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Abstract In the periodic event scheduling problem, periodically reoccurring

events need to be scheduled, subject to constraints on the resulting time differences.

A typical application for this type of problem relates to train schedules, which have

to repeat every hour for passenger convenience. As external disruptions may occur,

robustness considerations need to be included in the scheduling process. In this

work, we present a recovery approach for instances where integer programming

methods can be applied, and a bi-criteria local search algorithm for large-scale

instances. In computational experiments, we compare solutions calculated using the

recovery approach to risk-averse and to risk-oblivious solutions. Our results suggest

that the solutions generated by our approach have a favorable trade-off between cost

and robustness. Furthermore, we compare the local search algorithm to a simplified

approach that includes the desired robustness level as a hard constraint. The

experiments show that our algorithm finds an improved set of non-dominated

solutions within equal computation times.

Keywords Robust optimization � Recovery robustness � Periodic event

scheduling � Periodic timetabling

1 Introduction

In the Periodic Event Scheduling Problem (PESP) as introduced in Serafini and

Ukovich (1989), periodically reoccurring events need to be scheduled according to

given feasible time spans. The most prominent example for this type of problem are
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train schedules, in which train arrivals and departures repeat, e.g., every 15, 30, 60,

or 120 minutes for passenger convenience, see Liebchen and Möhring (2007); Odijk

(1996); Nachtigall (1998); Peeters (2003). Successful applications of this model

include the optimized timetable for the underground railway of Berlin [see Liebchen

(2008)], and the timetable for the largest Dutch railway contractor, the Nederlandse

Spoorwegen, see Kroon et al. (2009).

Methods to solve PESP instances most commonly include mixed-integer

programming techniques, see Liebchen et al. (2008); but also constraint program-

ming techniques are frequently used, see, e.g., Kroon et al. (2009); Oliveira (2001);

Isaai and Singh (2000); Goerigk and Schöbel (2013). Recently, local search

heuristics like the modulo network simplex method (Nachtigall and Opitz 2008;

Goerigk and Schöbel 2013) have become a valuable alternative due to their ability

to tackle larger instances, as it is usually the case in real-world problems.

As delays create considerable passenger inconvenience as well as operational

costs and should not be neglected when designing a periodic timetable fit for

practice, several attempts have been made to find robust timetables, i.e., timetables

that behave ‘‘well’’ in a to-be-specified sense under the existence of delays.

The case of aperiodic robust timetabling—in a problem variant that is solvable in

polynomial time—has been intensively studied, see, e.g., Liebchen et al. (2009);

Fischetti and Monaci (2009). For a survey on this field, see Goerigk and Schöbel

(2010), where an experimental comparison between several robustness models has

been made. Note that other problem variants for the aperiodic case may be NP-hard,

see, e.g., Caprara et al. (2002); Cacchiani et al. (2010a, b).

In the case of periodic robust timetabling, already the nominal problem is strongly

NP-hard and computationally difficult to solve. Thus, complex robustness models are

not a practical option for large instances. A survey on robust timetabling (considering

both periodic and aperiodic models) can be found in Cacchiani and Toth (2012). In

Fischetti and Monaci et al. (2009), a linear robustness objective is proposed for the

aperiodic case, based on statistical evidence [see also Kroon et al. (2007)]. The resulting

model is then solved by a commercial mixed-integer programming solver. In Cacchiani

et al. (2012), a Lagrangian optimization method is adapted to take robustness into

account, and the resulting optimization scheme is applied to a variant of the timetabling

problem. In the recent work of Caimi et al. (2011), an extension of the PESP, the flexible

periodic event scheduling problem is introduced, in which intervals are used instead of

fixed event times. The added flexibility can be understood as a measure of robustness,

which increases the chances of finding a feasible timetable on a microscopic level.

Similar to this work, they also consider a bi-objective approach, considering both travel

time and robustness simultaneously.

Contributions: We consider robust periodic timetabling models under a long-

term planning horizon, where it is possible to adjust the timetable once the realized

scenario becomes known. Ideally, the adjusted timetable performs well in this

scenario (i.e., passenger have short travel times), while it is at the same time not too

different from the originally planned schedule. Such an approach is covered by the

recently introduced concept of RecOpt from Goerigk and Schöbel (2014).

However, as the periodic event scheduling problem is already notoriously

difficult to solve in its nominal, non-robust variant, it is beyond hope to solve the
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robust model for anything but small instances. We therefore consider a heuristic

approach for medium-sized instances.

For the largest (and possibly also most realistic) instances, even this heuristic

approach is not applicable, as it involves the solution of several nominal

subproblems. We suggest to use a local search heuristic instead, which aims at

minimizing travel times for a given desired amount of robustness. Thus, as an

example for the value of the algorithm engineering paradigm in robust optimization,

see Goerigk and Schöbel (2013), we highlight the advantage of explicitly including

the size of instances in the choice of the ‘‘right’’ robustness approach.

For each robustness approach, we present numerical results, showing that (a) the

resulting solutions are a reasonable compromise between risk-averse and risk-

oblivious solutions, (b) this also holds if simulated delays are considered, and c) the

non-dominated solutions generated by the bi-criteria local search algorithm are

better than the non-dominated solutions found when robustness is the desired

robustness level as a hard constraint.

Overview: In Sect. 2, we introduce the nominal periodic event scheduling

problem with its application to periodic timetabling. The first approach to

robustness, which is suitable for instances up to medium size and based on a

recovery strategy, is presented in Sect. 3. We then discuss the bi-criteria approach

for large-scale problems in Sect. 4. After presenting numerical results for both

approaches in Sect. 5, we conclude this work in Sect. 6.

2 PESP and periodic timetabling

A periodic event i is a countably infinite set of events ip, p 2 Z, with occurrence

times

tðipÞ ¼ tðiÞ þ p � T

for a given period T Serafini and Ukovich (1989). A span constraint consists of an

interval ½lij; uij� � R for a pair of events ði; jÞ. The span constraint is satisfied if

ðtðjÞ � tðiÞÞmod T 2 ½lij; uij�;

where x modT :¼ argminfz 2 Rþ : 9d 2 Zs:t:x ¼ zþ dTg. Note that possible

multiple span constraints between two events can be rewritten as a single span

constraint. The PESP problem is given as follows: For a given finite set of events

with a period T and a finite set of span constraints, find a time tðiÞ for each periodic

event i such that all span constraints are satisfied. It is shown by Serafini and

Ukovich (1989) that PESP is NP-hard by transformation from the Hamiltonian

Circuit Problem.

As pointed out in Sect. 1, the most prominent application of the PESP is train

timetabling. Therefore, we will use the terminology of train timetabling in the

following; however, applications to other transportation systems are possible. Based

on the PESP, the periodic timetabling problem can be formulated by introducing

Event-Activity-Networks (EAN) to model the time-dependent behavior of the
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various vehicles considered [see Odijk (1996)]. EANs are directed graphs G ¼
ðE;AÞ with nodes E ¼ Earr [ Edep that represent arrival and departure events of

every train line at every station, and edges A ¼ Adrive [ Await [ Achange representing

a type of activity:

1. Driving activities Adrive � Edep � Earr that model the time a train needs to travel

from one station to the other

2. Waiting activities Await � Earr � Edep that model the time a train spends idle at

a station, waiting for passengers to board and deboard

3. Changing activities Achange � Earr � Edep that model the time a passenger needs

to transfer from one train to another at the same station.

Other types of activities that are frequently used include headway activities that

model the security distance between two trains using the same infrastructure; such

additional activities can be easily included throughout the remainder of the paper.

The events are periodic since all arrivals and departures are repeated in every

period, and for each of the activities a span constraint is given which contains the

minimal and the maximal duration of the activity. The minimal duration guarantees

a certain level of robustness while the maximal duration controls the quality of the

timetable. Figure 1 gives an example for the general structure of such a network. In

station A, passengers would like to change from a train of line 1 into a train of line 2

and vice versa. In station B, there are passengers who change from line 2 to line 3.

The goal is to find a timetable assigning a time pi :¼ tðiÞ mod T 2 R to each of

the events i 2 E for a given period T such that the span constraints are satisfied, i.e.,

ðpj � piÞmodT 2 ½lij; uij� for each activity ði; jÞ 2 A. The objective in the timet-

abling problem we consider here is to minimize the total passenger traveling time

given as
X

ði;jÞ2A
xij pj � pi

� �
mod T

� �
;

where xij is the number of passengers that would like to use activity ði; jÞ 2 A;

typically, this number needs to be estimated in real-world applications. Note that

Fig. 1 Detail of an event-activity-network
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other objective functions are possible, as, e.g., the ratio of waiting times to journey

times, see Isaai and Singh (2000).

Instead of the event times pi; i 2 E; one can equivalently determine the duration

xij ¼ pj � pi þ zT for any edge ði; jÞ 2 A, where z is the smallest integer value such

that xij� lij. Using this concept, an alternative formulation (used by the modulo

network simplex) has been suggested in Nachtigall (1998). Let T ¼ ðE;AT Þ be a

spanning tree with its corresponding fundamental cycle matrix C, then the periodic

timetabling problem can be formulated as follows:

ðPTTÞ min
X

ði;jÞ2A
xijxij ¼ TravelTimeðxÞ

s:t ðx; zÞ 2 FðlÞ

where

denotes the set of feasible solutions and x ¼ ðxijÞði;jÞ2A and l ¼ ðlijÞði;jÞ2A. For details

and correctness we refer to Nachtigall (1998). As the variables zij model the periodic

character of the problem, they will be referred to as modulo parameters.

Constraint (1a) ensures that the activity durations x yield a potential p that is

uniquely determined up to the modulo operator, while Constraint (1b) ensures that

the lower and upper activity bounds are fulfilled.

Note that the modulo parameters are the reason why this problem is NP-hard. For

fixed variables zij the timetabling problem is the dual of a minimum cost flow

problem that can be solved efficiently using the network simplex method. On the

other hand, the variables z are easily obtained for a given feasible duration vector x.

3 Recovery to optimality

The problem formulation (PTT) does not take disruptions into account, which

inevitably occur during operation of a periodic schedule. Causes of these disruptions

are manifold: Bad weather conditions like snow, rain or storm, construction sites,

accidents and many more uncontrollable effects impair the operability of a

timetable.

Instead of considering the nominal problem formulation (PTT), in which we

assume that all problem parameters are known in advance, we now consider an

uncertain problem version (PTT(l), l 2 U), in which the lower activity bounds are
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not given exactly, but known to come from a finite uncertainty set U ¼ fl1; . . .; lNg.
The set U therefore captures possible disruptions of the schedule like bad weather

conditions, technical failures or accidents. We will refer to the elements of U as

scenarios. Note that to model delay scenarios, we do not need to assume uncertain

upper bounds on activities; however, the operator might decide to relax the upper

bounds in case of delays. In the following, we will assume that upper bounds are

large enough to allow a feasible solution to exist in every considered scenario, and

ignore uncertainty in the upper bounds.

The reformulation of the parameterized problem family back to a single problem

is called robust counterpart, and various proposals how to do this have been made in

the recent literature [(e.g., Ben-Tal and Nemirovski (1998); Fischetti and Monaci

(2009)].

We will denote the set of feasible solutions in scenario n 2 U as FðnÞ. In many

applications, there exists a so-called nominal scenario n̂ 2 U that corresponds to an

undisturbed setting. For the periodic timetabling problem, the nominal scenario is

n̂ ¼ l̂.

Following Ben-Tal and Nemirovski (1998), a simple approach to find the robust

counterpart is by requiring feasibility in all scenarios, which is also called the

strictly robust counterpart. For (PTT), this amounts to solving

ðSRÞ min TravelTimeðxÞ
s:t ðx; zÞ 2 FðliÞ 8li 2 U

Note that
TN

i¼1 FðliÞ ¼ FðlwcÞ, where lwc
j ¼ maxli2U lij denotes the activity-wise

worst-case. Therefore, (SR) can be transformed to a problem of type (PTT) again.

However, this approach might be too restrictive for real-world timetabling prob-

lems: Solving (SR) means finding a timetable that can be used without any change

for all possible scenarios, e.g., a schedule has enough buffer times to be used during

a snowstorm as well as during nice summer weather.

A step towards practical applicability has been made with the concept of

recovery robustness by Liebchen et al. (2009), where it is allowed to update a

solution once the scenario becomes known. In this section, we draw upon the related

concept of recovery-to-optimality as introduced in Goerigk and Schöbel (2014) to

find periodic timetables that can be updated to an optimal timetable in every

scenario with minimal recovery costs.

We assume that the costs to modify one periodic schedule x1 to another one x2 is

given by a function dðx1; x2Þ that does not depend on the modulo parameters z. This

represents the fact that the modulo parameters are variables introduced for the

integer programming formulation, but are not perceivable during operation. Instead,

the most obvious instrument to change a timetable from the practitioner’s point of

view is to modify the driving and waiting durations x.

The recovery-to-optimality counterpart [(RecOpt) for short] for of an uncertain

optimization problem is given as follows: Find a solution that minimizes the

maximum distance to an optimal solution in any scenario (or, alternatively, the sum

of distances to optimal solutions). While the former problem can also be interpreted
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as a center location problem, the latter corresponds to a median problem. In the case

of (PTT), we can formulate the center version of (RecOpt) the following way:

ðRecOpt� PTTÞ min maxN
i¼1 dðx; xiÞ

s:t: ðx; zÞ 2 Fðl̂Þ
ðxi; ziÞ 2 FðliÞ 8li 2 U
TravelTimeðxiÞ ¼ optðliÞ 8li 2 U;

where optðlÞ denotes the optimal objective value for the periodic timetabling

problem with respect to the lower bounds l, which needs to be computed in a

preprocessing step.

Note that d should reflect the possible recovery actions the operator can use. In a

setting where it is prohibited to prepone an event with respect to a published

schedule, a non-symmetric function d should be used. Otherwise, a metric can be

applied.

For metrics d induced by polyhedral norms, we can directly rewrite (RecOpt-

PTT) to a mixed-integer program. As an example, using

d1ðx1; x2Þ ¼ max
a2A
jx1

a � x2
aj

and considering the center problem, we have the following mixed-integer linear

program:

The variable c represents the maximum d1 distance of the robust solution x to

the solutions xi of the respective scenarios. To determine this distance, the

Constraints (3) are used. Constraint (8) ensures that the solutions xi are optimal for

their respective scenario.

Obviously, (RecOpt) significantly increases the problem size – in this case, for a

nominal problem with n variables and m constraints, the (RecOpt-PTT-d1)

counterpart consists of ðjUj þ 1Þðnþ 1Þ variables and ðjUj þ 1Þðnþ 1Þ þ jUj
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constraints. For a problem that is already computationally challenging on its own,

this is highly undesirable.

We can simplify (RecOpt) by precomputing an optimal solution for every

scenario, and minimizing the recovery distance to these fixed points in the solution

space.

Algorithm 1

1. Given: An uncertain periodic timetabling problem (PTT(l), l 2 U), and a

function d.

2. Solve the instances PTT(l) for all l 2 U. Let xl be the resulting solutions.

3. Solve the problem minfmaxl¼1;...;N dðx; xlÞ : ðx; zÞ 2 Fðl̂Þg. Let ðx	; z	Þ be the

resulting solution.

4. Return: A heuristic solution ðx	; z	Þ.

This heuristic approach can be applied when the instance size is too large to be

solved by the above IP formulation, and is motivated by the following consider-

ations: It is exact, if there is a unique optimal solution to every scenario.

Furthermore, we show that we may neglect nominal feasibility when calculating the

robust solution in Step 3, if (a) no headway activities are used, and (b) the recovery

distance does not depend on the changing activities, i.e., upper bounds of changing

activities are sufficiently large to not affect feasibility, and the recovery difference

between two schedules does not take differences in changing times into account (see

the appendix for more details). The advantage is that we are able to reuse any

algorithm that solves the nominal (non-robust) periodic timetabling problem, and

one of the standard algorithms from location theory, to solve (RecOpt-PTT) in this

setting.

4 Local search for robustness

We now consider problem instances that are too large to be solved exactly.

Assuming a robustness function Robustness : RjAj ! R is given, which evaluates

how capable a timetable is to handle delays, we would like to solve the bi-criteria

robust periodic timetabling problem:

ðRPTTÞ
min TravelTimeðxÞ
max RobustnessðxÞ

�

s:t ðx; zÞ 2 Fðl̂Þ

There are many possibilities of how to design such a robustness function, apart from

the distance to an optimal solution as in the previous section. One is to generate a

large number of random delays, and to measure their impact under a given dispo-

sition rule, e.g., postponing every event as far as necessary to become feasible again.

However, even though this approach would represent the robustness of a timetable
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very adequately, it is computationally too difficult to be included in the optimization

process.

We will therefore assume that RobustnessðxÞ ¼ rtx is a linear function, and the

weights re represent the benefit of buffering edge e 2 A. For the following

considerations, we use a robustness function that is motivated by the work of

Fischetti and Monaci et al. (2009) and Kroon et al. (2007) – see also Cacchiani et al.

(2012). Let posðeÞ denote the position of a driving or waiting activity e within its

corresponding trip tripðeÞ, i.e., the path of the train serving the respective activity

within the EAN. We then define the robustness weight re of a driving or waiting

activity e 2 Adrive [ Await as

re :¼ maxe02Adrive[Await
f~re0 g � ~re

jAj �maxe02Adrive[Await
f~re0 g �

P
e0 ~re0

where ~re ¼ ð1� e�k�posðeÞÞ � jtripðeÞj � posðeÞð Þ

and the overall robustness of a timetable as

RobustnessðxÞ :¼
X

e2Adrive[Await

reðxe � leÞ

We modify the modulo simplex algorithm in order to find Pareto optimal solutions

using the e-constraint method. Note that also other algorithms from multi-criteria

optimization would be applicable, as, e.g., the weighted sum approach. However,

operators would typically prefer direct control of the robustness of a solution over

indirect control; i.e., using a budget on the robustness is a natural choice. An

example for direct robustness control used in practice is applying the same relative

buffer to all driving activities.

The original modulo simplex algorithm consists of two phases: A local search

phase in the spanning tree structures, and a search for an improving cut [see Goerigk

and Schöbel (2013) for details]. In the local search phase, a spanning tree structure

is iteratively improved by exchanging tree- and non-tree-edges, similar to the classic

network simplex method. Contrary to the latter, a local optimum is not necessarily

global, which is why further methods to overcome such an optimum need to be

applied. This is done in the second phase: A connected cut is greedily found, that is,

the current solution is modified along the edges induced by a graph cut. As this is

not a move within the local neighborhood of the spanning tree structure, a new

structure has to be generated. This is done by fixing the modulo parameters of the

current solution, and solving the dual of the resulting problem. As this dual is a min-

cost flow problem, the classic network simplex method can be applied, which yields

a new spanning tree structure.

Let R be the minimal required robustness of a solution. In order to find a

timetable with robustness of at least R, we impose the following two rules on the

local search phase:

Rule 1.1: If the current robustness is greater or equal to R, choose a neighbor

with robustness greater or equal to R that minimizes the travel time.

Rule 1.2: If the current robustness is smaller than R, choose a neighbor that

maximizes the robustness.

Exact and heuristic approaches to the robust PESP 109

123



Rule 1.1 makes sure that the local search does not violate the robustness

constraint, while Rule 1.2 forces the algorithm to try to satisfy the constraint again,

should it be violated. Therefore, the only possibility for the robustness constraint to

be violated is by means of phase 2.

For phase 2, the following rules hold:

Rule 2.1: If the current robustness is greater or equal to R, minimize the travel

time when rebuilding the spanning tree structure from the current modulo

parameters.

Rule 2.2: If the current robustness is smaller than R, maximize the robustness

when rebuilding the spanning tree structure from the current modulo parameters.

Note that Rule 2.2 can be applied as the robustness objective robustness is a

linear function, and thus can be used in the classic network simplex algorithm. All

other modifications can still be used for non-linear robustness objectives. A

schematic view on the algorithm is given in Fig. 2. As the algorithm does not

necessarily converge, but can endlessly switch between regions with too less and

regions with satisfactory robustness, an iteration limit is imposed. When this limit is

reached, the best solution found is returned.

We present an example in Fig. 3, where we plot the travel time and robustness

for a single run of the algorithm. The minimal required robustness R is 14. When a

local minimum with respect to travel time is found in iteration 476, a connected cut

is applied that reduces travel time (Rule 2.1). The algorithm now strives to increase

the robustness to a feasible level (Rule 1.2). After failing to do so by getting stuck in

a local maximum with respect to robustness, a connected cut is applied that

maximizes the robustness again (Rule 2.2.). This continues until the iteration limit

of 2,000 is reached. The best feasible solution is saved and the algorithm ends.

5 Experiments

Trying to compare the recovery approach from Sect. 3 to the algorithm from Sect. 4

may seem a natural experimental approach. However, we argue that both

approaches to robustness do not only differ in the problem size they are designed

Fig. 2 Schematic overview of the algorithm
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for, but also in their definition of robustness, and should better be compared to

competitors from their own domain. Therefore, we evaluate the recovery approach

in Experiment 1 compared to strict robustness and the nominal problem, and

compare the Pareto solutions of the local search algorithm to solutions generated

using fixed buffer times in Experiment 2. More details can be found in Sects. 5.1

and 5.2, respectively. Note that while the first experiment compares concepts, the

second experiment compares algorithms.

Environment: All experiments were conducted on a PC running Ubuntu 11.10

with 24 GB main memory and an Intel Xeon E5520 processor, running with 4 cores

at 2.26 GHz and 8MB cache. Only one core was used and a fraction of the memory

was used. All code is written in C?? and has been compiled with g?? 4.4.3 and

optimization flag -O3.

5.1 Experiment 1: Small and medium sized instances

Test instances: We randomly generated two sets of instances: Denote by an instance

of size n an instance with n lines of length n, and 1:5n change activities. The lower

bound lij for a driving or waiting activity ði; jÞ is randomly chosen from the interval

½1; 30�, while the upper bound is chosen from ½2lij; 2lij þ 40�. The period T is 60, and

change activities have durations from the interval ½3; 62�. Line frequencies are set to

1 (which is relevant for constructing event-activity networks, see Siebert and

Goerigk (2013)). The first set of generated instances consists of instances of size

from 5 to 11, 10 each, totalling to 70 instances. The second set consists of instances

of size from 20 to 30, 1 each, totalling to 11 instances.

The uncertainty set for each instance consists of A=10 scenarios. In each

scenario, A=5 random activities a are assigned increased lower bounds ð1:1þ aÞla,

where a is a random number from the interval ½0; 0:9�. Per instance, 5 uncertainty

sets were generated, and results averaged.

Fig. 3 An example for the proposed algorithm
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Setup: In this experiment, we try to compare both the direct MIP formulation

(RecOpt-PTT-d1) and the approach based on Algorithm 1 to the strictly robust and

the nominal solution. For the smaller dataset we solved (RecOpt-PTT), (SR) and

(PTT) using the MIP-solver Gurobi 5.0 by Gurobi Optimization Inc (2012). For the

larger dataset exact MIP solutions could not be produced in reasonable time

(runtimes [ 1 h), and the modulo simplex heuristic by Goerigk and Schöbel (2013)

was used instead. We solved the strictly robust and the nominal problem, and all

scenarios separately. We then calculated the d2
2 median with respect to driving and

waiting activities for all scenarios, fixed these durations, and postoptimized the

change durations using Gurobi again, resulting in a heuristic (RecOpt-PTT)

solution. It is unreasonable to apply the local search heuristic to this problem size,

where the preferrable RecOpt approach is applicable.

Results: Calculation times were in the order of seconds. The results on both

datasets are presented in Fig. 4. While the solid lines represent the value of

TravelTime, the dashed lines give the recovery distance. As expected, the travel

time of the (RecOpt-PTT) solution is in between the travel time of the strictly robust

and the nominal solution. For increasing instance size, the strictly robust solution

becomes unattractively expensive, while the travel time of (RecOpt-PTT) keeps

close to the nominal objective.

Concerning the recovery distance, (RecOpt-PTT) yields the smallest costs, as

expected. Note that the distance is bounded by T ¼ 60 for the smaller instances, as

we used the d1 center, while the d2
2 median distance is not bounded. While both the

strictly robust and the nominal solution are expensive to recover in the case of the

small instances, this is different for the larger instances, where the nominal solution

shows a recovery distance that is only slightly larger than the recovery distance of

the heuristic (RecOpt-PTT) solution. The large recovery costs of the strictly robust

solution for these instances can be explained by the increasing number of scenarios

(which depends on the number of activities), which forces the strictly robust

approach to use larger buffer times.

The results show that both presented approaches to (RecOpt-PTT) are easily

applicable for instances of size up to 30, and suggest that solutions yield a good

(a) (b)

Fig. 4 Results for experiment 1. Solid lines denote travel time, and dashed lines recovery distance
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trade-off between travel time and robustness in terms of recovery distance. Testing

the heuristic approach we used for the medium-sized instances also for the small-

sized instances, we found that optimal recovery distances were achieved in nearly

all cases; thus confirming the quality of the heuristic solutions.

To better evaluate the differences between the three types of timetables, we also

evaluate their performance under delays. In order to do so, we expand the periodic

networks and timetables for the smaller dataset over a finite time horizon, generate

random delays, and propagate the delays through the network using an always-wait

policy for changing activities. This way, built-in buffer times help avoiding the

spread of delays to subsequent events. The time horizon used was 4 h, and for every

timetable 10 times 25 delays were generated, that may increase the duration of a

driving or waiting activity by a factor up to 2. Note that, even though 25 source

delays were generated, the number of delayed activities will be higher, as these

delays propagate through the network. We measure the average delay over all

events. Results are shown in Fig. 5.

Results belonging to the same class of instance size are connected via a black

line. In the strictly robust solutions, we find the smallest delay of events, while the

nominal solution shows the largest delay and the (RecOpt-PTT)-solution lies in

between. Note that the average delay decreases for increasing network size, as a

constant number of delays was used. We find that (RecOpt-PTT) solutions not only

show a good performance with respect to the recovery distance (which they do by

design), but are also a compromise between strict and nominal solutions when no

recovery is possible.

5.2 Experiment 2: large instances

Test instance and starting solution: The high-speed railway instance R1L1 from the

LinTim-toolbox [see Goerigk et al. (2013, 2014)] was used, which consists of 3664

events and 6381 activities, of which are 2827 change-, and 3554 waiting- or driving-

Fig. 5 Average delay of events for randomly generated delays
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activities1. The network consists of 250 stations and 55 trains, and is based on real-

world data modelling the intercity rail transport in Germany (for comparison, the

instance considered in Caimi et al. (2011) has 212 events and 647 activities). We

intended the starting solution to maximize robustness, therefore we chose the

maximum allowed slack for every driving and waiting activity, and minimized the

resulting weighted changing times, as this does not decrease the robustness.

Setup: Note that it is hopeless to apply the RecOpt heuristic to instances of this

size, as even solving a single PESP instance is notoriously difficult. Also, a

weighted sum approach to solve (RPTT) is inapplicable in practice, where the

planner needs direct control over the guaranteed value of robustness of a solution.

We proceed as follows: As the robustness of the starting solution, i.e., the optimal

solution of (RPTT) with respect to Robustness, is approximately 15.238, we run the

robust local search algorithm with R 2 f0; 1; . . .; 15g, where R is the minimal

required robustness, and an iteration limit of 2000. The maximal value of 15 for R

was determined by calculating RobustnessðuÞ. In order to evaluate the efficient

solutions found this way, we compare the proposed heuristic to a different approach:

We calculate solutions using the original modulo network simplex method on

modified instances, where the robustness level is implemented as a hard constraint

on the lower activity bounds. Specifically, we distribute a total slack of S 2
f0;A; 2A; . . .; 7Ag according to the distribution as described in Section 4, where

A ¼ jAdrive [ Awaitj. It is not possible to use more slack than 7A this way without

violating the upper bounds on the activities. Again, 2000 iterations are used, and the

efficient solutions determined.

Results: In Fig. 6a, we present the efficient solutions as found by the robust local

search. Due to the iteration limit of 2000, robustness levels smaller than 7 did not

impose a restriction on the search process. Therefore, all of these runs yield

approximately the same solutions, differing only by the randomized connected cuts.

For the efficient solutions, there seems to be a linear relationship between

robustness and travel time, with slope of approximately 1, meaning that, in order to

double the robustness, also passengers need to travel twice as long. Furthermore, the

gap between the travel time of the most robust solution, and the travel time of the

solution with a robustness level of 15 is larger than would be expected in a linear

relationship. This is partially due to the algorithm design, which makes it possible to

explore more solutions when the robustness constraint is not tight.

The efficient solutions calculated by ensuring robustness by modifying the lower

bounds on the activities are compared to the robust local search solutions of the

same robustness level in Fig. 6b. Out of 8 solutions, 6 are dominated, while on the

other hand, none of the efficient solutions of the robust algorithm is dominated. The

least squares fit lines are clearly separated. Table 1 shows the respective objective

values. We may thus conclude that the proposed heuristic generates better solutions

than the simple approach of ensuring robustness as hard constraints.

The computation time was approximately 1:5 s per iteration in all cases, leading

to total runtime of 3,000 seconds for every parameter setting.

1 The instance is available for download as part of the PESPlib benchmark set under http://num.math.uni-

goettingen.de/*m.goerigk/pesplib/.
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6 Conclusion

We considered different approaches to include robustness in the periodic event

scheduling problem, proposing to choose the robustness model depending on the

problem size and thus available computational resources.

Based upon our computational experience, we classified three types of instances

using the number of lines involved: Small instances with up to 11 lines, medium

instances with up to 30 lines, and large instances with more than 30 lines. For small

instances where mixed-integer programming can be applied, we presented a model

that minimizes the recovery distance to an optimal solution in every scenario. We

showed that this problem can be separated depending on the recovery measure, and

used this approach to solve medium instances heuristically. For larger instances, we

described a local search algorithm to find periodic timetables with a prescribed

robustness level.

In an experimental evaluation, we compared both approaches to competitors for

the respective problem size.

Table 1 Objective values of efficient solutions

Efficient solutions, rob. algorithm Efficient solutions, fixed bounds

Robustness Travel time Robustness Travel time

6.712 3.440

6.743 3.450

6.746 3.494

6.853 3.538

7.000 3.510

7.059 3.820

7.303 3.723

7.786 4.030

8.000 3.778

8.221 4.106

8.968 4.351

9.000 4.193

9.187 4.499

9.602 4.680

10.000 4.467

10.039 4.784

11.000 4.969

13.105 5.741

14.000 6.127

15.000 6.733

15.238 7.117

Travel time values need to be multiplied with 108
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Appendix: Decomposition of RecOpt-PTT

The following lemma is given in Goerigk and Schöbel (2014).

Lemma 1 Let x1; . . .; xN 2 R
n be optimal solutions to the scenarios n1; . . .; nN and

let x	 be the solution of a location problem (Loc) that is of one of the following

forms:

1. locðxÞ ¼
PN

i¼1 d2ðxi; xÞ, where d2 is the squared Euclidean distance.

2. locðxÞ ¼
PN

i¼1 dðxi; xÞ, where d is linear equivalent to the Euclidean distance.

3. locðxÞ ¼ maxN
i¼1 dðxi; xÞ, where d is linear equivalent to the Euclidean distance.

4. locðxÞ ¼
PN

i¼1 dðxi; xÞ, where d is any lp-norm for 1\p\1 and n ¼ 2.

Let QðxiÞ
 d, i ¼ 1; . . .;N, for some convex function Q : Rn ! R, d 2 R. Then

Qðx	Þ
 d:

Definition 1 Let P be an optimization problem, and let ðX1;X 2Þ be a partition of

the problem variables. Let F be the set of feasible solutions for P. We call P

combinable with respect to the variables X 1, if

x1 2 PrX1ðFÞ

for all x1 2 convfx1
1; . . .; xN

1 g and every set of feasible solutions

fðx1
1; x

1
2Þ; . . .; ðxN

1 ; x
N
2 Þg to P.

Theorem 1 Let ðPðnÞ; n 2 UÞ be an uncertain optimization problem with finite

uncertainty, and let Pðn̂Þ be combinable with respect to the variables X 1. Let

FðnÞ � Fðn̂Þ for all n 2 U. Let d be a metric of any of the types from Lemma 1 that

only depends on the variables X 1. Then there is a solution to (RecOpt) that is

feasible for the nominal scenario.

Proof Let fx1; . . .; xNg be optimal solutions to the scenarios fn1; . . .; nNg,
respectively. Let ðx	1; x	2Þ 2 X 1 �X 2 be an optimal solution to the location problem

(Loc). Due to Lemma 1, we have x	1 2 convfx1
1; . . .; xN

1 g.
As P is combinable, there is an x02 such that ðx	1; x02Þ is feasible for the nominal

problem. As d does not depend on the variables in X1, ðx	1; x02Þ has the same

objective value for (Loc) as ðx	1; x	2Þ, which completes the proof.

We conclude that in the case of periodic timetabling, we can separately solve

every scenario, solve an unconstrained location problem, and find an optimal

solution to (RecOpt-PTT):

Corollary 1 If there is a unique optimal solution to every scenario, (RecOpt-PTT)

with respect to a metric equivalent to l2, or l22 considering only activities from
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Adrive [ Await can be solved to optimality by solving N periodic timetabling

problems, and one unconstrained location problem.
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Goerigk M, Schöbel A (2010) An empirical analysis of robustness concepts for timetabling. Proceedings

of ATMOS10, vol 14 of OpenAccess Series in Informatics (OASIcs) Dagstuhl, Germany,

pp 100–113
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