
ORIGINAL PAPER

Passenger routing for periodic timetable optimization

Ralf Borndörfer1
• Heide Hoppmann1

•

Marika Karbstein1

Accepted: 11 July 2016 / Published online: 2 August 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract The task of periodic timetabling is to determine trip arrival and departure

times in a public transport system such that travel and transfer times are minimized.

This paper investigates periodic timetabling models with integrated passenger

routing. We show that different routing models can have a huge influence on the

quality of the entire system: Whatever metric is applied, the performance ratios of

timetables w.r.t. different routing models can be arbitrarily large. Computations on a

real-world instance for the city of Wuppertal substantiate the theoretical findings.

These results indicate the existence of untapped optimization potentials that can be

used to improve the efficiency of public transport systems by integrating passenger

routing.
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1 Introduction

Public transit passengers choose their routes not only to minimize travel time. They

also take additional (dis)utilities like transfers, fares, and robust connections into

account. This is reflected in the literature on routing models for public transport,

which takes a very detailed point of view, see, e. g., the survey article of Fu et al.

(2012). It has been shown that such models can deduce ‘‘correct’’ routes with high

probability, see van der Hurk et al. (2013). Planning an attractive public transport

system therefore requires a consideration of human behavior, as well as an

assessment of line plans and timetables.

The integration of passenger behavior into network design, line planning, and

timetabling models is a major challenge in public transit optimization. It is farthest

advanced in the area of line planning: Integrated line planning and passenger

routing models have been proposed by Schöbel and Scholl (2006), Borndörfer et al.

(2007), and Borndörfer and Karbstein (2012), the last reference reports also on

successful computations.

Timetable optimization has been extensively studied with respect to fixed

passenger routings based on path lengths in the network, see, e.g., Liebchen (2006),

Lindner (2000), and Nachtigall (1998). More sensitivity w.r.t. passenger behavior is

provided by iterative timetabling approaches, which can also deal with practical

requirements such as delays and disruptions, see, e.g., Sels et al. (2016). The full

integration of passenger routing into timetable optimization models has been taken

up only recently. Schmidt (2012) studies its complexity for aperiodic timetabling.

She develops an exact solution approach for the case where the first and last train of

each passenger path are fixed, see also Schmidt and Schöbel (2014). The only

approaches to integrated passenger routing and periodic timetabling that we are

aware of are the Master thesis of Lübbe (2009) and the article of Siebert and

Goerigk (2013). Lübbe proposes an integrated quadratic model and linearizes it to

obtain an integer linear programming model. His computations indicate a potential

for travel time improvements but he could only deal with very small instances.

Siebert and Goerigk provide worst case error analyses and compare an integrated

integer programming model with an iterated approach.

As a next step towards the development of integrated timetabling and passenger

routing methods this paper investigates the impact of routing decisions on the

timetable. We focus on travel time, transfer time, and capacities as factors

determining the passenger routes, and we employ simple routing models, that are

amenable to a theoretical analysis. We do not consider the impact of delays or

disruptions, i.e., we study the ‘‘planned’’ case. In this context, the following

questions arise: Do different assumptions on passenger behavior matter at all? How

does routing influence the optimal timetable? How can we measure differences in

terms of the performance of the timetable? How important is the choice of the

objective function w.r.t. the performance of the timetable?

To shed some light on these questions, we propose a family of integrated periodic

timetabling and passenger routing models that differ in their routing approach. More

precisely, we consider a fixed passenger routing, a routing on shortest paths w.r.t.
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the timetable (to be optimized), and two routings that take line capacities into

account. We evaluate them in terms of the total and the maximum travel time

system optimum, which is obtained by a simultaneous optimization of all passenger

paths. Comparing these objectives gives an indication of the significance of

different routing schemes. Evaluating optimal solutions using a different routing

model gives an indication of the robustness of a timetable w.r.t. different routing

schemes. It will turn out that the worst case ratio in all these performance

comparisons is infinite, in some cases even regardless of the timetable, in others

depending on parameters such as the number of origin-destination pairs or the

number of nodes in the network. A computational test of our model on a real-world

instance for the city of Wuppertal shows that such effects can indeed play a role in

practice. These results question appropriateness of fixed passenger routing models

and pinpoint a potential for the development of methods that can take human

behavior better into account. They also suggest the existence of untapped

optimization potentials for possibly substantial improvements of the quality of

public transit systems.

The paper is structured as follows. Section 2 proposes an integer programming

model for integrated timetabling and passenger routing that can be used with

different routing schemes and objectives. Section 3 analyzes the ratios between

optimal solutions for different routings, Sect. 4 evaluates optimal solutions using

alternative routings, and Sect. 5 investigates the ratios between different objectives

from a theoretical point. Section 6 gives a computational study with data for the city

of Wuppertal. Section 7 concludes.

2 Notation

Most models in the literature about periodic timetabling are based on the periodic

event scheduling problem (PESP) developed by Serafini and Ukovich (1989). We

consider the following extension w.r.t. passenger routings. Let N ¼ ðV ;AÞ be a

directed graph, the event-activity network. The nodes V are called events and

represent arrivals and departures of lines at their stations, i.e., V ¼ Varr [ Vdep. The

arcs A � V � V are called activities and model driving between stations, waiting at

stations, and possible transfers between lines at stations, i.e.,

A ¼ Adrive [ Adwell [ Atrans. Further, we are given lower and upper time bounds

‘a; ua 2 Q� 0, respectively, for the duration of activity a 2 A. Passengers can start

and end their trips in Vdep and Varr, respectively. The passenger demand is given in

terms of an origin-destination matrix (OD matrix) ðdstÞ 2 Q
Vdep�Varr

� 0 specifying for

each pair of arrival and departure nodes ðs; tÞ 2 Vdep � Varr the number of

passengers that want to travel from s to t. Let D ¼ fðs; tÞ 2 Vdep � Varr : dst [ 0g
be the set of all OD pairs. For an OD pair (s, t), let Pst be the set of (s, t)-paths in N

and let P :¼
S

ðs;tÞ2D Pst be the set of all passenger paths.

A periodic timetable p : V ! Q determines arrival and departure times at all

arrival and departure nodes, respectively, that are assumed to repeat periodically

w.r.t. a period time T 2 N. Given x 2 Q, we define the modulo operator by
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½x�T :¼ minfxþ zT : xþ zT � 0; z 2 Zg. We call a timetable feasible if the periodic

interval constraints

½pw � pv � ‘a�T 2 ½0; ua � ‘a� 8 a ¼ ðv;wÞ 2 A

are satisfied. We assume w.l.o.g. that ‘a\T and ua � ‘a\T for all a 2 A. For a

feasible timetable p, the time duration of activity a 2 A is given by

xa :¼ ‘a þ ½pw � pv � ‘a�T , and the time duration or travel time of a passenger path

p 2 P is xp :¼
P

a2p xa.

A passenger routing model M restricts the passenger paths to subsets PM
st � Pst,

ðs; tÞ 2 D, PM :¼
S

ðs;tÞ2D PM
st , and limits the number of passengers traveling on

activity a 2 A by a capacity jMa � 0. We introduce timetable variables pv for the

timing of event v 2 V , duration variables xa for the length of activity a 2 A, and

passenger variables yp for the fraction of passengers that travel on path p 2 PM .

The domain of the passenger routing variables yp is denoted by QM . Let finally

f ðx; yÞ ! Q be an objective function depending on the passenger routing variables

and the duration variables. Then we can state the following mixed-integer non-

linear program with congruence relations for the generic integrated passenger

routing and timetabling problem:

ðMf Þ min f ðx; yÞ
s.t. ½pw � pv � ‘a�T � ua � ‘a 8 a ¼ ðv;wÞ 2 A

ð1Þ

½pw � pv � ‘a�T þ ‘a ¼ xa 8 a ¼ ðv;wÞ 2 A ð2Þ
X

p2PM
st

yp ¼ 1 8 ðs; tÞ 2 D ð3Þ

X

ðs;tÞ2D

X

p2PM
st :a2p

dst yp � jMa 8 a 2 A ð4Þ

pv\T 8 v 2 V ð5Þ

pv � 0 8 v 2 V ð6Þ

yp 2 QM 8 p 2 PM : ð7Þ

The model ðMf Þ minimizes f among all feasible timetables using the passenger

routing model M. Constraints (1) guarantee a feasible periodic timetable. Equa-

tions (2) set the duration variables, which are convenient to define the objective

function. Constraints (3) and (4) enforce a passenger flow that does not exceed the

capacity.

We remark that conditions (1) and (2) can be formulated in terms of linear

constraints, using additional integer periodic offset variables for each activity, see,

e.g., Liebchen (2006). An alternative linearization, which we use for our
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computations in Sect. 6, is obtained by transforming the event-activity network into

a time-expanded event-activity network, see, e.g., Kinder (2008).

Objectives. We consider two objectives that account in different ways for the

travel time of the passengers induced by a timetable. Let (x, y) be a feasible solution

of (1)–(7) for some routing model M.

• Our first objective is to minimize the total weighted travel time of all passengers:

f sumðx; yÞ :¼
X

ðs;tÞ2D

X

p2PM
st

X

a2p
dst xa yp:

• The second objective is to minimize the maximum weighted travel time among

all passengers, i.e.,

fmaxðx; yÞ :¼ max
ðs;tÞ2D

X

p2PM
st

X

a2p
dst xa yp:

The objective fmax can be linearized with an auxiliary variable zmax 2 Q,

representing the maximum weighted travel time among all OD pairs via the

constraints
X

p2PM
st

X

a2p
dst xa yp � zmax 8 ðs; tÞ 2 D

and setting fmaxðx; yÞ :¼ zmax.

In the remainder of the paper, it will be convenient to abbreviate models ðMfmaxÞ
and ðMf sumÞ as ðMmaxÞ and ðMsumÞ, respectively.

Routing models. We define four passenger routing models by specifying the set

of passenger paths and the capacity constraints. The first two, the lower-bound

routing model (LBR) and the shortest path routing model (SPR), are uncapacitated,

such that demands can be routed independently of each other, the other two, the

capacitated multi-path routing model (j�MPR) and the capacitated unsplittable path

routing model (j�UPR), involve bounds on the maximum passenger flow on an

activity.

• The lower-bound routing model (LBR) arises from the assumption that

passengers choose their travel paths according to lower bounds on the travel

time. For our objectives, this results in a routing that is independent of the

timetable. The detailed settings are:

– PM
st ¼ argmin

P
a2p ‘a : p 2 Pst

n o
for all ðs; tÞ 2 D, i.e., for each OD pair

only the shortest path w.r.t. the lower bounds on the activities is considered.

– jMa ¼ 1 for all a 2 A, i.e., the routing model is uncapacitated

– QM ¼ Q� 0, i.e., the passenger flow is non-negative.

Passenger routing for periodic timetable optimization 119

123



• The shortest path routing model (SPR) arises from the assumption that

passengers choose shortest travel paths according to the travel times induced by

the timetable. Like in the ðLBRÞ, the routing also ignores capacity restrictions. It

includes the following detailed settings:

– PM ¼ P, i.e., all paths are allowed,

– jMa ¼ 1 for all a 2 A, i.e., the routing model is uncapacitated,

– QM ¼ Q� 0, i.e., the passenger flow is non-negative.

• The capacitated multi-path routing model (j�MPR) extends the shortest path

routing model by capacity constraints. The detailed settings are:

– PM ¼ P, i.e., all paths are allowed,

– jM �1, i.e., activity capacities may be bounded,

– QM ¼ Q� 0, i.e., the passenger flow is non-negative.

• The capacitated unsplittable path routing model (j�UPR) extends the shortest

path routing model by capacity constraints and the assumption that all

passengers of one OD pair ðs; tÞ 2 D travel on the same (s, t)-path. The detailed

settings are:

– PM ¼ P, i.e., all paths are allowed,

– jM �1, i.e., activity capacities may be bounded,

– QM ¼ f0; 1g, i.e., for each OD pair exactly one path is chosen.

For the lower-bound routing model (LBR), PM
st contains exactly one path for each

OD pair if all shortest paths are unique, which we will (w.l.o.g.) assume in the

sequel. Then this routing model is a fixed path routing model. All other routing

models interact with the timetable.

Comparing routings and objectives. For a problem ðMf Þ and an instance I,

denote by feasðMf ; IÞ and optðMf ; IÞ the set of values of time duration variables x

and passenger variables y that give rise to feasible and optimal solutions,

respectively. From now on, we assume w.l.o.g. that ðMf Þ is always feasible for I.

Let vðMf ; IÞ be the optimal objective value, i.e., vðMf ; IÞ ¼ f ðx	; y	Þ for all

ðx	; y	Þ 2 optðMf ; IÞ. To evaluate optimal solutions w.r.t. different objectives, we

denote by

vðMf ; IÞjmax :¼ sup fmaxðx	; y	Þ : ðx	; y	Þ 2 optðMf ; IÞ
� �

the (worst) maximum weighted travel time among all OD pairs for any optimal

solution of instance I of model Mf , and by

vðMf ; IÞjsum :¼ sup f sumðx	; y	Þ : ðx	; y	Þ 2 optðMf ; IÞ
� �
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the (worst) total weighted travel time for any optimal solution of instance I of model

Mf . Let M1 and M2 be two routing models, then we denote for an instance I by

vðMsum
1 ; IÞjM2

:¼ maxfminff sumðx	; yÞ : ðx	; yÞ 2 feasðMsum
2 ; IÞg

: ðx	; :Þ 2 optðMsum
1 ; IÞg

the (worst) minimum total weighted travel time achieved by an M2-routing for a

timetable that was optimized w.r.t. an M1-routing. Note that these definitions imply

vðMmax; IÞ ¼ vðMmax; IÞjmax � vðMsum; IÞjmax

vðMsum; IÞ ¼ vðMsum; IÞjsum � vðMmax; IÞjsum
ð8Þ

for any instance I of any routing model M. Furthermore, the definitions of the

routing models yield

vðSPRsum; IÞ� vðLBRsum; IÞ ð9Þ

vðSPRmax; IÞ� vðLBRmax; IÞ ð10Þ

vðj�MPRsum; IÞ� vðj�UPRsum; IÞ ð11Þ

vðj�MPRmax; IÞ� vðj�UPRmax; IÞ ð12Þ

vðSPRsum; IÞ ¼ vðSPRsum; IÞjSPR � vðLBRsum; IÞjSPR ð13Þ

vðj�MPRsum; IÞ ¼ vðj�MPRsum; IÞjj�MPR � vðj�UPRsum; IÞjj�MPR: ð14Þ

We will show in the following sections that there are instances such that the

inequalities (8) and (9)–(14) are strict. For a more precise quantification, we will

study the following performance gaps

sup
I

vðMf1
1 ; IÞj

sum

vðMf2
2 ; IÞj

sum
; sup

I

vðMf1
1 ; IÞj

max

vðMf2
2 ; IÞj

max
; and sup

I

vðMsum
1 ; IÞjM2

vðMsum
2 ; IÞ ð15Þ

of models M
f1
1 and M

f2
2 , where the supremum is taken over all instances I.

We will show that there are instances such that the gaps (15) can be arbitrarily

large. To this purpose, we construct timetabling instances based on a directed graph

in the following fashion: We associate the nodes with stations and the arcs with

driving activities of lines. For all transfer activities, the lower time bound is set to

zero and the upper time bound is set to T 2 N. The lower and the upper time bound

of all line dwell activities at each station is set to zero. For each line driving activity

the lower time bound is set to the upper time bound. Hence, these timetable prob-

lems reduce to determining for each line the departure time at the first station.
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3 Comparing routing models: integrated optimization

We study in this section the impact of the routing model on the value of the optimal

solution.

Theorem 1

sup
I

vðLBRsum; IÞ
vðSPRsum; IÞ ¼ 1:

Proof Consider the directed graph D in Fig. 1. D has 2k þ 2 nodes and 2k þ 1þ
k þ 1 ¼ 3k þ 2 arcs, k 2 N; arcs corresponding to transfer and dwell activities are

omitted. Based on D we construct a timetabling instance I as described in Sect. 2.

We associate k þ 2 lines with the arcs of D. There is one line from s to t (dotted

arc) with a driving time of T and no intermediate stations. There is a second line

(solid arcs) from s to t with 2k intermediate stations. The driving time between the

stops of this line is alternatingly � :¼ T�1
2kþ1

and T. Between every two stations, for

which the driving time of the second line is T, there is another line with a driving

time of only � (dashed arcs). There is only one passenger that wants to travel from

s to t.

First consider model ðLBRsumÞ. The passenger is routed along the unique shortest

(s, t)-path, which uses all upper arcs, with a total length of ð2k þ 1Þ� ¼ T � 1, if the

transfer times at all stations would be zero. However, there is no feasible

timetable for this instance such that the transfer time at every station in this path is

zero. In fact, in any solution of ðLBRsumÞ, the transfer times at stations 2 and 3 sum

up to

T � �

as for every following pair of stations along this path. Hence, the travel time for this

path is in total T � 1þ kðT � �Þ and vðLBRsum; IÞ ¼ T � 1þ kðT � �Þ. In an

optimal solution to ðSPRsumÞ the passenger travels on the bottom line with a travel

time of T for any timetable and, hence, vðSPRsum; IÞ ¼ T . We can conclude that

vðLBRsum; IÞ
vðSPRsum; IÞ ¼ T � 1þ kðT � �Þ

T
¼ k þ

ðT � 1Þð1� k
2kþ1

Þ
T

�!
k!1

1:

h

s 2 3 4 2k + 1 t

ε ε εε ε ε ε ε

T T T

· · · · · ·

T

ε := T−1
2k+1

Fig. 1 Instance for Theorem 1
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Theorem 2

sup
I

vðLBRmax; IÞ
vðSPRmax; IÞ ¼ 1:

Proof The theorem directly follows from the proof of Theorem 1, because the

example instance contains only a single OD pair. In this case the maximum

weighted travel time is equal to the total travel time. h

Theorem 3

sup
I

vðj�UPRsum; IÞ
vðj�MPRsum; IÞ ¼ 1:

Proof Consider the directed graph D in Fig. 2. The graph D has 6nþ 5 nodes,

where n� 3 is an odd number; arcs corresponding to transfer and dwell activities are

omitted. Based on D we construct a timetabling instance I as defined in Sect. 2.

We set the passenger demand to dst ¼ �d, where 1\�d� n; all other demands are

set to zero. The instance contains 2nþ 4 lines. 2nþ 2 lines are represented by the

dotted arcs ðs; u1Þ and ðu2nþ1; tÞ, which have a capacity of �d� j� n, and by the arcs

fðs; uiÞ : 2� i� 2n; i is eveng and fðui; tÞ : 2� i� 2n; i is eveng, with a capacity of

only 1. Then there is one line (dashed arcs) starting in u1 and ending in v2nþ1 and the

last line (solid arcs) is from v1 to w2nþ1. The dashed and the solid line also have a

capacity of j. All transfer and dwell activities have infinite capacity.

s

t

u2n

v2n

w2n

u2n+1

v2n+1

w2n+1

u1

v1

w1

u2

v2

w2

u3

v3

w3

u4

v4

w4

u5

v5

w5

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

2ε+
T

ε

ε+
T

2ε

ε+
T

2ε

2ε

ε+
T

ε

2ε+
T

ε

ε

ε

ε

ε

ε

ε

ε

ε

2ε+
T

ε

2ε+
T

· · ·

· · ·

Fig. 2 Instance for Theorem 3. All bold arcs in this graph have a capacity of j, the thinner arcs have a
capacity of 1
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The duration of all driving activities of the dotted lines and the activities

corresponding to ðui; viÞ and ðvi;wiÞ, 1� i� 2nþ 1, is �[ 0. The duration of the

remaining driving activities are as follows:


 ðvi; uiþ1Þ; i ¼ 1þ 4 j; j� 0; i\2nþ 1 have a duration of 2�þ T ,


 ðwi; viþ1Þ; i ¼ 4þ 4 j; j� 0; i\2nþ 1 have a duration of 2�þ 5,


 ðvi; uiþ1Þ; i ¼ 2þ 4 j; j� 0; i\2nþ 1 have a duration of �þ T ,


 ðwi; viþ1Þ; i ¼ 3þ 4 j; j� 0; i\2nþ 1 have a duration of �þ T ,


 ðvi; uiþ1Þ; i ¼ 3þ 4 j; j� 0; i\2nþ 1 have a duration of 2�,

 ðwi; viþ1Þ; i ¼ 2þ 4 j; j� 0; i\2nþ 1 have a duration of 2�,

 ðvi; uiþ1Þ; i ¼ 4þ 4 j; j� 0; i\2nþ 1 have a duration of �,

 ðwi; viþ1Þ; i ¼ 1þ 4 j; j� 0; i\2nþ 1 have a duration of �.

First consider problem ðj�UPRsumÞ. Since the passengers have to travel on a single

path, the passengers that want to go from s to t can only take lines with a capacity of

at least �d. Hence, they need to travel along a path from u1 to w2nþ1 using the dashed

and the solid line. If the transfer times are zero, then a shortest ðu1;w2nþ1Þ-path has a
travel time of 5n�þ 2� and uses only driving activities with a duration of � or 2�.
These values can indeed be achieved by setting the departure time of the dashed line

at node u1 to 0 and the departure time of the solid line at node v1 to �. The departure
times of lines ðs; u1Þ and ðw2nþ1; tÞ can be set accordingly to get also 0 transfer times

in u1 and w2nþ1. The minimum total weighted travel time (achieved for this

timetable) is then

vðj�UPRsum; IÞ ¼ �dð5n�þ 2�þ 2�Þ ¼ �dð5n�þ 4�Þ:

In an optimal solution to ðj�MPRsumÞ, the passengers from s to t can split and

travel along �d
� �

paths via ðs; ui; vi;wi; tÞ, 2� i� 2n and i is even. The transfer time

in an optimal timetable for these passenger paths at vi is zero for all even i,

2� i� 2n, e.g., if the dashed line departs at u1 at time 0 and the solid line departs at

v1 at time 2�. The minimum total weighted travel time is therefore

vðj�MPRsum; IÞ ¼ �dð4�Þ ¼ 4�d�:

We can conclude that

vðj�UPRsum; IÞ
vðj�MPRsum; IÞ ¼

�dð5n�þ 4�Þ
4�d�

¼ 5nþ 4

4
�!
n!1

1:

h

Theorem 4

sup
I

vðj�UPRmax; IÞ
vðj�MPRmax; IÞ ¼ 1:
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Proof The theorem directly follows from the proof of Theorem 3, because the

example instance contains only a single OD pair. In this case the maximum

weighted travel time is equal to the total travel time. h

4 Comparing Routing Models: Evaluating Timetables

We proved in Sect. 3 that the performance gap between the optimal solution values

between the models SPR and LBR and, in the capacitated case, between the models

j�MPR and j�UPR can be arbitrarily large. We now want to investigate the

impact of the routing decisions further by evaluating the quality of timetables that

are optimal for LBR and j�UPR. The idea is to fix these timetables and route the

passengers again using the models SPR and j�MPR. We compare the resulting

total weighted travel times with optimal solutions for SPR and j�MPR,

respectively. The resulting change in the objective value is an indication of the

robustness of an optimal timetable against modifications of the routing model. This

consideration arises in iterative timetabling approaches. Our results show that if the

initial timetable or routing is chosen poorly, it may happen that one cannot improve

it by alternatingly reoptimizing the timetable and the passenger routes.

Theorem 5

sup
I

vðLBRsum; IÞjSPR
vðSPRsum; IÞ ¼ 1:

Proof Consider the directed graph D in Fig. 3. D has 2m nodes and 3m� 1 arcs,

m 2 N; arcs corresponding to transfer and dwell activities are omitted. Based on

D we construct a timetabling instance I as described in Sect. 2.

We associate mþ 1 lines with the arcs of D. There are m� 1 lines visiting the

nodes ðsi; ti�1; si�2; si�1Þ for each 2� i�m, with sm ¼ t0 and one line from sm�1 to

sm. The driving time between the stops of these lines is always � ¼ T
m
. The last line is

from s0 to sm and has a driving time of T þ 1. We set the passenger demand to

dsiti ¼ 1 for all 0� i�m� 1; all other demands are set to zero.

s0 s1 s2 s3 sm−1

t1 t2 t3 tm−1

t0/sm

εε

ε

εε

ε

ε

ε

ε

ε

ε

ε
ε

ε

ε ε

· · ·

· · ·

T + 1

Fig. 3 Instance for Theorem 5
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First consider model ðLBRsumÞ. For a passenger that wants to travel from si to ti
for i[ 0 there is only a single si; ti-path containing a transfer at station siþ1. The

passenger from s0 to t0 is routed along the shortest s0; t0 path (w.r.t. zero transfer

time), which is along the stations fs1; . . .; sm�1g. The lines visiting station si,

2� i�m are constructed in such a way that for any timetable the transfer times for

the ðs0; t0Þ-passenger and ðsi�1; ti�1Þ-passenger sum up to T � 4�. Hence, the total

transfer time for all passengers is ðm� 1ÞðT � 4�Þ in any timetable. Hence, if we

synchronize the lines along this path for the passenger traveling from s0 to t0, we

obtain an optimal timetable for model ðLBRsumÞ. Given this timetable, the optimal

travel time with SPR for the ðs0; t0Þ-passenger is m� ¼ T and for each ðsi; tiÞ-
passenger, i[ 0, it is 2�þ T � 4� ¼ T � 2�. We can conclude that

vðLBRsum; IÞjSPR � T þ ðm� 1ÞðT � 2�Þ ¼ mT � 2m�þ 2�:

If the timetable synchronizes the lines for the ðsi; tiÞ-passengers, i[ 0, we obtain for

each of these passengers a travel time of 2� and the passenger from s0 to t0 can use

the alternative route with a travel of T þ 1. Hence,

vðSPRsum; IÞ� T þ 1þ ðm� 1Þ2� ¼ T þ 1þ 2m�� 2�:

And we can conclude

vðLBRsum; IÞjSPR
vðSPRsum; IÞ � mT � 2m�þ 2�

T þ 1þ 2m�� 2�

¼
mT � 2T þ 2 T

m

3T þ 1� 2 T
m

�!
m!1

1:

h

Theorem 6

sup
I

vðj�UPRsum; IÞjj�MPR

vðj�MPRsum; IÞ ¼ 1:

Proof Consider the directed graph D in Fig. 4; arcs corresponding to transfer and

dwell activities are omitted. Based on D we construct a timetabling instance I as

described in Sect. 2.

This instance contains 2�d þ 2 lines, �d� 2: 2�d lines are represented by the dotted

arcs fðs0; siÞg1� i� �d and fðwi; tÞg1� i� �d . Then there is one line (dashed arcs) starting

in s1 and ending in w�d and the last line (solid arcs) is from v1 to v�d.

The duration of all driving activities is �[ 0 except for the activity correspond-

ing to the arc ðv�d�1; v�dÞ that has a duration of 2�. All transfer and dwell activities

have infinite capacity. All driving activities have a capacity of j ¼ �d. We set the

passenger demand to dsit ¼ 1 for each 1� i� �d � 1, and we set ds0t ¼ �d; all other
demands are set to zero.

First consider problem ðj�UPRsumÞ. For any timetable, the passenger that wants

to go from si to t, 1� i� �d � 1, travels along paths that must start with the arc
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ðsi; viÞ. Hence, each of these arcs has only �d � 1 capacity left and cannot be used

any more by the �d passengers that want to go from s0 to t. These passengers have to

travel via the path ðs0; s�d; v�d;w�d; tÞ since it is the only ðs0; tÞ-path with sufficient

capacity that is left. These passengers block the arc ðv�d;w�dÞ, such that all passengers

that want to go from si to t, 1� i� �d � 1, must transfer at some node vi, 1� i� �d �
1 (different from v�d). The dashed and the solid line are constructed in such a way

that the sum of the transfer times at nodes v�d�1 and v�d is at least T � �. Moreover,

the transfer times at nodes vi, 1� i� �d � 1, are all identical. Hence, there is a

minimum total transfer time of all passengers of at least ð�d � 1ÞðT � �Þ, while the

minimum total driving time is at least ð�d � 1Þ3�þ �d � 4�. If the passengers from si to

t travel along the paths ðsi; vi;wi; tÞ, these values can indeed be achieved by

synchronizing the solid and the dashed line at node v�d, namely, the solid line can

depart at v1 at time 0 and the dashed line can depart at s1 also at 0. Hence, the

minimum total travel time with j�UPR (achieved for this timetable) is

vðj�UPRsum; IÞ ¼ ðd� 1ÞðT� �Þ þ ðd� 1Þ3�þ d � 4� ¼ 6d�� 2�þ dT� T:

Given this timetable, the passengers traveling from s0 to t cannot improve their

traveling time by splitting up and therefore

vðj�UPRsum; IÞjj�MPR � vðj�UPRsum; IÞ:

In an optimal solution to ðj�MPRsumÞ, the passengers from s0 to t can split and

travel along �d � 1 paths via vi, 1� i� �d � 1. The transfer time in an optimal

timetable for these passenger paths at vi is zero for all 1� i� �d if the solid line

v1 v2 v3 vd̄−1 vd̄

s1 s2 s3 sd̄−1 sd̄

s0

t

w1 w2 w3 wd̄−1 wd̄

ε
ε

ε
ε

ε ε

2ε

εε
ε

ε
ε

ε ε
ε

ε

ε ε ε

ε ε

ε ε ε

ε ε

· · ·

· · ·

· · ·

· · ·

Fig. 4 Instance for Theorem 6. All arcs in this graph have a capacity of k
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departs at v1 at time � and the dashed line departs at s1 at time 0. The total travel

time for the optimal j�MPR-timetable is therefore

vðj�MPRsum; IÞ ¼ ð�d � 1Þ3�þ �d � 4� ¼ 7�d�� 3�:

We set � :¼ 1
�d
and can conclude that

vðj�UPRsum; IÞjj�MPR

vðj�MPRsum; IÞ � vðj�UPRsum; IÞ
vðj�MPRsum; IÞ

¼ 6�d�� 2�þ �dT � T

7�d�� 3�

¼
6� 2

�d
þ �dT � T

7� 3
�d

�!
�d!1

1:

h

5 Comparing Objectives

In this section we compare the impact of the objective function. We show that if one

optimizes w.r.t. the total travel time, there can be individuals that must take very

long trips. On the other hand, if the longest travel time is minimized, the total travel

time can be large.

Theorem 7 Let M 2 fSPR;LBR; j�MPR; j�UPRg be a routing model, then

sup
I

vðMsum; IÞjmax

vðMmax; IÞ ¼ 1:

Proof Consider the directed graph D in Fig. 5. D has 3m nodes and 4m� 2 arcs,

m 2 N; arcs corresponding to transfer and dwell activities are omitted. Based on

D we construct a timetabling instance I as described in Sect. 2.

ε = T+1
m

v1 v2 v3 vm−1 vm

s1 s2 s3 sm−1 sm

t1 t2 t3 tm−1 tm

ε
ε

ε
ε

ε ε
ε

ε

ε
ε

ε
ε

ε ε
T

ε· · ·

· · ·

Fig. 5 Instance for Theorem 7
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All activities have infinite capacity. We associate two lines with the arcs of D.

There is one line (dashed arcs) from s1 to vm with a driving time of � ¼ Tþ1
m
, T 2 N,

on each driving activity. The second line (solid arcs) starts in v1 and ends in tm. The

duration for each driving activity of this line equals � except for the second last arc

from tm�1 to vm that has a driving time of T. We set the passenger demand for each

OD pair ðsi; tiÞ, 1� i�m, to one; all other demands are set to zero.

For each OD pair ðsi; tiÞ 2 D, 1� i�m, there exists only a single path from si to

ti via the node vi. Hence, the passenger routes are fixed and independent of the

routing model M; the driving time for each OD pair is 2� for any feasible timetable.

The dashed and the solid line are constructed in such a way that the transfer times at

nodes vi, 1� i�m� 1, are all identical. Moreover, if the two lines are synchronized

at node vm, then the transfer times at nodes vi, 1� i�m� 1, are all equal to �. This

would yield a total transfer time of ðm� 1Þ� ¼ T � Tþ1
m

þ 1. If a timetable syn-

chronizes the lines at the nodes vi, 1� i�m� 1, on the other hand, the transfer time

at node vm is T � � ¼ T � Tþ1
m
.

First consider problem ðMsumÞ. In an optimal solution, the departure time of the

dashed line in s1 is 0 and the solid line departs in v1 at �, such that the two lines are

synchronized at the nodes vi, 1� i�m� 1. The resulting transfer time for the pair

ðsm; tmÞ at vm equals T � �. Hence, this OD pair yields the maximum travel time of

T þ � among all OD pairs for this timetable.

In an optimal solution to problem ðMmaxÞ, the lines are synchronized at node vm
by setting the departure time of the dashed line at s1 to 0 and the departure time of

the solid line at v1 to 2 �. The resulting transfer time for each OD pair ðsi; tiÞ at vi
with 1� i�m� 1 is � and for the pair ðsm; tmÞ the transfer time at vm is zero. The

travel time for all OD pairs ðsi; tiÞ with 1� i�m� 1 is 3 �, which gives the

maximum travel time. We can conclude that

vðMsum; IÞjmax

vðMmax; IÞ ¼ T þ �

3�
¼

T þ Tþ1
m

3 Tþ1
m

¼ ðmþ 1ÞT þ 1

3T þ 3
�!
m!1

1:

h

Theorem 8 Let M 2 fSPR;LBR; j�MPR; j�UPRg be a routing model, then

sup
I

vðMmax; IÞjsum

vðMsum; IÞ ¼ 1:

Proof Consider the directed graph D in Fig. 6. D has 3m nodes and 4m� 2 arcs,

m 2 N; arcs corresponding to transfer and dwell activities are omitted. Based on D

we construct a timetabling instance I as described in Sect. 2. All activities have

infinite capacity. We associate 2 lines with the arcs of D. There is one line (dashed

arcs) from s1 to tm with a driving time of � ¼ 1
m
on each driving activity except the

second last driving activity with a driving time of 2�. The second line (solid arcs)

starts in v1 and ends in vm. The driving time for each driving activity of this line
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equals �. We set the passenger demand for each OD pair ðsi; tiÞ, 1� i�m, to one

and zero otherwise.

For each OD pair ðsi; tiÞ 2 D, there exists only a single path from si to ti via the

node vi. Hence, the passenger routes are fixed and independent of the routing model

M. Again, both lines are constructed in such a way that the transfer times at nodes

vi, 1� i�m� 1, are all identical. And the transfer times at the nodes vm�1 and vm
sum up to at least T � �.

First consider problem ðMmaxÞ. In an optimal solution, the dashed line departs at

s1 at 0 and the solid line departs at v1 at
Tþ�
2
. The resulting transfer time for each OD

pair ðsi; tiÞ at vi is T��
2
. Hence, the total travel time for this timetable is

2m�þ m T��
2

¼ 1
2
ð3m�þ mTÞ.

In an optimal solution to ðMsumÞ, the departure time of the dashed line at s1 is 0

and the solid line departs at v1 at �. The resulting transfer time for each OD pair

ðsi; tiÞ, 1� i�m� 1, at vi is zero and the transfer time at vm equals T � � for the
pair ðsm; tmÞ. The total travel time for all passengers is therefore 2m�þ T � �.

We can conclude that

vðMmax; IÞjsum

vðMsum; IÞ ¼ 3m�þ mT

2ð2m �þ T � �Þ ¼
3þ mT

4þ 2T � 2
m

�!
m!1

1:

h

We finally give a lemma that shows that there exists no instance such that the

maximum weighted total travel time gap and the maximum weighted travel time

gap can be both arbitrarily large since they bound each other. They are bounded by

the number of OD pairs, i.e., by an input parameter of the problem instance.

Lemma 1 Let m :¼ jDj ¼ jfðs; tÞ 2 Vdep � Varr : dst [ 0gj be the number of OD

pairs, then we have for every instance I and every routing model

M 2 fSPR;LBR; j�MPR; j�UPRg

vðMmax; IÞjsum

vðMsum; IÞ �m
vðMmax; IÞ

vðMsum; IÞjmax �m

v1 v2 v3 vm−1 vm

s1 s2 s3 sm−1 sm

t1 t2 t3 tm−1 tm

ε
ε

ε
ε

ε ε

2ε

εε
ε

ε
ε

ε ε
ε

ε

· · ·

· · ·

Fig. 6 Instance for Theorem 8
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and

vðMsum; IÞjmax

vðMmax; IÞ �m
vðMsum; IÞ

vðMmax; IÞjsum �m:

Proof Let ðx	; y	Þ 2 argmaxvðMmax; IÞjsum be an optimal solution of instance I for

problem Mmax yielding the maximum total weighted travel time among all optimal

solutions, i.e., by definition there is an OD pair ðs0; t0Þ 2 D s.t.

vðMmax; IÞ ¼
X

p2Ps0 t0

X

a2p
ds0t0 x

	
a y

	
p:

Hence, we get

vðMmax; IÞjsum ¼
X

ðs;tÞ2D

X

p2Pst

X

a2p
dst x

	
a y

	
p

�
X

ðs;tÞ2D

X

p2Ps0 t0

X

a2p
ds0t0 x

	
a y

	
p

¼ m
X

p2Ps0 t0

X

a2p
ds0t0 x

	
a y

	
p

¼ mvðMmax; IÞ:

It is easy to see that vðMsum; IÞ� vðMsum; IÞjmax
. This implies

vðMmax; IÞjsum

vðMsum; IÞ � mvðMmax; IÞ
vðMsum; IÞ �m

vðMmax; IÞ
vðMsum; IÞjmax :

h

6 Computations

The aim of this section is to also give some computational evidence that routing

decisions do indeed have a significant impact on timetabling. To this purpose, we

compare the solution of an integrated timetabling and shortest path routing model

ðSPRÞ with a fixed passenger routing resulting from a real-world reference

timetable.

We consider a scenario from a cooperation with the public transit company of

Wuppertal, the Wuppertaler Stadtwerke (WSW), which is operating the famous

cableway line ‘‘Schwebebahn’’. The data represents the periodic timetable of the

core network of the public transport system of Wuppertal for the year 2013. The

network has 158 station nodes, 229 OD nodes, and 460 directed arcs. There are 71

lines: 67 bus lines, three city train lines, and the cableway line. The lines are

operated at different frequencies; their period times are 10, 15, 20, 30, or 60 min.

The data also contains the connections to the regional railway system, such that we

can take these important transfers into account. Here, we fixed the departure and
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arrival times for these lines. After some preprocessing, the data contains 45,254 OD

pairs with a positive demand. In our setting, the dwell and driving times along each

line are fixed s.t. the timetable affects only passengers that transfer. We can

therefore remove all OD pairs for which a lower bound route is a direct connection.

Furthermore, we assume that each transfer has a lower time bound of 2 min.

For the computations, we used our integer programming model ðSPRsumÞ that

integrates a passenger routing. The passengers are represented by a path-flow in an

event-activity network, in which they can travel freely. In the fixed routing case the

demand of each OD pair is sent along some shortest path w.r.t. a given reference

timetable, namely, the WSW timetable of 2013 (WSW2013). The objective is to

minimize the total weighted travel time. The core network of Wuppertal gives rise

to a time-expanded event-activity network with 86,386 events and 431,604

activities. There are 3990 binary line variables modeling the timetable. The

passenger path-flow variables are dynamically added with a column generation

algorithm, solving shortest path pricing problems. Our code is based on the

constraint integer programming framework SCIP version 3.1.0 using Cplex 12.6 as

an LP-solver. All computations were done on an Intel(R) Xeon(R) CPU E3-1245,

3.4 GHz computer (in 64 bit mode) with 8 MB cache, running Linux and 32 GB of

memory. We set the time limit to 12 hours.

The WSW2013 reference timetable results in a total weighted travel time of

2,630,211.97 min and a total weighted transfer waiting time of 171,985.41 min.

Fixing this routing and optimizing a classical PESP model, we could not find a

timetable that improves the total weighted travel time. With the integrated

timetabling and passenger routing model ðSPRÞ, however, we found a timetable that

yields a total weighted travel time of 2,597,571.95 min and a total weighted transfer

0

100

200

0 100 200 0 100 200
0

100

200

Fig. 7 Heat maps comparing differences in travel times between timetables computed with different
passenger routing models. The axes of both diagrams correspond to the OD nodes. The color of a point
represents the difference in the travel time for the corresponding OD pair between the best passenger
routing for WSW2013 reference timetable and the result of an integrated timetable and passenger routing
optimization. Left: the redder a dot the better is the travel time for the timetable computed with the fixed
routing, white means no difference or the integrated timetable is better. Right: the greener a dot the better
is the travel time for the timetable computed with the shortest path routing, white means no difference or
the reference timetable is better (color figure online)
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waiting time of only 131,456.07 min. This corresponds to an improvement of

1.24 % in travel time and 23.57 % in transfer waiting time. While the first

improvement is marginal, the latter is substantial, in particular, since transfer

waiting time is known to be perceived beyond proportion by passengers. The

solution still has an optimality gap of 12 %. Figure 7 illustrates the worsening and

the improvement of the travel time for each OD pair when comparing the passenger

routings arising from the reference timetable and an integrated timetable and

passenger routing optimization. The figure shows that for the integrated solution the

number of OD pairs where the travel time decreases is much larger than the number

of OD pairs where the travel time increases compared to the reference solution.

7 Summary

In this paper we investigated the influence of different passenger routing models on

timetable optimization. The results are summarized in Table 1. In our theoretical

analysis we showed that the best timetable for a fixed or lower bound routing can

yield total travel times that are arbitrarily larger than those of an optimal timetable,

i.e., a timetable optimized w.r.t. an integrated passenger routing. If we do not

consider capacity constraints then all passengers can be assumed to use the same

shortest path. If line capacities have to be fulfilled we showed that the total travel

time can be arbitrarily reduced if the passengers of one OD pair are allowed to split

their travel routes.

Addressing the importance of the choice of the routing approach in the

optimization model, we get the following result. The routing model used in the

optimization is substantial: If we take a timetable that is optimized for a lower

bound routing and reroute the passengers again along the shortest paths according to

Table 1 Summary of the theoretical results. Denote by �d :¼ maxðs;tÞ2D dst the maximum demand, by

n :¼ jV j the number of events, by m :¼ jDj the number of OD pairs, and by k :¼ jAtransj the number of

transfer activities

LBR ðM1Þ SPR ðM2Þ j�UPR ðM1Þ j�MPR ðM2Þ

sup
I

vðMsum
1 ; IÞ

vðMsum
2 ; IÞ

1 ðk ! 1Þ 1 ðn ! 1Þ

sup
I

vðMmax
1 ; IÞ

vðMmax
2 ; IÞ

1 ðk ! 1Þ 1 ðn ! 1Þ

sup
I

vðMsum
1 ; IÞjM2

vðMsum
2 ; IÞ

1 ðm ! 1Þ 1 ð�d ! 1Þ

sup
I

vðMmax; IÞjsum

vðMsum; IÞ
1 ðm ! 1Þ

sup
I

vðMsum; IÞjmax

vðMmax; IÞ
1 ðm ! 1Þ

The first column lists the gaps derived in this paper. The second to fifth column lists the routing models

and the corresponding performance gaps
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this timetable, we can obtain a total travel time that is arbitrarily larger than the

travel time for an optimal timetable with integrated shortest path routing. The same

holds when we evaluate an optimal timetable for an unsplittable routing with a

rerouting using multiple passenger paths.

Finally, we showed that the maximum travel time of a timetable minimizing the

total travel time is bounded by the number of OD pairs times the maximum total

travel time of a timetable that minimizes the maximum total travel time.

These results show that, no matter what comparison is done, choosing the wrong

routing model can lead to arbitrarily bad results. Fixed and, especially, lower bound

routings are questionable. Admittedly, the characteristics of the examples used in

our proofs may usually not appear in real world instances, and it would be an

interesting research direction to identify (realistic) assumptions on the problem

structure under which the gaps are substantially smaller. We believe that such

structures are present in real-world networks, i. e., that the difference between a

lower bound routing and a shortest path routing in a subway or bus network is not

arbitrarily bad. But even then, the gaps call for an improved understanding and

treatment of passenger behavior. This can, on the positive side, release hitherto

untapped optimization potentials. Our computational results indeed show that

integrating passenger routing and timetabling can yield significant improvements:

computations with data from the city of Wuppertal indicate that the total transfer

waiting time can be substantially reduced by around 24 % in comparison to a real-

world reference solution.

Acknowledgments We thank the editors and two anonymous referees for valuable suggestions that

improved the presentation of this paper.

References

Borndörfer R, Grötschel M, Pfetsch ME (2007) A column-generation approach to line planning in public

transport. Transp Sci 41(1):123–132. http://opus.kobv.de/zib/volltexte/2005/852/, ZIB Report 05-18

Borndörfer R, Karbstein M (2012) A direct connection approach to integrated line planning and passenger

routing. In: Delling D, Liberti L (eds) ATMOS 2012—12th workshop on algorithmic approaches for

transportation modelling, optimization, and systems, vol 25, pp 47–57. doi:10.4230/OASIcs.

ATMOS.2012.47

Fu Q, Liu R, Hess S (2012) A review on transit assignment modelling approaches to congested networks:

a new perspective. Proc Soc Behav Sci 54:1145–1155

Kinder M (2008) Models for periodic timetabling. Diploma thesis, Technische Universtität Berlin

Liebchen C (2006) Periodic timetable optimization in public transport. Ph.D. thesis, Technische

Universtität Berlin. http://www.dissertation.de

Lindner T (2000) Train schedule optimization in public rail transport. Ph.D. thesis, Technische

Universtität Braunschweig
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