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Abstract With light rail transit (LRT) and other similar rail-based commuter

transit systems, train and associated station platform length provides an added

dimension of flexibility not available to buses. Train and platform lengths are

important factors in the planning and expansion phases of a network. Existing

cost models that determine optimal headway by combining passenger and

operational costs provide headways that are small and close to a logistical

minimum (2–3 min); this type of standard waiting cost model is not sensitive to

train and platform length. In this paper, on-board crowding is used as a cost

factor and a cost-of-crowding model is developed from supporting psychological

research. Two models are proposed and optimized with respect to train length to

determine the optimal train and platform length for a many-to-one peak period

commuter LRT system. Data from the C-Train network in Calgary, Alberta is

used for numerical analysis of the model. The model demonstrated that crowding

has an effect on optimal train length. The model produced feasible results when

applied to a real-world scenario.
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1 Introduction

Light rail transit (LRT) fills the gap between highly flexible modes such as buses,

and high-capacity/high-capital modes such as heavy rail or metro. LRT has the

unique ability to provide the reliable, fast, and comfortable service associated with

railways while accessing areas under a variety of right-of-way configurations.

In this paper we consider a general LRT system operating mostly on exclusive

right-of-way configurations with raised platforms that have a significant construc-

tion cost. A high investment in infrastructure is required for such an LRT network.

Exclusive right of way and station construction costs are large, and vehicle purchase

and maintenance costs are significantly higher than for buses. When considering the

logistics of dispatching trains, optimal headways on public transit routes have been

modeled and optimized (Newell 1979; Wirasinghe 2003), while platform and train

length have been largely ignored as a factor in determining operating policy.

Platform and train length are inherently linked, as train length must be less than or

equal to platform length. The goal of this paper is to investigate LRT platform and

train length as it relates to level of service parameters, particularly on-board

passenger crowding.

Determining an appropriate train length for an LRT system is essential in the

planning stage of a network. If stations are built with insufficient room for

expansion, lengthening trains to accommodate rising demand becomes costly after

initial construction. If expansion of an existing network’s platform length and fleet

size is needed, it is important that the appropriate train length be considered to avoid

the excessive cost of constructing an unnecessarily long platform or having to

expand again in the near future. By constructing a system with sub-optimal train

lengths, the network may experience excessive crowding, or run trains that are

empty and costly.

Calgary, Canada has an LRT network known as the C-Train that services the

Central Business District (CBD) and extends outwards via four arms to service the

rest of the city. Currently the C-Train operates in three-car trains, however

expansion of station platforms to allow four-car trains is nearing completion. Data

from the C-Train network is used for numerical discussion of the model developed.

This paper proposes a crowding-cost model for an LRT system operating during

peak periods at minimal headways. Crowding on-board an LRT train as it

progresses towards the CBD is optimally balanced with various operating costs to

determine an optimal train and platform length for a given network.

2 Background

2.1 Cost-based approach

There are a number of papers which approach the problem of optimization of urban

public transit from the total cost perspective. In this method, relevant costs to

passengers and the transit operator are combined and weighted to obtain a total
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system cost (Byrne and Vuchic 1972; Hurdle 1973; Newell 1979; Strathman and

Hopper 1993; Wirasinghe 1990). This combination often results in competing terms

which can be analyzed to produce an ‘‘optimal result’’.

In an unpublished working paper by Beatty (2013), platform construction, fleet,

dispatching, and passenger waiting costs were combined in an attempt to find an

optimal headway and train length using Newell (1971). Due to the relatively high

demand of an LRT system, passenger waiting costs heavily outweighed dispatching

costs and headways were reduced to the shortest that was practical for a signaled

train system. Because of this extremely short headway, optimal train length was

found to be unrealistically short (often less than one car).

Due to the tendency of the model to appease passenger waiting costs by

minimizing headways, long run peak-period headways should be chosen as a

logistical minimum for the system, and essentially remain fixed. In order to properly

utilize the total cost method, train length provides an added degree of flexibility, and

passenger costs that are intuitively related to train length must be included. One

common level of service parameter that satisfies these requirements is on-board

crowding. This paper will investigate two key components of LRT planning using

the cost-based approach: train and platform length and its relationship with

operations, and how crowding as a passenger cost affects the design of an LRT

route. It should be noted that the resulting train lengths arising from the presented

model are understood to be subject to safety standards and separation requirements

such as the ‘‘brick-wall stop’’ concept (Parkinson and Fisher 1996). This model is

investigating scenarios where train separation is minimized but fixed by signals and

safety standards, and where train length due to demand is of a reasonable length

given the mode of transportation used.

2.2 Impacts of crowding

Emerging research shows that crowding on rail cars has significant effects on

passengers’ health, safety, levels of stress and anxiety, perception of time, and

overall experience of a transit system. In fact, one study by Cheng (2010) reported

that crowding ranks highest (above ‘‘delays’’) as causing anxiety when using

commuter rail systems. It has been shown that crowded commuter trains have an

effect on passengers safety and perception of risk (Cox et al. 2006), as well as

overall job performance and satisfaction outside of the commute itself (Mahudin

et al. 2011). In the literature, the term ‘‘crowding’’ generally refers to the concept of

placing people in a confined space. Often, this is manifested as passenger density,

where the number of passengers per unit area is measured, however in other cases

described below it may refer to the proximity of passengers to one another, and their

likelihood of contact. This can be measured either in unit area per passenger (the

inverse of the former definition), or more specific to the actual layout of the vehicle,

such as seats per person. One additional metric used for crowding is load factor. A

design capacity is determined for the vehicle under an acceptable level of crowding

by any of the previous definitions (usually passengers per seat). For example, a load

factor of 1.00 may mean that there is one passenger for every seat. In Fig. 1, an
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analog of this definition is used in conjunction with discomfort to produce a

discomfort factor. This is mathematically developed in Sect. 3.2.

On a passenger-specific level, stress on board commuter trains was demonstrated

to be related to the number of nearby passengers and probability of personal space

invasion, as opposed to average passenger density on board the train (Evans and

Wener 2007). Passengers reported increased feelings of invasion of privacy as

crowding increased (Wardman and Whelan 2011), and are willing to forego an

empty seat and stand if they feel their personal space would be unduly encroached

upon while seated next to an individual (Hirsch and Thompson 2011). Additionally,

there is a significant gap in the level of discomfort between seated and standing

passengers (Whelan and Crockett 2009).

The studies presented above imply that a mathematical model describing

passenger discomfort should have discomfort vary with the number of passengers on

board. If the potential safety issues with a near-empty train are not considered

relevant during peak periods, this model of discomfort is likely monotonically

increasing with the number of passengers on board. There are key load points at

which the function is likely to experience a discontinuous jump: (1) when half the

seats are filled, and those who wish to sit must share and those who had a seat of

their own are forced to share at the risk of increased personal space invasion, and (2)

when all of the seats are filled and one is forced to stand. Additionally, in scenario

(1), the change in probability of being seated next to someone from zero to a

nonzero value is considered to increase the discomfort of all passengers. Each

additional passenger after the jump contributes to an incremental increase in the

discomfort of the passengers on board. This effect is potentially reduced at (2)

where the first standing passenger is less directly impacting the seated passengers.

This lowers the jump in discomfort caused by the Sth passenger. If a discomfort

factor is introduced, with a value of zero for an empty train, and a value of one for a

train with a load at design capacity, this piecewise discomfort function is
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hypothesized to take on a form similar to the one illustrated in Fig. 1. The exact

slopes and heights of the discontinuities in the proposed step function are not

known; however, it is likely that the slope between half and full seating capacity is

lower than the slope between fully seated and design capacity loads, due to the fact

that standing places additional stress on passengers.

In order to consider crowding as a viable passenger cost in a total cost model, an

understanding of passengers’ cost of discomfort is required. In terms of passenger

cost per unit time, this value has been investigated directly by Douglas and

Karpouzis (2006) using stated preference surveys. A review of this and several other

studies regarding passenger willingness to pay with regards to crowding is provided

by Li and Hensher (2011).

While there have been some efforts to incorporate on-board crowding into

demand model estimations (Li and Hensher 2011), there are no peer-reviewed

studies investigating the link between passenger crowding and train configuration.

The potential for variation in train lengths to compensate for changes in crowding

means it is important that these effects be linked and investigated. This will to

provide insight into how transit companies may want to construct right-of-ways and

station platforms, and provide additional information for developing proper fleet-

size models.

The hypothesized form of crowding discomfort is one that may only reflect

passenger attitudes in certain locations. The studies discussed above were done in

cultural milieus that are quite averse to crowding, and other areas of the world with

different attitudes towards crowding may experience a different discomfort curve.

The discomfort curve proposed is therefore assumed to be reflective of passenger

discomfort in countries culturally similar to where the previous research was

performed. Additionally, it is understood that the model can be extended beyond the

typical design capacity, when the passenger load on board reaches so-called ‘‘crush’’

levels. These levels may be the norm in certain countries, however this paper

assumes that a certain design capacity is used to determine outcomes of the model

developed, and crush load amounts will only occur in rare and unplanned

circumstances.

3 Development of an analytical model

3.1 Description of system

To derive an appropriate cost function for crowding, it is first necessary to develop

an expression for the number of people on board a train at a given time along the

route, t. The route has n stations, with an equal travel time between each station of s.
Assume n is large enough (or s small enough) to perform a continuum

approximation (Newell 1973), and let the number of people on board the train as

it progresses along its route be given as a linear function xðtÞ ¼ at þ b. The system

has well-defined initial and final conditions; at t ¼ 0, the first set of passengers have

boarded, and at t ¼ T all passengers must be on board. If trains arrive in time

intervals of h, and passengers arrive at a rate of p/n at each station for a total route

Cost-of-crowding model for light rail train and platform length 89

123



demand of p passengers per unit time, the train will depart the first station with ph/n

passengers on board. As such, xð0Þ ¼ ph=n. At the end of the route, when the train

has travelled its total travel time t ¼ T ¼ ðn� 1Þs the train has visited all boarding

stations and there must be ph passengers on board, so xð½n� 1�sÞ ¼ ph. Thus

xðtÞ ¼ ph

ns
t þ ph

n
ð1Þ

3.2 Crowding costs

Based on the earlier review of the literature, a discomfort factor aðtÞ is introduced,
which is dependent on the number of passengers on board, x(t). This discomfort

factor is not a density, which would require dividing x(t) by an area, but is instead a

form of load factor. In this case, however, two models are proposed when

considering how passengers’ discomfort factor varies with x (see Fig. 1). The first

model is a linear relationship, given as

a1ðtÞ ¼
1

C
xðtÞ ð2aÞ

for a total train design capacity of C passenger spaces. This approximation is better

suited for trains with few seats, where discomfort is more directly related to the raw

number of passengers on board, without major differences in seating and standing

comfort. This model is referred to as the ‘‘linear’’ model throughout the rest of the

paper. Note that the requirements outlined in Sect. 2.2 are met: a1ðx ¼ 0Þ ¼ 0 and

a1ðx ¼ CÞ ¼ 1.

In the second model, the discomfort factor grows at an increasing rate with the

number of passengers on board. For this analysis, the discomfort factor is

proportional to the square of the number of passengers on board. This quadratic

relationship with x is given as

a2ðtÞ ¼
1

C2
xðtÞ2 ð2bÞ

This model is referred to as the ‘‘quadratic’’ model throughout the rest of this paper.

Using (1), the two discomfort models can be written as a function of time, and a

cost of discomfort parameter ca (with units of money per unit time) is included to

convert this discomfort into a passenger cost. Additionally, if passengers are

assumed to occupy all train cars with equal passenger load, the total train capacity C

can be written as C ¼ Lc for L train cars with a design capacity of c passenger

spaces each.

So far, the passenger cost presented has been for one passenger only. To account

for all on-board passengers, another factor of x(t) is required, and the cost of on-

board crowding becomes

z1ðtÞ ¼
ca
Lc

xðtÞ2 ð3aÞ

for the linear model, and
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z2ðtÞ ¼
ca

ðLcÞ2
xðtÞ3 ð3bÞ

for the quadratic model.

Since the train length cannot vary as it progresses along a route, the optimal train

length, once found, remains constant. With this in mind, the average cost of on-

board crowding over the entire period T is considered, and multiplied by a factor of

T/h to obtain an instantaneous cost of crowding on the entire inbound route during

peak periods. These costs are expressed for the linear model as

�z1 ¼
T

hT

ZT

0

z1ðtÞdt ð4aÞ

and for the quadratic model as

�z2 ¼
T

hT

ZT

0

z2ðtÞdt ð4bÞ

Both integrals can be solved with the substitution of (1) into (3a) or (3b) for the

linear and quadratic model, respectively, and then into (4a) or (4b). The integrals are

evaluated to produce

�z1 ¼
cap

2hT

3Lc
b1 ð5aÞ

for the linear model, and

�z2 ¼
cap

3h2T

ð2LcÞ2
b2 ð5bÞ

for the quadratic model, where

b1 ¼ 1þ 1

n
þ 1

n2
ð6aÞ

and

b2 ¼ 1þ 1

n
þ 1

n2
þ 1

n3
ð6bÞ

Note that for large n, b1 and b2 rapidly approach 1.

3.3 Dispatching costs

There is a cost of dispatching trains, separated into two terms. Head end costs

account for costs such as driver wages and do not vary with train length, and are

therefore not included. Car-specific costs, kc, account for electricity consumption

and maintenance. Since this cost is generally expressed per unit time for a single
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train, it is necessary to multiply this term by the factor T/h in order to account for all

trains in the system at a given time. The dispatching cost per unit time is therefore

zd ¼
TLkc
h

ð7Þ

3.4 Capital costs

Fleet size and platform construction costs play an important role in the

determination of future infrastructure developments. These costs are considered

as a discounted cash flow when incorporated with a day-to-day cost model. The

capital costs zc are a combination of car purchase costs Ac, and platform

construction costs Ap expressed as

zc ¼ NAc þ LAp ð8Þ

The fleet size is related to train length and headway by N ¼ TL=h and thus (8)

becomes

zc ¼
TL

h
Ac þ LAp ð9Þ

The units of Ap are in dollars per unit time per car length. It should be noted that for

a route with n platforms, this value must be multiplied by n to obtain the cost along

the entire route. The numerical discussion in Sect. 5 applies that reasoning to obtain

the values presented in Table 2.

3.5 Objective function

Combining (5a) or (5b), (7), and (9) produces the total cost per unit time, and the

objective function

Z1 ¼
cap

2hT

3Lc
b1 þ

TLkc
h

þ TL

h
Ac þ LAp ð10aÞ

for the linear model, and

Z2 ¼
cap

3h2T

ð2LcÞ2
b2 þ

TLkc
h

þ TL

h
Ac þ LAp ð10bÞ

for the quadratic model.

4 Analysis

4.1 Optimization

Setting the derivatives of (10a) and (10b) to zero with respect to L produces
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oz

oL
¼ 0 ¼ � cap

2hT

3cL2
b1 þ

Tkc
h

þ TAc

h
þ Ap ð11aÞ

oz

oL
¼ 0 ¼ � 2cap

3h2T

ð2cÞ2L3
b2 þ

Tkc
h

þ TAc

h
þ Ap ð11bÞ

Note that o2z=oL2 [ 0 for both models, confirming that the extreme point is a

minimum. Solving (11a) and (11b) for L yields optimal train lengths of

L�1 ¼ ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ca
3cðkc þ Ac þ ðh=TÞApÞ

r
ð12aÞ

for the linear model, and

L�2 ¼ ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

ca
ð2cÞ2ðkc þ Ac þ ðh=TÞApÞ

3

s
ð12bÞ

for the quadratic model.

4.2 Discussion

Intuitive and logical analysis of both (12a) and (12b) agrees with expectations. Train

length is directly proportional to demand. As the per-car capacity increases, the

number of cars required to accommodate the crowding decreases. L does not scale

with n since in this scenario the many-to-one demand is ‘‘spread out’’ over all

stations. An increase in overall route length is represented by an decrease in the ratio

h/T for a fixed headway, and results in longer optimal train and platform length due

to the extended time passengers must experience crowding at any level. Since the

headway h is understood to be a static, minimized value for this model, the effect of

the ratio h/T on the platform cost Ap can be thought of as a ‘dilution’ of the effect of

Ap by the increased route length. As the route becomes longer for the same number

of stations, the platform cost becomes decreasingly important. High capital costs in

Ac and Ap will force train lengths to be shorter.

Aside from cost considerations, there are a number of logistical changes required

when using longer trains. Dwell times at stations increase due to longer station

clearing times and adjusted acceleration and deceleration rates, however boarding

times per door will decrease, countering the above increase in dwell times. Longer

trains may not fit on sections of track that shorter ones could occupy, and would

have to be stored further away for switching operations. When headways are small

during peak periods this can cause additional congestion and increase total travel

time, which in turn increases optimal train length.

This model is concerned with optimization of train length when headways are

already minimized, and trains are spaced as close together as safety will allow.

Train control systems such as signals will regulate the spacing between trains and

serve to mitigate the variation in the number of boarding passengers that comes

Cost-of-crowding model for light rail train and platform length 93

123



from variation in headways. With that in mind, however, the model does include the

simplifying assumption that no bunching of vehicles occurs.

4.3 Sensitivities

4.3.1 Sensitivity to Headway

Figure 2 describes the response of the optimal train length to headways using data

from one of Calgary’s C-Train arms. When h � T , optimal train length

approximates a linear function of h. As headways increase, the sensitivity becomes

increasingly sub-linear; however, this model is developed with the understanding

that headways are kept short, so in both the linear and quadratic model the

sensitivity to headways remain relatively constant.

4.3.2 Sensitivity to crowding cost

The cost of crowding parameter ca may vary from system to system, and have

inaccuracies in its determination. The optimal train length varies by its square root

for the linear model, and the cube root for the quadratic model. This allows for some

inaccuracy in the determination of ca. An explanation of the value chosen for ca is
given in Sect. 5.1.1, and the optimal train length’s response to varied values of ca
for both models is given in Fig. 3.

4.3.3 Sensitivity to number of stations

The factors b1 and b2 both converge rapidly to one as the number of stations n

increases. For the smallest practical n of two stations, b1 ¼ 1:75 and b2 ¼ 1:86,

which will increase the optimal train length by a factor of
ffiffiffiffiffiffiffiffiffi
1:75

p
¼ 1:32 and
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Fig. 2 Two models of optimal train and platform length in response to varied headways
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ffiffiffiffiffiffiffiffiffi
1:86

p
¼ 1:36 for the linear and quadratic models, respectively. For n[ 10,

b1; b2 2 ð1; 1:11� and so the factor under the square root closely approximates unity,

and has little effect on the optimal train length.

4.4 Variability in demand

In both models, the optimal train length given by (12a) and (12b) is a linear function

of the demand per hour p, that is

L�1 ¼ Ap ð13aÞ

and

L�2 ¼ Bp ð13bÞ

where

A ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

ca
3cðkc þ Ac þ ðh=TÞApÞ

r
ð14aÞ

and

B ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

ca
ð2cÞ2ðkc þ Ac þ ðh=TÞApÞ

3

s
ð14bÞ

If p is allowed to be distributed with a mean of �p and a variance of r2, L�1 will be
distributed with a mean A�p and a variance A2r2. Similarly, L�2 will be distributed

with a mean B�p and a variance B2r2. The least presumptive probability distribution

function for L�1 and L�2, given that only the mean and variance is known, is the
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normal distribution (Jordaan 2005). Using this, L�1 and L�2 can be estimated to any

required ‘‘reliability’’. In this instance, setting a reliability would be choosing a

probability that the train length chosen is long enough. This serves a practical

purpose of providing a certain confidence of not overcrowding trains, however

given the concave nature of (10a) and (10b) the chosen length will also be sub-

optimally long. If there is an understanding that �p will continue to rise over time, the

chosen probability can be seen as the confidence with which a transit system will be

able to accommodate an increase in demand.

5 Numerical example

Calgary’s C-Train network is divided into four arms that emanate radially from the

CBD, as shown in Fig. 4. These four branches can be analyzed individually for

optimal train length to provide an overview of the appropriate train length suggested

for this network. Branch-specific values are shown in Table 2, and any general

values used are the typical values shown in Table 1 which are introduced in

Sect. 5.1

5.1 Sources of data

5.1.1 Crowding value of time

Since ca represents the cost of crowding at design capacity, the value of crowding

for the highest load factor reported (200 %) was used from Douglas and Karpouzis

(2006). The value of $16.97 in 2003 AUD was converted to 2003 CAD using

historical exchange rates (Onada 2015) and then to 2015 CAD using an inflation

Fig. 4 Calgary transit’s C-Train network as of February 2015 (Calgary Transit 2014)
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calculator (Bank of Canada 2015) to arrive at a value of crowding of $22.85. This

value can be adjusted based on local variations and surveys conducted by transit

agencies or other research.

5.1.2 Passenger demand and headway

Peak period uni-directional passenger counts were obtained from a maximum load

point study by Calgary Transit (2014). The numbers used in this paper are an

average passenger volume inbound to the CBD for each of the four arms for the

entire reported peak period (4:01 a.m. to 9:00 a.m.).

At the time of writing, Calgary Transit advertises peak period headways on each

arm as averaging 5 min, or 0.083 h. The logistical minimum for the system is 2 min

(0.033 h), and for this reason two values for each model are listed in Table 3 the

5 min headway optimal train length and the 2 min headway optimal train length.

5.1.3 Platform and vehicle costs

Station platform cost is derived from the estimate by the Alberta Urban

Municipalities Association (2007) of the cost of platform extension. At a total

cost of $44 million, this implies a $1.4 million cost per station to extend the

platform. This is discounted at 8 % over a 40-year estimated station life-cycle to

obtain an hourly cost of $13.50 per station. There are additional costs for

maintenance and repair of station platforms, however these are not included in the

model. The values reported in Table 2 for platform costs have been multiplied by

n to report the overall platform cost for each arm individually.

The cost of acquiring light rail vehicles is estimated at $4 million for this model

(Davies 2011; Alberta Urban Municipalities Association 2007). This cost is also

Table 1 Description of

common values across Calgary’s

four LRT arms, used in Sect. 5

Symbol Description Value

h Train headway 0.08 h

c Design capacity per car 162 spaces/car

ca Passenger cost of crowding $22.85/h

kc Hourly cost of car operation $50/h/car

Ac Discounted cash flow of car ownership $45/h/car

Table 2 Calgary’s four radial

LRT lines, with typical peak

period values

Symbol Northwest South Northeast West

n 9 11 10 7

T 0.38 0.40 0.50 0.25

p 3052 4210 2760 1608

Ap 121.50 148.50 135.00 94.50

b1 1.12 1.10 1.11 1.16

b2 1.13 1.10 1.12 1.18
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discounted at a rate of 8 % over 40 years, at a 20 h service day, to obtain an hourly

cost of approximately $45/h. Again, costs of maintenance and repair, and the labour

associated with it are not included.

5.2 Maximum crowding

To ensure that the model does not provide impractical levels of crowding along the

route, the model should be checked at the endpoint of the train’s run to ensure that

the maximum crowding level is not beyond crush capacity. The parameter aðtÞ
developed in Sect. 3.2 is evaluated at its most crowded point, t ¼ T ¼ ðn� 1Þs. At
this point the crowding on the train becomes

a1ðTÞ ¼
ph

L�1c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðkc þ Ac þ ðh=TÞApÞ

b1cac

s
ð15aÞ

for the linear model, and

a2ðTÞ ¼
ph

L�2c

� �2

¼ 4ðkc þ Ac þ ðh=TÞApÞ
b2cac

� �2=3

ð15bÞ

for the quadratic model. Both are independent of demand. The values for the

maximum crowding for a 5 and 2 min headway on each C-Train arm are listed in

Table 3. Calgary Transit quotes a theoretical design capacity of 256 passengers/car

which is a crowding factor of 4.26, and a practical design capacity of 162 pas-

sengers/car with a crowding factor of 2.7. All of the values tabulated fall well below

that threshold.

5.3 Numerical results

The current C-Train platform and train length is three cars, however at the time of

writing an expansion is nearing completion to increase the train length to four cars

along all routes. With the exception of the West arm, the 5-min linear model

Table 3 Numerical output for

Calgary’s four radial LRT lines
Model Output Northwest South Northeast West

L�1 (5 min) 5.3 7.1 4.8 2.8

L�2 (5 min) 3.2 4.4 2.9 1.7

L�1 (2 min) 2.3 3.1 2.1 1.2

L�2 (2 min) 1.3 1.8 1.2 0.7

L�1 (1 r) 6.6 8.9 6.1 3.5

L�2 (1 r) 4.0 5.4 3.7 2.1

a1ðTÞ (5 min) 0.3 0.3 0.3 0.3

a2ðTÞ (5 min) 0.2 0.2 0.2 0.2

a1ðTÞ (2 min) 0.3 0.3 0.3 0.3

a2ðTÞ (2 min) 0.2 0.4 0.4 0.4
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suggests expansion to four car trains is sorely needed, while the quadratic model

indicates that at current demand the optimal train length falls between three and four

cars, suggesting that an expansion to four car trains is a valid move to accommodate

increasing demand. Low passenger counts on the West LRT route may be in part

due to its relative newness in comparison with the other more established lines, and

the model suggests that the current train length is sufficient in the short term. A

reduction to 2 min headways, while feasible on exclusive right-of-ways, is difficult

due to the two routes sharing the same track in the CBD, and may pose other

logistical problems. These shorter headways would reduce the need for longer trains

considerably. The maximum crowding levels for both models arrive at numbers that

would have all seats filled, and a small number of passengers standing during the

trip.

Section 4.4 outlined the response of optimal train length when there is variation

in demand. This method was applied to both models for all four C-Train arms,

where the demand was assumed to be normally distributed with a mean of p and a

coefficient of variation of 25 %. One standard deviation was used to obtain a train

length with 84 % reliability. These values are also reported in Table 2 as L�1 (1 r)
and L�2 (1 r) for the linear and quadratic models respectively. These values could be

used for planning purposes to accommodate potential increases in demand, while

still accounting for the unpredictability in passenger demand models.

6 Conclusion

A cost-of-crowding model for a many-to-one commuter LRT route was developed

in lieu of a traditional passenger waiting cost model, with the understanding that

LRT headways are minimized during peak periods. Both a linear and a quadratic

relationship between passenger crowding and valuation of travel time were

considered. The expression was evaluated to produce an optimal operating train

length for the network. Numerical analysis of the resulting formula produced train

lengths similar to those in current and planned operation on the C-Train network in

Calgary, Canada. Evaluation of maximum crowding on the model under these

conditions produced figures that were well within acceptable values.

The developed model provides insight into the effects of crowding on light rail

transit systems. The first-principles mathematical development of route progression

can be applied to a number of different scenarios and provides a generalized look

into LRT modeling. The model demonstrates that crowding can affect operational

and planning decisions on such a transit system. Specifically, it was shown that train

length should grow directly proportional to the demand of the system, but can be

affected in a sub-linear way by capital and operating costs. The model produces

feasible results when applied to a real-world scenario.

The model required various assumptions, including the symmetry of the route

and passenger distribution, however some variability was included by allowing

demand to vary according to a probability distribution. The simplification gained by

the many-to-one model could potentially be removed or adjusted in future
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treatments of the scenario. Adding the physical characteristics of the cars could

allow for a secondary optimization over car length and configuration (and the

associated capital costs), which would allow planners to choose rolling stock that is

best suited for their situation. Further investigating and understanding the

discomfort associated with crowding could increase the realism of the model.

Due to the massive capital investment required for the development of LRT

networks, it is important that every possible step is taken to ensure that the

developed route is designed to accommodate growth in population and technology.

It is hoped that this paper provides groundwork for the careful consideration of train

and platform length and its inherent link to on-board crowding during the design or

expansion phase of a network. The versatility of LRT technology is its

attractiveness, and should not be negated by sub-optimal initial design strategies.
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