static networks consisting of nodes, arcs, and

weights/costs. These graph-based algorithms include the Floyd–Warshall
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algorithm, Dijkstra’s algorithm, and the A* search algorithm (Leiserson et al.

2009). Of these, Dijkstra’s algorithm is the most popular (Huang and Peng 2002b)

because it is less computational intensive and is conducive to online and real-time

system implementation. In addition to the conventional graph theory-based

algorithms, recent studies (e.g. Fu and Rilett 1998; Chen and Ji 2005; Chen et al.

2013) have focused on developing reliability-based path finding algorithms.

However, these newer algorithms were primarily used to find the shortest/most

reliable paths in the context of freeway or arterial networks. Transit network

operations are based on timetables, as opposed to the unconstrained flow of

vehicles on freeway or arterial networks. Transit path finding algorithms may need

to consider transit schedule information. Without considering transit information,

these algorithms may not represent reality.

To incorporate transit information (especially schedules) in determination of

optimal trip paths, headway and schedule-based trip planning algorithms have been

proposed in previous studies (Fu et al. 2012; Nuzzolo and Crisalli 2004; Schmöcker

2006). Most headway-based algorithms were derived from graph theory-based

shortest path algorithms and perform best under frequent-service conditions (Huang

and Peng 2002b), while schedule-based algorithms are highly dependent on transit

schedules. Both headway and schedule-based algorithms usually are based on transit

assignment models. For example, Wong and Tong (1998) proposed a three-stage

schedule-based network model to estimate time-dependent transit origin–destination

matrices. They claimed that their model also generates route guidance information

for passengers. Friedrich et al. (2001) used branch and bound techniques to assign

transit flow on a schedule-based network. Their model could potentially be used for

planning trips. Most of the transit assignment models were proposed to address

transit assignment issues, with heuristic algorithms applied to obtain numeric

solutions. Generally, a large number of iterations are required to reach optimal or

near-optimal solutions, and consequently, the computation time increases signifi-

cantly with an increase in the number of iterations and network size. Because of

this, the original transit assignment models (which seek network level transit

equilibrium) may be unsuitable for finding optimal paths in online or real-time

applications.

These above mentioned transit trip planning algorithms simplify transit networks

as graphs and do not consider transit performance measures (such as on-time

performance). Several assumptions may be required to enable their use. For

example, Huang and Peng (2002b) listed five assumptions for their models: ‘‘(1)

there is no congestion in the transit system; (2) bus is the only transit mode; (3)

buses run on time; (4) transfers only take place at nodes in the path-searching

process; and (5) walking time for transfer at a node is constant.’’ Although

assumptions like these are generally reasonable, ideally trip planning models should

require as few simplifications as possible. In this case, assumptions (1) and (3) could

be replaced by incorporating the probability of on-time arrival at stops. Similarly,

assumption (5) could be addressed by assigning a reasonable probabilistic

distribution for walking time. Assumption (4) implies that the only type of transfer

is bus-to-bus at a single transit stop.
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Therefore, the main objectives of our study are (1) propose a transit path finding

algorithm for online and real-time applications; and (2) propose a transit path

finding algorithm to avoid assumptions, such as those mentioned above, by

incorporating not only transit trip travel time but also a probability-based link-level

reliability measure. Walking is also considered in the trip planning process to

account for passengers who walk between transit routes. Our study expands the

traveler’s transfer options, including not only bus-to-bus transfers but also stop-to-

stop transfers between two stops. Although both streetcars and buses were in

operation in our study region, only one streetcar route existed. As a result, only

buses were considered. The proposed model is capable of finding optimal paths by

considering both travel time and travel time reliability. The new model would also

help travelers determine a suitable buffer time before departure.

This paper begins by detailing a chance constrained model incorporating link-

level transit reliability measure, followed by a numerical method of solving the

model. Network construction and relevant transit measures are introduced, followed

by the results of three groups of experiments. The paper ends with conclusions and

recommendations regarding the proposed model and its implementation.

2 Modeling framework

2.1 Chance constrained model

Many factors impact bus operation, including passenger boarding, traffic conditions,

traffic signal configurations, etc. Therefore, bus travel time is generally difficult to

estimate. Additionally, passenger-experienced transit travel time usually includes

bus travel time, walking time (either between transit stops or between the origin/

destination and stops), and wait time at stops. The latter two types of travel time add

complexity to passenger-experienced transit travel time estimation and result in

uncertainty. In order to resolve the problems regarding uncertainty, chance

constrained programming was used as a means of describing the constraints in

mathematical programming models as attainment probability levels. Consideration

of chance constraints allows decision makers to consider mathematical program-

ming objectives in terms of the probability of their attainment (Olson and Wu 2010).

In our research, the uncertainties in travel time are considered and expand the

deterministic linear programming to a stochastic model with chance constraints to

guarantee the probability of arriving at destinations on-time. For simplicity, the bus

travel time between two adjacent transit stops will be referred to as link travel time

while travel time from the origin to the destination will be referred to as path travel

time. Path travel time includes link travel times.

For stochastic and time-dependent transit networks, path travel time is an

objective function including link travel time, transfer time (waiting time at stops),

and walking time. However, for link travel time, few universally valid models for

bus movements in urban environments have been developed, since buses are

significantly affected by traffic conditions, roadway conditions, traffic signal

control, company policies, etc. (Acer et al. 2012). Therefore, using a nonparametric
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probability distribution estimation method could provide greater flexibility and

increased fidelity with fewer assumptions. For details about estimated travel time

distributions, we refer to our previous research (Yang and Wu 2016). Specific

calculation of the link travel time is shown in the following paragraphs. All of the

corresponding assumptions made for this study and the notations (Table 1) that

were used for the model are shown below.

1. The modes studied here included bus and walking. Walking was only

considered between bus transfers.

2. Link travel time, transfer time, and walking time between any consecutive stops

were treated as random variables. Their interdependency was not considered.

3. Bus transfer time was assumed to follow the uniform distributions; the lower

and upper limit were determined by bus timetables.

4. Walking time was computed based on the distance between two nodes and

walking speed, which was presumed to follow the Normal distribution Nðl; r2Þ.
Reasonable values of l and r are 1.35 and 0.2 m/s (Chandra and Bharti 2013).

Since the first and second moment of reciprocal normal distribution do not exist,

the mean of walking time can be estimated by distance=l, and the standard

deviation of walking time can be estimated by the estimator distance �
ð 1
l�0:67449�r � 1

lþ0:67449�rÞ=k: k was empirically set to be 1.34898 in our study.

For this stochastic network, the objective of minimizing expected total travel

time can be expressed as shown in Eq. (1).

min ET ¼
X

i;jð Þ2A;m2M
xijmEt;ijm ð1Þ

For the constraints, the basic flow balance constraints should be included to

generate the feasible path which is given in Eq. (2).

Table 1 Notation

Notations Description

N Set of nodes in the transit network, with index i, j

O Departure node

D Destination node

A Set of links in the multi-modal network

M Set of travel modes in the multi-modal network, with index m

Et;ijm Mean value of travel time for link (i, j) under mode m

SDt;ijm Standard deviation of travel time for link (i, j) under mode m

AT User-defined anticipated arrival time

CT Current time

c User-defined on-time arrival confidence level

zc Quantile of normal distribution at confidence level c

xijm Binary variable, selecting mode m for link ði; jÞ or not
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X

i;jð Þ2A;m2M
xijm �

X

j;ið Þ2A;m2M
xjim ¼

1; if i ¼ O

0; if i 6¼ Oor D

�1; if i ¼ D

8
<

: : ð2Þ

The chance constraint is introduced here to guarantee the on-time arrival

probability which should be equal to or greater than a pre-defined confidence level

c 2 ½0; 1�. The selection of the confidence level reflects user attitudes towards

arriving at the destination within their anticipated travel time. Higher confidence

levels mean the anticipated arrival time is a stronger consideration on the user’s

route choice, while smaller confidence levels mean a higher risk acceptance towards

being late.

P ET �ðAT � CTÞf g� c ð3Þ

Travel time uncertainties are typically represented by random distributions. If the

travel time between any consecutive stops is independently distributed, the path

travel time approximately follows a Normal distribution according to the Central

Limit Theorem. Then, based on the Central Limit Theorem and the independence

assumption, it is appropriate to add up the mean and variance values of all the arcs

in the path as the mean and variance value of this path. Hence, the chance constraint

can be formed in the following equivalent deterministic constraints according to (Li

et al. 2013).

ET �
X

i;jð Þ2A;m2M
xijmEt;ijm � zc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;jð Þ2A;m2M xijmðSDt;ijmÞ2

r
ð4Þ

xijm 2 0; 1f g ð5Þ

Although only bus and walk modes were considered in our study, we believe that

the chance constrained model used here is flexible and compatible enough to be

used for various other travel modes and uncertainty types, due to the characteristics

of the chance constrained model. For instance, additional transport modes (e.g.

metro trains and automobiles) could be integrated into a transit network by merging

individual mode networks and connecting these networks using shared or

overlapped nodes. In addition to the individual network connections, different

probability distributions could also be included in the chance constrained model.

The model developed in this study is simpler and easier to be implemented based on

existing efficient shortest path finding algorithms.

2.2 Solution method

Up to this point, the model with chance constraints has been transformed into a

classic network model for the shortest path problem with an extra travel time upper

limit constraint. Numerous algorithms have been developed for this problem

category in the static or stochastic network. Classic shortest path algorithms such as

Dijkstra, Bellman, and Dreyfus focus on networks with deterministic arc weights,
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and for time-dependent networks some of the other solution algorithms, such as the

exact or heuristic algorithms, were also proposed recently (Ji et al. 2011; Liu et al.

2014). All of these algorithms seek to obtain an optimum or near optimum path

which limits the alternative options.

For practical application, there will be some paths that have the same objective

value and satisfy the confidence level requirement; therefore, it is best to rank

several possible optimal options for passengers to choose from based on their own

preferences. This ranking system in increasing order of length is usually referred to

as a k-shortest path problem which is a natural and long-studied generalization of

the shortest path problem (Hershberger et al. 2007). The k-shortest path problem

was originally examined by Hoffman and Pavley (1959), but nearly all early

attempts to solve it led to exponential time algorithms (Hershberger et al. 2007).

The best known implementation for this algorithm was proposed by Yen (1971)

using modern data structures, in which Oðknðmþ nlogðnÞÞÞ limits the worst case

time. This algorithm essentially performs OðnÞ single-source shortest path

computations for each output path. Based on all these considerations, the framework

of a k-shortest path algorithm was used to conduct the experiments and in the

repeated k times of the algorithm, feasibility of constraint (4) needed to be checked;

the solution path will not be stored if the feasibility is not satisfied. The framework

used in this research is shown in Fig. 1. It is noted that, in iteration k, spur path S is

the shortest path from the spur node m to the destination. The spur node m is retrieved
from the previous shortest path (k - 1), and then the corresponding root path R is

the node sequence from the origin to the spur node m

3 Study site and data preparation

Transit service data assists transit agencies in making decisions regarding operations

and planning. Manually collecting transit service data has been a popular approach

in the past several decades. Recently, emerging techniques have allowed decision

makers and researchers to automatically collect transit service information. For

instance, GPS can be used to locate transit fleets in real-time. The Automated

Vehicle Location (AVL) system is built based on GPS techniques. The transit

service data collected from the AVL system contains not only fleet location

information but also transit-related information (e.g. trip, route, and bus stop arrival

time). However, specific transit agencies may define AVL data formats to satisfy

their own operational and planning requirements. Google encourages transit

agencies to follow the data format defined in the General Transit Feed Specification

(GTFS) to exchange and share transit service information. Thus, the GTFS data

format is becoming more popular in the United States. Two types of data formats

are defined in the specification, including GTFS-static and GTFS-realtime. The

GTFS-static data contains transit facilities and schedule information. For example,

Fig. 2 shows an overview of bus stops in Tucson, Arizona. The location information

for these bus stops is extracted from the GTFS-static data. This data is also used to

build a network for trip planning and path choice. Real-time transit fleet information

is encrypted in the GTFS-realtime data. This data can be used to estimate transit
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service measures. Two transit service measures were selected, and the details of

estimating the measure will be given in the following section. Sun Tran, which

manages transit service (including over 30 routes and 2000 bus stops) in the Tucson

area, has implemented the two GTFS data formats and made them accessible to the

public. Both types of GTFS data were collected from August 2014 to June 2015 and

used in our study.

3.1 Transit service measures

Two commonly used transit service measures were estimated using the GTFS data,

including the mean value of link travel time (also known as stop-to-stop travel time)

and transit service reliability. Transit service reliability herein is defined as the

variance of link travel time. Travel time reliability is typically measured by time of

day (TOD) and day of week (DOW) (Yang et al. 2014; Yang and Wu 2016). The

transit service in Tucson used two timetables for weekdays and weekends because

of noticeable differences in transit demand. A dummy variable w was used to

Input:
s – departure stop
t – destination stop
K – number of iteration required
Output: P1, P2… PK

0. Initialize A, B and F as empty set
1. P1 = Dijkstra (s, t)
2. A = {}  //set of k shortest path
3. B = { P1}  //set of k shortest path candidates
4. F = {} //set of shortest paths that satisfy chance constraint
5. if P1 satisfy chance constraint
6. F = F + { P1}
7. end if
8. while k less or equal than K 
9. (P, d[P]) = the path with minimum distance in B
10. v = deviation node of P and A
11. Add (P, d[P]) into A
12. while v != t
13. root path R = all nodes from s to v of P
14. remove nodes of R from the graph
15. spur path S = Dijkstra (v, t)
16. new path PP = root path R + spur path S
17. Add new path PP into B
18. if PP satisfy chance constraint
19. F = F + {PP}
20. end if
21. Restore the removed nodes and links
22. v = successor of v in path P
23. end while
24. end while
25. Print result F

Parameters 
Initialization

Repeat Process

Extended Dijkstra’s 
For Path Storing and 

Ranking 

Check Chance 
Constraints

Satisfied

Store and output: 
K-paths and time

Yes

N
o

Fig. 1 K-shortest path solution framework
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indicate either weekdays or weekends. Therefore, transit service reliability was

measured by TOD and DOW.

TT
t;w
n;l ¼ 1

K

XK

k¼1

TT
t;w
n;l;k ð6Þ

TTR
t;w
n;l ¼

1

K

XK

k¼1

TT
t;w
n;l;k � TT

t;w
n;l

� �2

ð7Þ

where TT and TTR are average and variance of link travel time given n, l, t, and w; n

represents the route number; l represents the lth link on Route n; w is 0 for weekends

and 1 for weekdays; t represents time of day (TOD); k is the kth estimated link

travel time given n, l, t, and w:

3.2 Network construction

Figure 3 demonstrates a theoretical transit network consisting of three transit routes

and 13 transit stops. Multiple routes may travel on the same link and pass through

the same stops. The link travel time and link travel time reliability are estimated by

specific routes and links. For example, Westbound Routes A and C are designed to

travel on a link consisting of Stops 1 and 2. TT
t;w
A;1 and TTR

t;w
A;1 represent the travel

Fig. 2 Bus stops and transit network in Tucson (Background image is from the OpenStreetMap)
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time and travel time reliability, respectively, on the first link, Route A, given a

certain TOD and w. T
t;w
C;1 and TTR

t;w
C;1 represent the travel time and corresponding

travel time reliability on Route C on the same link. Static transit stop information

was extracted from the GTFS-static data and the links were constructed using two

consecutive stops on a specific route. The link travel times and the link travel time

reliability were estimated using the GTFS-realtime data. Also, for the walking

network, the link travel time and reliability were estimated (see Sect. 3). Finally, the

transit network and walking network were combined and connected using static

stops, constructed links, and corresponding link travel time and travel time

reliability.

4 Experiments and validation

Based on the above mentioned data and approaches for network construction, the

transit network in the Tucson area was modeled. The transit bus network consisted

of 2332 bus stops and 3529 links. Two modes were primarily considered in the

network, including walking and taking transit buses. Thus, optimal paths could

include both modes. Three groups of experiments were created to demonstrate the

effects of transit service uncertainty on path choices. Catching a flight is a time-

constrained activity, so it was used as a measure of the impact of transit reliability.

Accordingly, the Tucson International Airport was set as the destination of the

experiments.

Note that only regular transit services (e.g. non-holiday transit service) were

considered in our study because regular transit services play more important roles

than irregular transit services in riders’ daily lives. In addition, irregular transit

services (e.g. the service on holidays) may not be implementable in our study

Fig. 3 Transit network construction
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because: (1) limited data was available for holiday transit services, and (2) large

holiday headways (usually 30 min in our case studies) made the transit services

temporally unavailable at some points.

4.1 Experiment group 1: effects of chance constraints on path choice

This experiment group was designed to investigate the effects of chance constraints

on path choice. The departure time was selected as 5 pm on a weekday, when traffic

usually suffered from recurrent congestion. The confidence level of the chance

constraint was set at 99.5 %. Four scenarios were created by using two origins [the

University of Arizona (UA) Mall bus stop (Stop 100) and the Kain/Kimberly PI bus

stop (Stop 13912)] and whether the chance constraint was considered. These two

origins were chosen for illustration as multiple transfer options were available due

to their long distance from the airport. Also, at the selected peak hour (5 pm on a

weekday), the travel time from these two stops to the airport was generally higher

than non-peak hours.

• Scenario 1a: Stop 100; do not consider chance constraint;

• Scenario 1b: Stop 100; consider chance constraint;

• Scenario 2a: Stop 13912; do not consider chance constraint;

• Scenario 2b: Stop 13912; consider chance constraint;

A summary of the results is listed in Table 2, the paths are visualized in Fig. 4,

and several findings are noted below.

1. Both scenarios showed that the optimal travel times were higher when the

chance constraint was considered.

2. Walking was preferred in Scenario 1b, because walking was more reliable than

taking and waiting for buses. Both Routes 9 and 25 were chosen in Scenario 1.

The major difference between Scenarios 1a and 1b was the mode selection to

pass through Stop 10862. Taking buses was chosen in Scenario 1a (the stop was

included in Route 25) while walking to the stop was chosen in Scenario 1b. The

travel time of buses was usually shorter than walking time. However, congested

traffic conditions may lead to transit bus arrival being less predictable and

reliable. The selection of walking may become an alternative to avoid traffic

congestion and ensure on-time arrival. Thus, walking became the optimal

choice when considering the chance constraints. The optimal path chosen for

Stop 100 in Scenario 1a and Scenario 1b is shown in Fig. 4a.

3. More reliable paths were chosen in Scenario 2. The differences of walking time

between Scenario 2a and Scenario 2b were minor (approximately 1.4 and

1.8 min, respectively). Route 6 was chosen in Scenario 2a and was planned on a

busier roadway; whereas Route 19 in Scenario 2b was planned on a roadway

with relatively light traffic. Although the optimal travel time of Scenario 2a was

slightly smaller than that of Scenario 2b, Scenario 2b could be a better path

choice when considering chance constraints with a higher on-time arrival

confidence level. The optimal path chosen for Stop 13912 in Scenario 2a and

Scenario 2b is shown in Fig. 4.
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Fig. 4 Optimal paths without and with chance constraints consideration

A reliability-based transit trip planning model under uncertainty 489

123



4.2 Experiment group 2: effects of confidence levels on path choice

The second group of experiments was designed to investigate the effects of different

on-time arrival confidence levels on path choice. Once again, the destination was

the Tucson International Airport. Three origins were selected, including the UA

Fig. 4 continued
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Mall bus stop (Stop 100), the Kain/Kimberly PI bus stop (Stop 13912), and the 1st

Ave/Rillito Park (Stop 12900). Since traffic conditions greatly affect transit

reliability, two different weekday times, 6 am and 5 pm, were used for the

experiment scenarios. Transit service was considered reliable at 6 am and less

reliable at 5 pm. Thus, six scenarios were created based on the three origins and

these two TODs. Several levels of on-time arrival confidence levels were tested for

each scenario.

• Scenario 1a: Stop 100; departure time: 6 am

• Scenario 1b: Stop 100; departure time: 5 pm

• Scenario 2a: Stop 13912; departure time: 6 am

• Scenario 2b: Stop 13912; departure time: 5 pm

• Scenario 3a: Stop 12900; departure time: 6 am

• Scenario 3b: Stop 12900; departure time: 5 pm

Figure 5 and Table 3 show the optimal anticipated travel times for each scenario,

and several findings are summarized below.

1. The optimal anticipated travel times increased with increasing on-time arrival

confidence levels. For example, the optimal anticipated travel time was

82.5 min when the chance constraint was not considered. The optimal

anticipated travel time increased to 109.3 min when the on-time arrival

confidence level was set at 99.5 % in Scenario 1. The same increasing trend can

be observed in all of the scenarios. The trend matches travelers’ intuition: for a

fixed arrival time, the more planned time, the higher the on-time arrival

confidence level.

2. The optimal anticipated travel time for the 5 pm departure given the same on-

time arrival confidence level was greater than that at the 6 am departure. For

example, without considering confidence level, the optimal anticipated travel

times were 82.45 and 90.55 min, respectively. Generally, the transit service was

more reliable in the early morning than during peak hours.

3. Approximately 30 % additional planned time could ensure on-time arrival at a

relatively high confidence level. Table 3 lists the optimal anticipated travel

times when the on-time arrival confidence level was not considered and at the

99.5 % level for the six scenarios. Although the time difference varied, the

percentage differences suggested that trips could be on-time at an on-time

arrival confidence level of 99.5 % if 30 % additional planned time was added as

a buffer.

4.3 Experiment group 3: weekend vs. weekday

The third experiment group was designed to investigate the optimal anticipated

travel time and path choice on weekends and weekdays. Due to light traffic on

weekends, transit service was originally supposed to be reliable and similar to

service in the early morning. However, Fig. 5 shows that great differences of the

optimal anticipated travel time existed between 6 am on weekdays and 10 am on
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weekends. The major difference between the weekday timetable and weekend

timetable was the bus time headway. The time headway was typically 10 or 15 min

on weekdays; while it was 60 min on weekends. Larger headway resulted in longer

waiting time at bus stops, thus the optimal anticipated travel time increased.

Additionally, the optimal anticipated travel time increased much faster in the

confidence range [0.95, 0.995] for all of the scenarios as the quantile difference in

this range was much higher than in other selected ranges (z0:995 & 2.81,

z0:95 & 1.96, z0:90 & 1.64).

As the results in Sect. 4.2 show (considering the three origin points), additional

planned time is suggested as a buffer during non-peak hours (e.g., 6 am on

weekdays) or peak hours (5 pm on weekdays) for on-time arrival at the airport if the

confidence level is 99.5 %. Figure 5 also shows the necessary buffer time for the

three origin points at different confidence levels for non-peak and peak hours on

weekdays. However, the buffer time required is higher on weekends due to much

longer waiting times caused by different bus timetables. Note that: (1) two

transportation modes, bus and walking, were considered here. This result could be a

reliable reference for passengers who only have these two travel options. The results

could vary depending on several factors (e.g. the traffic peak hour, planned bus

routes and timetable); (2) as indicated by the chance constraint of the proposed

model, the additional buffer time greatly depends on the travel links involved and

the deviation of travel time; (3) an airport was used as the destination because of its

significant on-time requirements and passengers’ desire for on-time arrival. The

proposed chance constrained model also could be applied to other origin–

destination pairs.

5 Conclusions

Transit systems are not thoroughly utilized in the United States. Previous studies

have shown that low fares and highly accessible information can attract increasing

numbers of travelers to use transit. With new technologies emerging, the ease of

tracking and collecting transit fleet information in real-time helps improve both

Table 3 Basic Statistics

Optimal anticipated travel time (min) Difference

No chance

constraint (base)

99.5 % on-time arrival

confidence level (C0:995)

Minutes

(C0:995 � base)

Percentage (%)

((C0:995 � base)/base)

Scenario 1a 82.45 109.3 26.85 32.57

Scenario 1b 90.55 120.7 30.15 33.30

Scenario 2a 129.90 171.6 41.70 32.10

Scenario 2b 151.50 203.6 52.10 34.39

Scenario 3a 109.10 142.9 33.80 30.98

Scenario 3b 122.70 163.1 40.40 32.93
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operations and release real-time information. To further encourage travelers to take

transit, an efficient decision tool is required to help travelers plan trips. APTS, such

as transit trip planners, are one method for travelers to access and utilize transit

information. In our study, a data-driven decision framework for transit path

optimization was proposed and implemented. The advantages of the proposed

framework are highlighted below.

• Not only transit travel time but also transit travel time reliability was considered

when planning optimal trips. These two important measures can inform

passengers of both anticipated travel times and the on-time arrival confidence

level. Passengers can use this information to better plan their trips.

• The two transit measures were related by using a chance constrained decision

model to obtain travel paths under different uncertainties. Then the chance

constraint was transformed into an equivalent deterministic constraint based on

the approximate Normal Distribution property of the path.

• Walking was considered when passengers needed to transfer bus routes.

Incorporating the walking mode would give passengers more details regarding

trip planning and could help them plan more reliable trips.

• The proposed reliability-based model is equivalent to conventional models (e.g.

the Dijkstra algorithm) if the confidence level is zero. The reliability-based

model would become like a conventional trip planner if limited data was

available, ensuring model robustness regardless of data availability.

GTFS-static and GTFS-realtime data was collected and adopted for path

optimization in the Tucson, Arizona area. Both data types were utilized to estimate

link travel time and corresponding link travel time reliability in the transit network.

Three groups of experiments with several different scenarios were conducted. The

results from the experiments suggested that:

• Optimal anticipated travel time increased with increasing on-time arrival

confidence level. Essentially, more reliable planned transit paths usually involve

longer anticipated travel times. Approximately 30 % additional time can serve

as a reference for allocating traveling buffer time to ensure a high on-time

arrival confidence level to the Tucson International Airport.

• Walking was preferred when transferring buses, instead of taking a transit

detour. This is because walking has relatively high reliability. The chance

constrained decision model gave more weights to more reliable modes.

• Given the same on-time arrival confidence level, additional time was required

when traveling during peak hours, compared with non-peak hours, indicating

that congested traffic results in less reliable transit service.

Further research could easily be extended to include intercity trip planning using

aviation networks. Transportation modes, such as bikes and trains, could also be

considered, but new challenges could arise, including the additional data required to

quantify real time travel uncertainty for these modes, and the computation cost

might increase due to the transit network with additional modes. Other statistical

models, such as the Gaussian mixture model, could be employed to quantify the

494 Y. Chen et al.

123



uncertainties in travel data and further refine the correlations of travel times between

two consecutive links.
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