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Abstract We describe the periodic event scheduling problem (PESP) based on

periodic event networks and extend it by symmetry constraints. The modeling power

of the PESP is discussed for automatic calculation of feasible periodic railway

timetables. Including the described extensions, complete modeling of integrated

regular-interval timetables is possible. Encoding the PESP to propositional logic

enables the usage of efficient SAT solvers for solving the PESP. However, optimizing

timetables by linear programming is possible, too. As almost all real-world timetable

problems are heavily overconstrained,methods for automatic resolving of conflicts are

described. Since there is still a lack of efficient conflict resolving algorithms for large-

scale intermeshed railway networks, we introduce several strategies for efficiently

resolving conflicts and intelligently decomposing timetable problems and discuss the

trade-off between computation time and reduction of the solution space. These

strategies allow quick adaption to small changes as well. The described methods are

implemented in the software system TAKT. We apply the enhanced TAKT to a

timetabling study and present some key figures and results.
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1 Introduction

Today, planning and disposition of railway transport in Germany is often manual

labor—computers only hold, manage and visualize data. These labor-intensive

processes lead to mostly evolutionary timetabling, such that every year only the

necessary changes are done to fit the timetable to changed infrastructure or a

changed network. Using state-of-the-art techniques, it is nearly impossible to build

only one fully optimized railway timetable from scratch for large and intermeshed

railway networks like the German one. As this obviously does not tap the railway’s

full potential, diverse high-quality timetable variants have also a key role in design

of tomorrow’s railway infrastructure and in reliable stability and capacity analysis

leading to efficient and sound railway networks.

Since railways are a quite long-standing business, they have grown large bundles

of complicated operational rules and versatile constraints. Hence, a model is needed

which covers a wide range of possible constraints.

At the Chair of Traffic Flow Sciences at TU Dresden, the software system TAKT

has been developed for several years in close collaboration with DB Netz AG. It

tackles exactly these kinds of issues and solves them by state-of-the-art operations

research techniques. The connection and interaction between the different

approaches will be subject of this work. The specific use case TAKT was

developed for is long-term timetabling studies. The scope of these studies is to

evaluate both different operational concepts (different routes, stopping patterns,

vehicles and so on) and different infrastructure states. Even at this long-ranging

sight, infrastructure operators, transport companies, regional and national authorities

impose many requirements resulting in a high number of constraints. Therefore,

conflict resolution plays a major role. Timetable optimization based on predicted

passenger demand is a possible post process following conflict resolution.

In Sect. 2 we give the preliminaries for periodic event scheduling. After showing

the possibilities for solving timetabling instances in Sect. 3, we introduce in Sect. 4

the state-of-the-art conflict resolving of infeasible instances. After presenting our

computational results in Sect. 5, we conclude the work in Sect. 6 and give a further

scientific outlook.

2 Periodic event scheduling problem

In the last 15 years, the periodic event scheduling problem (PESP) has been

established as one of the most suitable problem formulations for periodic

timetabling. It is introduced by Serafini and Ukovich (1989). The related periodic

event network (PEN) permits flexible representation of almost all periodic

timetable’s constraints. For instance, the PESP and its application to railway

timetabling are discussed in detail by Nachtigall (1998) and Opitz (2009).

The train network, which is the base of the timetabling problem, contains

periodic trains L running on a railway network with stations S. Each train L 2 L
serves a specified sequence of Stations S 2 S. All constraints are modeled into a

PEN. Its nodes v 2 V represent arrival events ðL; arr; SÞ 2 V and departure events
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ðL; dep; SÞ 2 V. The timetable T 2 Z
jVj assigns to every event v 2 V a poten-

tial Tv 2 Z, 0� Tv\tT . In a periodic timetable with period tT 2 N
þ the event

happens periodically at all times Tv þ ztT , z 2 Z.

The network’s arcs a 2 A : i ! j are basically time consuming processes. All

arcs’ processing times are constrained by lower bounds tmin;a and upper

bounds tmax;a. This range is also written as ½tmin;a; tmax;a�tT . A timetable T is

considered valid if and only if

8a 2 A : 9za 2 Z : tmin;a � Tj � Ti � zatT � tmax;a: ð1Þ

The lower slack ya is the deviance of the actual processing time from the lower

bound such that

0� ya ¼ Tj � Ti � zatT � tmin;a\tT : ð2Þ

The PESP is the decision problem, whether there exists any valid timetable for a

given PEN N ¼ ðV;A; tTÞ. For feasible problems, a timetable can be calculated.

This universal problem allows the modeling of running times, dwell times,

headways and transfer times. For instance, trains are encoded as alternating sequences

of running activities ðL; dep; SÞ ! ðL; arr; S0Þ and stops ðL; arr; SÞ ! ðL; dep; SÞ.
Headways between different trains include both safe headways representing the

permitted minimum headway and also evenly distributed intervals between different

trains running partly on the same railway line. Transfer times include several of

different requirements: vehicle transfers, staff transfers and passenger transfers.

Likewise, symmetry is a common requirement in periodic timetabling (Stähli

1970). A train and its associated returning train are considered to be symmetric, if

their arrival and departure times are aligned symmetrically along symmetry axis in

time (see Eq. (3)), which is called symmetry minute s and is equal in the whole

network. Hence, the trains meet each other at point of time s. The symmetric

timetables’ advantage is the satisfied symmetric property of transfers. Thus, all

transfers automatically are fulfilled in both directions. Previous works like Liebchen

(2006) and Opitz (2009) only consider ideal symmetry without any deviation. In

practical applications, this is hardly ever accomplishable as even running times are

often asymmetric due to slopes or direction dependent maximum speeds. So we

introduce a symmetry deviation to model this requirement.

This constraint is special, as it cannot be modeled by Eq. (1) (even without

symmetry deviation) as it was proven by Liebchen (2006). Subsequently, the

problem has to be extended by additional constraints a 2 AS : i ! j, where i is the

arrival event of one train and j the departure event of the associated returning train.

A certain maximum absolute deviation from symmetry da 2 N is permitted. The

actual symmetry deviation is denoted as symmetry slack ya 2 Z. Applying the

permitted slack (5) to formulation of symmetry axis (3) results in an inequation (6)

quite similar to (1).

Tj � ðsþ yaÞ � zatT ¼ ðsþ yaÞ � Ti ð3Þ
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Ti þ Tj � zatT ¼ 2sþ 2ya ð4Þ

�da � ya � da ð5Þ

2s� 2da � Ti þ Tj � zatT � 2sþ 2da ð6Þ

Thus, in extension of requirement (1) a timetable is only considered valid if it holds

as well:

8a 2 AS : 9za 2 Z : 2s� 2da � Ti þ Tj � zatT � 2sþ 2da ð7Þ

The PESP extended by symmetry constraints allows fully modeling Integrated

regular-interval timetables (IRIT) (Opitz 2009). IRIT is a ideal concept of time-

tabling (refer to Lichtenegger 1990) established in Germany and several other

European countries. Figure 1 shows a simple exemplifying PESP network with

symmetry constraints.

3 Solving the PESP in TAKT

The PESP is proven to be NP-complete (Serafini and Ukovich 1989). Hence, solving

real-world PESP instances is a challenging task (Opitz 2009). The currently most

efficient approach for solving the PESP is conducted by using state-of-the-art SAT

solvers (Großmann 2011). SAT is the boolean satisfiability problem determining if

there exists any interpretation satisfying a given propositional formula. SAT is

likewise NP-complete (Cook 1971), yet, for SAT very efficient solvers exist

(Manthey and Saptawijaya 2010). It was shown that SAT solvers outperform all

previously known approaches for solving the PESP despite the additional time

needed for encoding and decoding SAT instances (Großmann et al. 2012).

Propositional logic uses boolean variables q 2 R. Literals L are either vari-

ables q or their negation :q. Clauses are disjunctions of literals c ¼
W

i Li.

Propositional formulas in conjunctive normal form (CNF) are conjunctions of

clauses F ¼
V

j cj. An interpretation J assigns to every variable either the value

true or false, denoted as t or f, respectively. A formula F is satisfiable (FJ ¼ t) if

and only if there exists a J such that all clauses contain at least one literal assigned

to t under J. An interpretation J is called model (denoted J � F), if and only if

FJ ¼ t.

Fig. 1 An event network of two trains on a single track line with stations A, B and C
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The PEN’s constraints are encoded to propositional formulas using order

encoding which is introduced for general finite ordered domains (Tanjo et al. 2011).

All potentials Tv are encoded to tT � 1 boolean variables qn;i, whereas qv;i ¼ t

represents Tv � i and thus, qv;i ¼ f represents Tv [ i. The function enc maps the set

of events V to a propositional formula in CNF, such that this ordering holds:

encðvÞ ¼ ð:qv;�1 ^ qv;tT�1Þ
^

i2½0;tT�1�
ð:qv;i�1 _ qv;iÞ ð8Þ

This encoding for variables of finite ordered domains is discussed in details by

Tanjo et al. (2011). In order to encode all events’ potentials, which will be the

decoded schedule afterwards, we define

XN :¼
^

v2V
encðvÞ: ð9Þ

After a model J has been found for this formula, extracting the value of the event v

by J is done by the function nvðJÞ, where nvðJÞ ¼ k such that J 6� qv;k�1, J � qv;k
and k 2 ½0; tT � 1�. nn is well-defined and ensures extracting exactly one value due

to the following lemma. For detailed proofs we refer to the literature (Großmann

2011; Großmann et al. 2012).

Lemma 1 Let N ¼ ðV;A; tTÞ be a PEN, n 2 V be an event and J an

interpretation. Then

ðiÞ J � encðvÞ , 9!k 2 ½0; tT � 1� : 8i 2 ½�1; k � 1� : J 6� qv;i;

ðiiÞ 8j 2 ½k; tT � 1� : J � qv;j:

Proof (sketch) ‘‘)’’: Let J � encðnÞ. To show:

9k 2 ½l; u� : 8i 2 ½l; k � 1� : J 6� qv;i; 8j 2 ½k; u� 1� : J � qv;j ^ ð10Þ

6 9h 2 ½l; u�; h 6¼ k : 8i 2 ½l; h� 1� : J 6� qn;i; 8j 2 ½h; u� 1� : I � qv;j ð11Þ

Equation (10) is simply shown with mathematical induction. Equation (11) is

simply shown without loss of generality h[ k implies qJv;k ¼ f , which is in con-

tradiction to (10). ‘‘(’’: can be simply shown with mathematical induction as in

‘‘)’’. h

Extracting the schedule T can be done on a per-element basis from a model J with

8v 2 V : Tv ¼ nnðJÞ: ð12Þ

Subsequently, all constraints can easily be encoded to clauses by excluding for

each constraint all invalid combinations of values ðTi; TjÞ. Excluding each single

pair would result in a quadratic number of clauses such that each constraint is

encoded soundly (Großmann 2011). Hence, it would be more efficient to encode not

just a single pair but a larger set of pairs which will be rectangles. This approach is
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described in the following. Figure 2 shows the feasible and infeasible regions for the

constraint ½3; 5�10 and all pairs of a particular rectangle, that shall be excluded for

event i 2 V and j 2 V. We can exclude all infeasible pairs of a rectan-

gle ½i1; i2� � ½j1; j2� that is a subset of the infeasible region by a single clause:

enc recð½i1; i2� � ½j1; j2�Þ ¼ :qi;i2 _ qi;i1�1 _ :qj;j2 _ qj;j1�1 ð13Þ

The following lemma ensures that each pair of the encoded rectangle is not satis-

fiable with respect to the encoded formula and thus, not part of a feasible schedule.

Lemma 2 Let r ¼ ð½i1; i2� � ½j1; j2�Þ be a rectangle in the infeasible region of the

constraint ði; jÞ 2 A. Then

J � enc recðrÞ , ðniðJÞ; njðJÞÞ 62 r

with J being an interpretation.

Proof ‘‘)’’:

J � enc recðrÞ ) ð:qi;i2 _ qi;i1�1 _ :qj;j2 _ qj;j1�1ÞJ ¼ t ð14Þ

Proof by contradiction: assume ðniðJÞ; njðJÞÞ 2 r ¼ ð½i1; i2� � ½j1; j2�Þ. Then

i1 � niðJÞ ^ i2 � niðJÞ ^ j1 � njðJÞ ^ j2 � njðJÞ

which results in

qJi;i2 ¼ t ^ qJi;i1�1 ¼ f ^ :qJj;j2 ¼ t ^ qJj;j1�1 ¼ f

) ð:qi;i2 _ qi;i1�1 _ :qj;j2 _ qj;j1�1ÞJ ¼ f

Ti

Tj

4 7

3

6

0

3

5

9

5 7 9

Fig. 2 Feasible (striped) and
infeasible (white) regions for
constraint ½3; 5�10 between

events i 2 V and j 2 V. The
gridded square shows an
infeasible rectangle
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This is a contradiction to (14). Hence,

ðniðJÞ; njðJÞÞ 62 r

‘‘(’’: analogous to ‘‘)’’. h

Excluding all infeasible rectangles of a given constraint a with the given

encoding enc rec as of (13) results in the complete and sound encoding for a.

Applying this to all constraints in the set of edges A and connecting this with the

encoded nodes XN conjunctively results in the to be encoded propositional formula

in CNF. Lemma 1 ensures that we can extract exactly one point in time for each

event. Extrapolating Lemma 2 to each constraint ensures the sound and complete

encoding for a PEN.

This results in the equivalence of searching for an interpretation J satisfying F
and searching for a valid timetable T for PEN N. For further reading on encoding

PESP to SAT we refer to the literature (Großmann et al. 2012).

An interpretation J satisfying F can be easily decoded to a timetable T by

reversing the described encoding. Solving the PESP by this approach results in one

valid timetable, since it is a decision problem. Global timetable optimization can be

achieved by minimizing the weighted sum of slacks using integer linear

programming (ILP). Lots of different objectives can be modeled by weighting

factors, for example sum of journey time for all passengers or the number of needed

train sets (Liebchen 2006; Opitz 2009). Yet most implementations of passenger flow

based timetable optimization lack proper assignment of passenger flows as

described in Kümmling (2013): large and complex railway networks require

sophisticated traffic assignment methods to achieve a reliable prognosis of traffic

streams within the network on the one hand. On the other hand, traffic assignment

and timetable optimization are heavily interdependent. This is especially a problem

in regional and long-distance train networks with large intervals (120 min) between

trains. Yet no methods are known to conduct timetable optimization and a sound

traffic assignment simultaneously. For a comprehensive survey on further methods

for timetable optimization and a wide variety of problem formulations and

objectives we refer to Cacchiani and Toth (2012) and Törnquist (2006).

4 Resolving conflicts

Although, solving the PESP is a challenging task, usually only solving the initially

formulated timetable problem is not the scope of work as almost all real timetable

problems initially are not satisfiable. This is reasoned by the fact that at first the

constraints are arranged idealistically tight, for example dwell times are set to the

minimum possible dwell time as this would result in minimal journey times if

satisfiable. Therefore, the real task is the identification and resolving of conflicts

resulting in a minimally relaxed yet valid timetable.

Let N ¼ ðV;A; tTÞ be a PEN. A conflict C ¼ ðV;Z;TÞ with Z 	 A is

called local conflict for N if and only if C is infeasible and C gets feasible by

removing any constraint in Z. A simple example conflict is outlined in Fig. 3. As
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the event network’s constraints are encoded to separate clauses, local conflicts have

a counterpart in SAT: A formula M in CNF is called minimally unsatisfiable

subformula (MUS) if and only if M is unsatisfiable and M becomes satisfiable by

removing any clause c 2 M. Likewise, there are highly efficient extractors for

finding MUS (Ryvchin and Strichman 2011). Once a MUS is found, it can be

decoded back to local conflicts (Großmann 2012).

Constraints in Z are relaxed by increasing the upper bound tmax;a (a 2 Z),

whereas symmetry constraints are relaxed by increasing maximum symmetry

deviation da. Several constraints, especially safety headway constraints, but also

other constraints by user’s request, are prohibited to be relaxed at all. In real world

railway PEN, the majority of constraints are unrelaxable headway constraints.

Consequently, every conflict at first has to be checked on whether any relaxation of

the relaxable arcs could solve the conflict. This is done by removing all relaxable

arcs from the network and solving the remaining network. Remaining conflicts are

intrinsic conflicts of the railway network’s infrastructure and its operating program

and thus, have to be manually resolved by modifying the operating program or the

infrastructure. The extraction of local conflicts offers a detailed analysis of the

bottlenecks (Opitz 2009).

Resolving conflicts involves two steps: firstly, the network is resolved by a quick

heuristic, resulting in far too high relaxations. The simplest heuristic relaxes evenly

all relaxable constraints by the same slack until the network is feasible. Afterwards,

the relaxations are minimized under preservation of the network’s feasibility.

Minimization is done by either iterative usage of SAT solvers or direct usage of ILP

solvers. The iterative process does not achieve the global minimum, but features

much lower calculation times, whereas ILP solvers enable the use of more advanced

objective functions.

Despite the impressive speedup achieved by using SAT solvers (Großmann et al.

2012), a lot of timetabling problems are still too vast to be resolved directly in one

piece in reasonable time. Therefore, strategies for an intelligent decomposition of

the timetabling problem is a necessity. We present two approaches for this problem.

On the one hand, in hierarchical planning, the train network is sub-classified in

several levels, for instance long-distance trains, local trains and freight trains as

shown in Fig. 4. The trains of the highest level are scheduled first and then are left

fixed, then the next level is scheduled which is iteratively proceeded. This approach

represents the current manual timetabling processes well and easily fits to

established paradigms. It reduces calculation time vastly, but it also cuts down

the solution space remarkably.

Fig. 3 Local conflict within a quite small sample event network
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On the other hand, a new method does not influence the solution space and also

results in a considerable reduction of computation time: Some infeasible parts of the

timetable network are extracted and resolved separately. Afterwards, all found out

relaxations are adopted into the full network, which is then resolved again. Two

automatic algorithms for determination of such network parts were developed: local

conflict search, as described above and corridor analysis. Corridor analysis extracts

the nodes and arcs of a train and its returning train and adds a defined amount of

neighboring nodes and arcs. Far more sophisticated algorithms and combined

strategies are currently under intensive research. Manual extraction of few heavily

crowded and closely intertwined urban networks out of regional or national

networks deliver effective results as well.

Both methods allow an intelligent and quick way of incremental scheduling, as

they enable to fit small changes into existing timetables easily. Whereas solving

whole networks takes hours, it is only a matter of minutes to include changes and to

generate valid timetables again. Furthermore, it is possible to evaluate different

operating programs and infrastructural states quickly.

5 Application and results

As described in the beginning, the presented algorithms are implemented in the

modular timetabling software system TAKT of the Chair of Traffic Flow Science at

TU Dresden. The PEN is generated automatically from given input data. This is

necessary, as large timetabling problems can consist of up to one million arcs and

ten thousands of nodes, which cannot be calculated manually. The program assigns

the optimal route on the track layout for each train automatically and calculates the

running times within seconds. All minimum headways are calculated individually

based on microscopic infrastructure data and the previously calculated running

times.

After running time calculation, all running times are considered constant. This is

a requirement because the minimum safe headways depend linearly but discontin-

uously on running times (Kümmling 2014) and the PESP does not allow for

dependencies between different arcs. This enables us to reduce PEN size as well by

removing arrival arcs and uniting stopping arcs with neighboring arcs (condensa-

tion, see Opitz 2009). For calculating headways we use commonly established

Fig. 4 Example for hierarchical planning
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methods. We refer to Müller (1934) for a comprehensive overview and to Nachtigall

(1998) for application in PESP.

This PEN is the universal interface to different PESP solvers, allowing the usage

of different solvers like the presented SAT-based approach, but also for instance LP-

based solvers. The SAT-based PESP solver uses external SAT solvers. So far, the

best overall performance was reached with the Glucose SAT solver (Audemard and

Simon 2013).

The presented methods are applied to a case study of the German long-distance

passenger railway network and the regional trains within the German region south-

east (Saxony, Thuringia and Saxony-Anhalt). Firstly, the two networks were solved

separately. As the network of regional trains is denser, a particular complex part

(Leipzig region) was extracted and the relaxations needed for this part were

calculated beforehand. Table 1 shows key figures of these instances. Fig. 5 outlines

the sequence of timetabling steps.

Calculating a completely conflict-free timetable for the long-distance network

takes about 2.5 h. Determining a valid timetable for the regional trains in the

described two iterations took approximately 2 h each. In the joint network of both

Table 1 Key figures of sample

instance
Part Trains Stations Nodes Arcs

Long-distance network 178 198 1850 14,285

Leipzig region 72 126 742 6337

All regional trains 426 1143 4506 21,461

Whole network 604 1329 5564 31,765

Fig. 5 Example of hierarchical planning sequence
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long-distance and regional trains, the long-distance trains were fixed to the

determined timetable, whereas the regional trains were not fixed, but the relaxations

computed before adopted to the event network. Solving the joint network took about

30 min. Providing fully correct input data, the program does not need any assistance

to calculate applicable timetables. Having large amounts of input data, flaws like

wrong train routes, missing stops, bogus connections are common. Thanks to the

relaxation handling described before, the flaws can be detected and removed

iteratively without calculating the timetable from scratch over and over again. The

computations were conducted on an Intel Xeon CPU X5450 based server with

16 GB RAM, but used not more than one core and 500 MB RAM. The SAT

instances are solved by the SAT solver Glucose version 2.3.1

Based on the PESP a more advanced model for completely automatic calculation

of freight train paths along corridors is developed, that allows dynamic track

allocations and dynamic selection of suitable speed profiles for freight trains. It

outperforms the work of experienced experts even on highly crowded lines by far—

the same number of or even more train paths with a better quality are achieved in

much lower time (Opitz 2009; Weiß et al. 2014).

Additionally, TAKT features several visualization tools for evaluation of the

resulting timetables, one example is displayed in Fig. 6.

1 http://www.labri.fr/perso/lsimon/glucose/.

Fig. 6 Screenshot of timetable visualization in TAKT
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6 Conclusion

As it was shown in this work, SAT-based PESP solving and local conflict search

provide a powerful base for fully automatic timetabling. The usage of SAT allows

solving larger networks which could not be solved before. Intelligent problem

reduction and partition algorithms allow further increments in network size and

reductions in calculation time respectively. These improvements permit additional

extensions to the PESP model as well. For instance, dynamic track allocation for

passenger trains will rise the flexibility of PESP in practical applications further.

The described management of relaxations offers an easy and efficient way for

evolving timetables from scratch, which was successfully field-tested on large-scale

railway networks. The possibility of fast rescheduling and the variety of realizable

constraints opens periodic event scheduling for new fields like capacity research of

several infrastructure states or railway traffic management in a completely new

manner.
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