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Abstract We propose rapid branching (RB) as a general branch-and-bound heuristic
for solving large scale optimization problems in traffic and transport. The key idea
is to combine a special branching rule and a greedy node selection strategy in order
to produce solutions of controlled quality rapidly and efficiently. We report on three
successful applications of the method for integrated vehicle and crew scheduling,
railway track allocation, and railway vehicle rotation planning.

Keywords Large scale optimization · Rapid branching · Column generation

1 Introduction

Traffic and transport is one of the classical application areas of combinatorial opti-
mization and integer programming. Network-based models, which give rise to integer
programming formulations, which in turn can be solved by column generation algo-
rithms, have proved particularly effective. Successful applications of this approach in-
clude network design, line planning, timetabling, track allocation, platforming, fleet,
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vehicle, and tail assignment, crew scheduling, rostering, and assignment, and many
others, see Lusby et al. (2011) and Borndörfer et al. (2010a) for overviews.

Network models for transportation problems involve a large scheduling graph, in
which some cost-minimal structure such as a collection of paths or cycles has to
be determined. The size of this structure, measured in numbers of arcs, is in general
(sub)linear in the number of nodes |V |, while the number of network arcs is quadratic
(or larger for multi-commodity type problems), i.e., the relative size of the solution
structure in the network model is O(|V |−1), which goes to zero as |V | goes to infin-
ity. This obvious observation has an unavoidable algorithmic consequence: In fact,
branching on individual arcs makes little difference in large models, and the zero
branch is infinitely worse in this respect than the one branch. This “empty space”
phenomenon is unavoidable. On the positive side, however, many of these models
produce amazingly strong linear programming (LP) relaxations.

Rapid branching is a partial branch-and-bound method that is built on these two
observations. The main ideas are to drive the LP relaxations towards integrality by
slight perturbations (perturbation branching), and to branch on large sets of variables
simultaneously to one, controlled by a “target” estimation of the expected objective
value, and backtracking in a binary search manner if necessary (binary search branch-
ing). The method fits perfectly with approximate large-scale LP solution methods, in
particular, the bundle method.

Rapid branching was initially developed for the solution of integrated vehicle and
duty scheduling problems in public transport, see Weider (2007) and Borndörfer et al.
(2008). Recently, it has also been successfully applied to railway track allocation
problems (Schlechte 2012), and railway vehicle rotation planning (Borndörfer et al.
2011). We are convinced that rapid branching works for other problems of this type as
well. We document in this article the rapid branching method and our three successful
applications, providing computational results for real-world large-scale problems.

Search methods using branching on sets of variables, rather than individual vari-
ables, are well known in the literature and have their origin in the works of Beale and
Tomlin (1970) and Beale and Forrest (1976). They introduced the notion of special
ordered sets (SOS) of 0/1 variables, of which one (SOS1 constraints) or two consecu-
tives ones (SOS2) can have a value of one. This structure can be exploited to produce
a balanced branch-and-bound tree by recursively subdiving the SOS, fixing entire
subsets of variables to zero. Different ways to choose the these subsets have been
suggested, some exploiting a modelling background (e.g., using SOS2 constraints to
construct piecewise linear approximations of nonlinear functions), some using gen-
eral LP information. When applied to models involving SOS constraints (as most
combinatorial optimization problems do and as we do in this paper), rapid branching
can be seen as a heuristic branching method of this kind, which places specific em-
phasis on mastering a column generation context. In fact, all our applications lead to
very large-scale models that can not be written down explicitely and for which rapid
branching is the only way we know to produce high quality integer solutions.

The organization of the paper is as follows. Section 2 describes the rapid branching
method in a general problem setting. Section 3 provides details and computational
results for an application to integrated vehicle and duty scheduling in public transit.
Rapid branching for railway track allocation problems is discussed in Sect. 4. We
finally report results on railway vehicle rotation planning in Sect. 5.
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2 Rapid branching

Branch-and-bound is a basic method to solve combinatorial optimization problems.
The idea is to partition the finite and discrete solution space of a problem into subsets
(“branch”) and to prune subsets which can be excluded from containing the optimum
by using lower bounds (“bound”). This is done recursively until an optimal solution
is found. Rapid branching tries to branch in order to construct solutions rapidly. The
branching is done in a heuristic manner, i.e., subsets are not only pruned because of
their bounds.

We introduce the following notation in order to describe the method.

Definition 1 (integer program (IP)) Given a matrix A ∈ R
m×n, vectors b ∈ R

m, and
c ∈ Rn, the binary integer program IP = (A,b, c) is to solve

(IP) c�(IP) = min
{
cTx : Ax = b, x ∈ {0,1}n}.

The vectors contained in the set XIP = {x ∈ {0,1}n : Ax = b} are called feasible
solutions of IP. A feasible solution x� ∈ XIP of IP is called optimal if its objective
value satisfies cTx� = c�(IP).

We consider problems (IP) with the following characteristics. The number of con-
straints is rather small in comparison to the number variables, i.e., n � m; we will
therefore use a column generation procedure to solve (IP). Furthermore, the linear
relaxation (LP) of problem (IP) is reasonably strong, i.e., (1 + ε)c�(LP) = c�(IP)

with some small ε ≥ 0. In addition, we assume that the problems are feasible (which
is a rather strong assumption). However, in most cases it is possible to find a problem
formulation that guarantees feasibility by adding appropriate slack variables.

Let l, u ∈ {0,1}n, l ≤ u, be vectors of bounds that model fixings of variables to
0 and 1. Denote by L := {j ∈ {1,2, . . . , n} : uj = 0} and U := {j ∈ {1,2, . . . , n} :
lj = 1} the set of variables fixed to 0 and 1, respectively, and by

(IP)(l, u) c�(IP)(l, u) = min
l≤x≤u

{
cTx : Ax = b, x ∈ {0,1}n}

the problem derived from IP by such fixings. Denote further by N ⊆ 1,2, . . . , n some
set of variables which have, at some point in time, already been generated by a column
generation algorithm for the solution of IP. Let RIP and RIP(l, u) be the restrictions
of the respective IPs to the variables in N (we assume that L,U ⊆ N holds at any time
when such a program is considered, i.e., variables that have not yet been generated are
not fixed). Finally, denote by MLP, MLP(c, l, u), RMLP, and RMLP(c, l, u) the LP
relaxations of the integer programs under consideration; MLP and MLP(c, l, u) are
called master LPs, RMLP and RMLP(c, l, u) restricted master LPs. We included the
objective c in the notation for MLP(c, l, u) and RMLP(c, l, u) because the tree con-
struction of rapid branching is guided by perturbations of the original cost vector c.
More details will be given in Sect. 2.1.

The main idea of the rapid branching heuristic is that fixing a single variable to
zero or one has most of the time almost no effect on the value of the LP relaxation of
the (IP), see Lübbecke and Desrosiers (2005). The authors of Borndörfer et al. (2008),
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see also the thesis (Weider 2007), proposed in the context of integrated vehicle and
duty scheduling a heuristic that tries to overcome this problem by a combination of
cost perturbation to “make the LP more integer”, partial pricing to generate variables
that are needed to complete integer solutions down in the tree, a selective branching
scheme to fix large sets of variables, and an associated backtracking mechanism to
correct wrong decisions. Rapid branching belongs to the class of branch-and-generate
(BANG) methods for the construction of high-quality integer solutions for very large
scale integer programs. Branch-and-generate is an adaption of a branch-and-price
algorithm with partial pricing and branching, see Subramanian et al. (1994).

Rapid branching tries to compute a solution of IP by means of a search tree with
nodes IP(l, u). Starting from the root (IP) = (IP)(0,1), nodes are spawned by ad-
ditional variable fixings using a strategy that we call perturbation branching. The
tree is depth-first searched, i.e., rapid branching is a plunging (or diving) heuristic.
The nodes are analyzed heuristically using restricted master LPs RMLP(c, l, u). The
generation of additional columns and node pruning are guided by so-called target
values as in the branch-and-generate method. To escape unfavorable branches, a spe-
cial backtracking mechanism is used that performs a kind of partial binary search on
variable fixings. The idea of the method is as follows: we try to make rapid progress
towards a feasible integer solution by fixing large numbers of variables by pertur-
bation branching in each iteration, repairing infeasibilities or deteriorations of the
objective by regeneration of columns if possible, and exploring the tree in a binary
search manner with controlled backtracking.

We give a generic variant of rapid branching in Algorithm 1. The sets S0, S1, . . . of
Algorithm 1 are sets of subsets of the solution space XIP of IP. At every iteration i we
select one element of Si denoted by Ni (line 3). This step will be explained in detail
in Sect. 2.2. Solving a relaxation, e.g., a linear relaxation or Lagrangian relaxation of
problem IP restricted to set Ni (line 4) provides a lower bound of the corresponding
subproblem. In addition, we use advanced solution techniques like column genera-
tion for large scale problem instances in that step. If we found a feasible solution for
IP (line 5), which can happen if the relaxation is integral or some heuristic provides
a solution, we update our best incumbent solution for problem IP in case of an im-
provement. Then we either delete it (line 13) because of a larger lower bound in com-
parison to our best incumbent solution or we subdivide it into disjoint sets (line 20).
In our implementations of rapid branching we also use a target objective value, which
will be used additionally to ignore subproblems with an unfavourable lower bound.
Note that in that case we accept to cut off heuristically potential solutions (line 13).

In a complete search like full branch and bound, a partition Ni = ⋃ki

j=1 Q
j
i is used

for the decomposition. Rapid branching concentrates only on some promising subsets
Qi ⊂ Ni of the solution space. In Sect. 2.1 we will explain the perturbation branching
method which determines the remaining subproblems to evaluate.

Figure 1 shows a rapid branching run for a track allocation problem, namely, sce-
nario R_48 of the TTPLIB, see also Sect. 4. On the left hand side the objective value
of the primal solution, the upper bound, and the objective of the fixation evaluated
by the rapid branching heuristic is plotted. In the initial LP stage (dark gray/blue),
a global upper bound is computed by solving the Lagrangian dual using the bun-
dle method after approximately 15 seconds. In that scenario the upper bound is only
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Algorithm 1: Rapid branching (for minimization problems)
Data: an (IP) and an absolute optimality tolerance δ,
Result: a solution x∗ ∈ XIP with objective value cTx∗ and a lower bound lb for

IP with lb ≥ cTx∗ − δ (if successful)

1 init S0 ← {XIP}, ub∗ = ∞, lb∗ = −∞, i ← 0;
2 while Si �= ∅ do /* no subproblem left */
3 set Ni ∈ Si ; /* node selection by binary search */
4 compute lbi ≤ min

x∈Ni

cTx; /* lower bounding */

5 if found solution xi ∈ Ni then /* upper bounding */
6 set ubi ← cTxi ;
7 set ub∗ ← min

1≤k≤i
ubk ; /* global upper bound */

8 set x∗ ← argmin
1≤k≤i

cTxk ; /* best incumbent */

9 else
10 set ubi ← ∞; /* no solution */
11 end
12 if lbi ≥ ub∗ then
13 set Si+1 ← Si \ Ni , i ← i + 1; /* pruning */
14 goto 3 ;
15 end
16 set lb∗ ← min{lbk | Nk ∈ Si}; /* global lower bound */
17 if lb∗ + δ ≥ ub∗ then
18 break ; /* quality of solution proven */
19 end

20 compute
⋃ki

j=1 Q
j
i , 1 ≤ j ≤ ki with ki ≥ 2; /* perturbation

branching */

21 set Si+1 ← (Si \ {Ni}) ∪ ⋃ki

j=1({Qj
i });

22 set i ← i + 1;
23 end

slightly below the trivial upper bound, i.e., the sum of all maximum profits. In the
succeeding IP stage (light gray/blue) an integer solution is constructed by a simple
greedy heuristic and improved by the rapid branching heuristic. It can be seen that
the final integer solution has virtually the same objective value as the LP relaxation
and the method is able to close the gap between the greedy solution and the proven
upper bound. On the right hand side of the figure, one can see that indeed often large
numbers of variables are fixed to one and several backtracks are performed through-
out the course of the rapid branching heuristic until the final solution was found. In
addition, we plotted the development of the integer infeasibilities, i.e., the number of
integer variables that still have a fractional value.
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Fig. 1 Solving track allocation
problem R_48 with rapid
branching

2.1 Perturbation branching

The idea of perturbation branching is to solve a series of MLPs with objectives
ci, i = 0,1,2, . . . that are perturbed in such a way that the associated LP solutions xi

are likely to become more and more integral. In this way, we hope to construct an
almost integer solution at little cost. The perturbation is done by decreasing the cost
of variables with LP values close to one according to the formula:

c0
j := cj , j ∈ N

ci+1
j := ci

j − cjαx2
j , j ∈ N, i = 0,1,2, . . . .
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The idea behind this quadratic perturbation is that variables with values close to 1 are
driven towards 1. The perturbation factor α > 0 controls the rate of decreasing the
costs. The progress of this procedure is measured in terms of the potential function

v
(
xi

) := cTx − δ
∣∣B

(
xi

)∣∣, B
(
xi

) := {
j ∈ N : xi

j > 1 − ε
}
,

where ε and δ are parameters for measuring near-integrality and the relative impor-
tance of near-integrality (we use ε = 0.1 and δ = 1), and B(xi) is the set of variables
that are one or almost one. The perturbation is continued as long as the potential
function decreases; if the potential does not decrease for some time, a spacer step is
taken in an attempt to continue, i.e., we use as simple backup strategy to perturbate
the objective of the most fractional variable and add this variable to the candidate set.
On termination, the variables in the set B(xi) associated with the minimal potential
are fixed to one. If no variables at all are fixed, we choose a single candidate by strong
branching, see Applegate et al. (1995). Objective perturbation has also been used in
Wedelin (1995) for the solution of large-scale set partitioning problems, and, e.g., in
Eckstein and Nediak (2007) in the context of general mixed integer programming.

Algorithm 2 gives a pseudocode listing of the complete perturbation branching
procedure. The main work is in solving the perturbed reduced master LP (line 3),
generating new variables if necessary. Fixing candidates are determined (line 4) and
the potential is evaluated (line 5). If the potential decreases (in case of minimization
the approximate costs) (lines 15–17), the perturbation is continued (line 18). If no
progress was made for ks steps (line 10), the objective is heavily perturbed by a
spacer step in an attempt to continue (lines 10–13). However, this perturbation does
not guarantee that any variable will get a value above 1 − ε, for arbitrary ε > 0. If
this happens and the iteration limit is reached, a single variable is fixed by strong
branching (line 24).

2.2 Binary search branching

The fixing candidate sets B∗ produced by the perturbation branching algorithm are
used to define nodes in a branch-and-generate search tree by imposing bounds xi = 1
for all i ∈ B∗. This typically fixings many variables to one, which is what we wanted
to achieve. However, sometimes too much is fixed and some of the fixings turn out
to be disadvantageous. In such a case we must backtrack. We propose to do this
in a binary search manner by successively undoing half of the fixings until either the
fixings work well or only a single fix is left as shown in Fig. 2. We call this incomplete
search procedure binary search branching.

Let B∗ be a set of potential variable fixings proposed by perturbation branching,
see Algorithm 2, and K = |B∗|. Assume the variables in B∗ are sorted by some
reasonable criterion as i1, i2, . . . , iK and define sets

B∗
k := {i1, . . . , ik}, k = 1, . . . ,K.

We denote the associated subproblems by

Pk = min
l≤x≤u

{
cTx : Ax = b, x ∈ [0,1]n | xj = 1, j ∈ B∗

k

}
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Algorithm 2: Perturbation branching (in case of a minimization problem)
Data:
RMLP(c, l, u),
integrality tolerance ε ∈ [0,0.5),
integrality weight δ > 0,
perturbation factor α > 0,
spacer step interval ks ,
iteration limit kmax
Result:
set of variables B∗ that can be fixed to one

1 init i ← k ← 0; c0 ← c; B∗ ← ∅; v∗ ← ∞;
2 while k < kmax do /* maximum number of iterations not
reached */

3 compute xi ← argmax RMLP(wi, l, u);
4 set Bi ← {j : xi

j ≥ 1 − ε, lj = 0};
5 set v(xi) ← cTxi − δ|Bi |;
6 if xi is integer then
7 set B∗ ← Bi ; /* candidates found */
8 break;
9 else

10 if k ≡ 0 mod ks and k > 0 then
11 set j∗ ← argmaxlj =0 xi

j ;

12 set ci
j ← 0 ; /* implicit fixing of j */

13 set B∗ ← Bi ∪ {j∗} ; /* spacer step */
14 else
15 if v(xi) < v∗ then
16 set B∗ ← Bi ; v∗ ← v(xi); k ← −1; /* progress */
17 end
18 set ci+1

j ← ci
j − αcj (x

i
j )

2 ∀j ; /* perturbate cost */

19 end
20 end
21 set i ← i + 1; k ← k + 1;
22 end
23 if B∗ = ∅ then
24 set B∗ ← {j∗} ← strongBranching() ; /* strong branching */
25 end
26 return B∗;

or short RMLP(c, l, u) ∩ {x ∈ [0,1]n | xj = 1, j ∈ B∗
k }. The complement of prob-

lem PK is the set of solutions where at least one of the variables in B∗
K is zero. This

could be formulated by adding a constraint of the type
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Fig. 2 The considered and ignored branch and bound nodes for candidates B∗

∑

i∈B∗
K

xi ≤ ∣∣B∗
K

∣∣ − 1

to the current solution set, but this may destroy the structure of the pricing problem.
Therefore, we split this solution set into |K| subsets as if we had fixed the variables
in B∗ subsequently. Consider the problems

Qk := RMLP(c, l, u) ∩ {
x ∈ [0,1]n | xj = 1, j ∈ B∗

k−1 and xi = 0, i ∈ B∗
k \ B∗

k−1

}
,

with 1 ≤ k ≤ K . Then
⋃K

k=1(Qk ∪ Pk) = RMLP(c, l, u) holds.
We focus on the search tree nodes defined by fixing

xj = lj = 1, j ∈ B∗
k , k = K, �K/2�, �K/4�, . . . ,2,1.

These nodes are examined in the above order. Namely, we first try to fix all vari-
ables in B∗

K to one, since this raises hopes for maximal progress. If this branch comes
out worse than expected, it is pruned, and we backtrack to examine B∗�K/2� and so on
until possibly B∗

1 is reached. In this situation, the single fix is applied imperatively.
The resulting search tree is a path with some pruned branches, i.e., binary search
branching is a plunging heuristic. Figure 2 shows the ignored nodes and the poten-
tially evaluated ones (Pk,P4,P2, and P1).

In our implementation, we order the variables by increasing reduced cost of the
restricted root LP, i.e., we unfix half of the variables of smallest reduced cost. This
sorting is inspired by the scoring technique of Caprara et al. (2000). The decision
whether a branch is pruned or not is done by means of a target value as introduced in
Subramanian et al. (1994). Such a target value is a guess about the development of the
LP bound if a set of fixings is applied. Furthermore, we use a linear function of the
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integer infeasibility. If the LP bound stays below the target value, the branch develops
according to our expectations, if not, the branch “looks worse than expected” and we
backtrack, see line 13 of Algorithm 1. In terms of Algorithm 1 we choose

Si+1 = (
Si \ {Ni}

) ∪ {
B∗�K�

} ∪ {
B∗�K/2�

} ∪ {
B∗�K/4�

} · · ·{B∗�2�
} ∪ {

B∗�1�
}

in Step 20 and evaluate it recursively in chronological order in Step 3.

3 Integrated duty and vehicle scheduling

In this section we apply the rapid branching heuristic to the integrated duty and vehi-
cle scheduling problem in public transit (ISP). Vehicle and duty scheduling are two
of the most important planning steps in public transit, because vehicles and drivers
are the two most important cost factors of public transit companies. Often at first
vehicles and then drivers are scheduled. But, in particular, for regional public transit
vehicles and drivers have to be scheduled in one planning step, because there are few
relief points for drivers and thus the interdependencies between drivers and vehicles
are stronger than in an urban context.

The resulting integrated problems are quite large, because on the one hand the
number of potential deadhead trips grows quadratically in the number of timetabled
trips, on the other hand, the number of potential vehicle changes of drivers is also
quite large, resulting in a complex graph model and a potentially huge integer pro-
gramming model. To tackle this complexity, we use column generation in the duty
scheduling subproblem, and the rapid branching heuristic to find high quality integer
solutions.

3.1 Model and algorithm

Let D be the set of all feasible duties, F the set of all potential deadhead trips, and
T the set of timetabled trips. The set of duties which contain deadhead trip f ∈ F
and the set of duties which contain timetabled trip t ∈ T are denoted by Df and Dt ,
respectively. We consider the vehicle scheduling graph with nodes associated with set
T and arcs associated with F or pull-in or pull-out trips. In addition, we distinguish
between different commodities g ∈ G, which result from different depots or vehicle
types. The set of all ingoing deadheads or pull-in trips of t ∈ T is defined as δin(t) and
accordingly δout

g (t) denotes the set of all outgoing arcs of t associated with either with
deadheads of commodity g or a pull-out trip. Furthermore, cd and cf are cost values
associated to duty d and deadhead f , respectively. Then the model (ISP) reads:

min
∑

d∈D
cdxd +

∑

f ∈F
cf yf , (3.1)

such that
∑

d∈Dt

xd = 1, ∀t ∈ T , (3.2)
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∑

f ∈δin
g (t)

yf −
∑

f ∈δout
g (t)

yf = 0, ∀t ∈ T , g ∈ G, (3.3)

∑

f ∈δin(t)

yf = 1, ∀t ∈ T , (3.4)

∑

d∈Df

xd − yf = 0, ∀f ∈ F , (3.5)

xd, yf ∈ {0,1}, ∀d ∈D, f ∈F . (3.6)

The variables xd , d ∈ D are 1 if duty d is in the solution and 0 otherwise. Analo-
gously, yf , f ∈ F is 1 if the respecting deadhead is used and zero otherwise. The ob-
jective (3.1) minimizes the total cost of the duty and vehicle schedule. Equations (3.2)
of (ISP) are set-partitioning constraints that model, that every obligatory task from the
timetable is serviced by exactly one duty. Equations (3.3) ensure that every block uses
only trips of the same commodity. Equations (3.4) can be interpreted as set partition-
ing constraints, because they take care that every timetabled trip is covered by exactly
one arc ending at it. Thus, Eqs. (3.3) and (3.4) are forming a multi-commodity min-
cost-flow-problem guaranteeing that every timetabled trip is serviced by exactly one
vehicle. Finally, the coupling constraints (3.5) are ensuring that every deadhead trip
used in a duty is also serviced by a vehicle.

Our algorithm ISOPTsolves (ISP) in a two stage approach. In the first stage the
vehicle variables y are fixed by rapid branching, in the second stage the duty vari-
ables x are also fixed by rapid branching. The LP-relaxation of (ISP) as well as the
LP-relaxation of the duty scheduling subproblem is solved by the proximal bundle
method (see Kiwiel 1995). Further details on the model and on the solver ISOPT can
be found in Weider (2007) or Borndörfer et al. (2008).

3.2 Scenarios

We present in this section rapid branching results for four scenarios.
Scenario 1 is a mainly urban one stemming from a southeast-European public

transit carrier. Scenario 2 is mixed regional and urban, from an east-Baltic company,
scenario 3 is a German regional scenario, and scenario 4 is a small German urban
scenario with many relieve points and deadheads. Column 2 of Table 1 contains the
number of tasks that has to be covered by duties, this number is equal to the number of
rows of constraints (3.2) of (ISP). Column 3 contains the number of timetabled trips,

Table 1 Characteristics of the ISP-scenarios

Scenario Tasks Trips Deadheads Depots Max columns Duties Vehicles

1 2.256 2.256 90.114 3 566.613 172 102

2 2.598 2.283 111.043 2 676.508 156 244

3 2.256 2.256 52.707 16 356.581 155 109

4 1.033 468 99.061 1 329.734 20 38
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they may differ from the number of tasks, because a trip may contain a relief point
for drivers, where drivers can enter or leave the vehicle. The number of trips is equal
to the number of constraints (3.4). The next column contains the number of potential
deadheads which is equal to the number of coupling constraints of (ISP). Column
“depots” is the number of valid combinations of vehicle types and depots of the ve-
hicle scheduling subproblem of (ISP). This is equal to the number of commodities
of the multi-commodity-flow problem formed by constraints (3.3). The column “max
columns” is the largest number of x-variables used at once throughout our algorithm.

The last two columns contain the number of duties and vehicles in the best known
solutions of the scenarios. Scenario 3 uses fewer duties than vehicles, because some
of vehicles are not driven by drivers of the planning company, but by subcontrac-
tors. Therefore these duties are not planned in the problem but by the subcontractors,
which may include own tasks in their duty schedules.

3.3 Computational results

The following computations use version 4.030 of our SCHED-OPT optimization
suite for public transit which is integrated in the commercial software suite ivu.plan.
All computations were done on an Intel(R) Xeon(R) CPU E31280 with 3.50 GHz.
We used only one core. Our code was compiled as 32 bit code, that is, the memory
consumption of our code is below 4 GB.

Table 2 shows some characteristics of rapid branching for the scenarios of
Sect. 3.2. The first four columns are for the first phase of ISOPT, i.e., the fixing
of deadhead-variables, the next four columns are for the second phase, i.e., the fixing
of duty-variables, and the last four columns are the sums of the two phases.

The columns “iter” are the number of examined branch-and-bound nodes, columns
“b.” are the number of backtracks, “gap” is the increase of the objective value after
the respective phase, and “time” is the time in seconds of each phase.

In Table 2, one can see that the remaining problem of the second phase is easy if
only few relieve points exist. The largest gap between the first objective value and
the solution found is for scenario 3 with 2.2 %. However, we are not able to find
a “real” lower bound on the optimal objective value of (ISP), because the column
generation is heuristical, so the gap stated here is only an estimation of the quality of
our solution. Nevertheless, the solutions found by rapid branching are of high quality
and used by planners in public transit companies in their daily operations, see IVU
Plattform (2008).

Table 2 Results of rapid branching for ISP

1st phase 2nd phase Total

iter b. gap time iter b. gap time iter b. gap time

1 43 3 1.6 % 69,819 3 – 0.1 % 64 46 3 1.7 % 69,883

2 33 8 1.6 % 28,269 3 – 0.0 % 21 36 3 1.6 % 28,297

3 18 7 2.2 % 31,537 2 – 0.0 % 10 20 7 2.2 % 31,547

4 11 – 0 % 8,230 73 12 0.2 % 5,440 84 12 0.2 % 13,670
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4 Railway track allocation

Railway track allocation is one of the most challenging planning problems for every
railway infrastructure provider. Due to the ongoing deregulation of the transportation
market in Europe, new railway undertakings are entering the market. This leads to an
increase in train path requests and thus to a higher number of conflicts among them.
The goal of track allocation is to resolve these problems as much as possible by
producing a feasible, i.e., conflict free, timetable that achieves a maximal utilization
of the railway infrastructure.

4.1 Path coupling problem formulation

We briefly recall in this section a formal description of the track allocation problem.
Further details can be found in the survey article (Lusby et al. 2011). Consider an
acyclic digraph D = (V ,A) that represents a time-expanded railway network. Its
nodes represent arrival and departure events of trains at a set S of stations at discrete
times T ⊆ Z, its arcs model activities of running a train over a track, parking, or
turning around. Let I be a set of requests to route trains through D. More precisely,
train i ∈ I can be routed on a path through some suitably defined subdigraph Di =
(Vi,Ai) ⊆ D from a starting point si ∈ Vi to a terminal point ti ∈ Vi . Denote by Pi

the set of all routes for train i ∈ I , and by P = ⋃
i∈I Pi the set of all train routes

(taking the disjoint union).
Let s(v) ∈ S be the station associated with departure or arrival event v ∈ V , t (v)

the time, and J = {s(u)s(v) : (u, v) ∈ A} the set of all railway tracks. An arc (u, v) ∈
A blocks the underlying track s(u)s(v) for the time interval [t (u), t (v)[, and two arcs
a, b ∈ A are in conflict if their respective blocking time intervals overlap. Two train
routes p,q ∈ P are in conflict if any of their arcs are in conflict. A track allocation or
timetable is a set of conflict-free train routes, at most one for each request set. Given
arc weights wa , a ∈ A, the weight of route p ∈ P is wp = ∑

a∈p wa , and the weight
of a track allocation X ⊆ P is w(X) = ∑

p∈X wp . The track allocation problem is to
find a conflict-free track allocation of maximum weight.

The track allocation problem can be modeled as a multi-commodity flow problem
with additional packing constraints, see, e.g., Caprara et al. (2006), Borndörfer et al.
(2006), Fischer et al. (2008). We focus on an alternative formulation as a path cou-
pling problem based on ‘track configurations’, see, e.g., Borndörfer and Schlechte
(2007), Fischer and Helmberg (2010), Schlechte (2012). A valid configuration is a
set of arcs on some track j ∈ J that are mutually not in conflict. Denote by Qj the set
of configurations for track j ∈ J , and by Q = ⋃

j∈J Qj the set of all configurations.
In addition, the set of paths and the set of configurations which contain arc a ∈ A

is denoted by Pa and Qa , respectively. Introducing 0/1-variables xp , p ∈ P , and yq ,
q ∈ Q, for train paths and track configurations, the track allocation problem can be
stated as the following integer program (PCP):

max
∑

p∈P

wpxp, (4.1)

such that
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∑

p∈Pi

xp = 1, ∀i ∈ I, (4.2)

∑

q∈Qj

yq = 1, ∀j ∈ J, (4.3)

∑

p∈Pa

xp −
∑

q∈Qa

yq = 0, ∀a ∈ A, (4.4)

xp, yq ∈ {0,1}, ∀p ∈ P, q ∈ Q. (4.5)

The objective PCP (4.1) maximizes the weight of the track allocation. Con-
straints (4.2) state that a train can run on at most one route, constraints (4.3) allow
at most one configuration for each track. Inequalities (4.4) link train routes and track
configurations to guarantee a conflict-free allocation. Finally, (4.5) are the integrality
constraints. This type of problem formulation fits perfectly in the setting presented in
Sect. 2.

4.2 Computational results

We tackle large scale instances of PCPwith slight modifications of the general ap-
proach presented in Sect. 2, i.e., we consider maximization instead of minimization
and perform only partial rapid branching on the y-variables. The concrete details on
the algorithmic part can be found in Borndörfer et al. (2010b) and Schlechte (2012).
All computations in the following were performed on computers with an Intel Core
i7 870 with 3 GHz, 8 MB cache, and 16 GB of RAM.

In our experiments, we consider the Hanover-Kassel-Fulda area of the German
long-distance railway network. It includes data for 37 stations, 120 tracks and 6 dif-
ferent train types (ICE, IC, RE, RB, S, ICG). Because of various possible turn around
and running times for each train type, this produces a macroscopic railway model
with 146 nodes, 1480 arcs, and 4320 headway constraints. All instances related to
HAKAFU_SIMPLE are freely available at our benchmark library TTPLIB, see Erol
et al. (2008).

Table 3 shows results for solving the test instances by our code TS-OPT. We
choose ε = 0.25 in Algorithm 2. The table lists the number of scheduled paths in the
best solution found, the number of requested trains, the size of the model in terms
of number of rows and columns, the upper bound produced by the bundle method
(v(LP)), the solution value of the rapid branching heuristic (v∗), the optimality gap,1

the total running time in CPU seconds, and the number of rapid branching nodes
(iter).

The benefit of our algorithmic approach is apparent for very large scale instances,
i.e., R_506 to R_906 with more than 500 train requests. In addition, these instances
have much more coupling rows than the standard instances of the TTPLIB. This
demonstrates that rapid branching is a powerful heuristic to solve large scale track

1The relative gap is defined between the best integer objective UB and the objective of the best lower

bound LB as 100 · UB−LB
UB+10−10 .
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Table 3 Results of rapid branching for TTPLIB-scenarios

Scenario Paths Trains Rows Colums v(LP) v∗ Gap Iter Time

R_17 216 285 1393 3692 395,29 392,76 0.64 % 15 37

R_31 360 1062 6913 28318 464,78 461,97 0.61 % 13 2675

R_32 257 1140 16489 28191 203,05 202,44 0.30 % 21 2628

R_33 138 570 9036 12566 105,69 105,66 0.02 % 9 653

R_506 218 506 30213 282463 274,55 266,79 2.91 % 2188 70186

R_567 247 567 30595 259003 369,47 360,58 2.46 % 1875 63573

R_813 215 813 32287 225482 441,45 418,58 5.46 % 157 37627

R_875 239 875 36206 248922 395,10 368,22 7.30 % 228 46128

R_906 235 906 35155 265837 441,16 409,06 7.85 % 471 51234

allocation problems and is able to produce high quality solution with a small opti-
mality gap.

5 Vehicle rotation planning in inter city railway transportation

In this section we give a brief and rudimentary description of the cyclic vehicle ro-
tation planning problem (VRPP). For the sake of simplicity, we focus on the train
composition part of the problem in case of Inter City railway transportation. The
integration of other major technical aspects like maintenance requirements and ca-
pacities, and regularity can be found in Maróti (2006), Borndörfer et al. (2011), and
Giacco et al. (2011).

5.1 Hypergraph based integer programming model

We consider a set of trains T. Each train consists of at least one timetabled trip. The
set of timetabled trips is denoted by T . A vehicle group is the most basic type of the
physical vehicle resources. In other contexts this is called vehicle type, fleet, or ab-
stractly commodity. A vehicle configuration (or short configuration) is a non-empty
multiset of vehicle groups. It represents a temporary coupling of its vehicle groups.
A trivial configuration is a configuration of cardinality one. The set of vehicle con-
figurations is denoted by C. For each trip t ∈ T there exists a set of feasible vehicle
configurations C(t) ⊆ C which can be used to operate t . A vehicle configuration can
be changed at the departure and at the arrival of a trip but not inside a trip. A change
of a vehicle configuration is called coupling. We consider only coupling activities
that can be made on the fly, i.e., without the need of special machines and crews. For
t ∈ T and c ∈ C(t) we have a special technical time—called turn time for cleaning
and maintaining the involved vehicle resources after the trip t is done. Note, that
operational cost per kilometer depends on the used vehicle configuration.

A vehicle rotation is a cyclic concatenation of trips which are operated by a vehicle
group. The number of physical vehicle groups needed to operate a vehicle rotation
is the number of times the cycle passes the whole standard week. It is not decidable
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whether a single vehicle rotation is feasible or not without knowing the complete
vehicle configurations of the involved trips. A vehicle rotation plan is an assignment
of vehicle configurations, timetabled trips, and a set of feasible connections between
these configurations, such that each used vehicle group rotates in a vehicle rotation.
The vehicle rotation problem is to find a cost optimal vehicle rotation plan.

We model the considered vehicle rotation planning problem by using a hyper-
graph based integer programming formulation. Since a vehicle configuration c ∈ C is
a multiset, we denote the number of elements—called multiplicity—in c of a vehicle
group f ∈ F by m(f, c). In order to clearly identify the elements of a vehicle config-
uration c ∈ C we index all elements of vehicle group f ∈ F in c by natural numbers
{1, . . . ,m(f, c)} ⊂ N.

We define a directed hypergraph G = (V ,V,A) with node set V , hypernode set
V and hyperarc set A. Our definition of a directed hypergraph is slightly different to
standard definitions from the literature, e.g. (Cambini et al. 1997), and therefore we
define the sets V , V , and A as follows:

A node v ∈ V is a four-tuple v = (t, c, f,m) ∈ T × C × F × N and represents
a trip t ∈ T operated with a vehicle configuration c ∈ C(t) and with vehicle group
f ∈ c of multiplicity m ∈ {1, . . . ,m(f, c)}. The set V (t, c) = {(t, c, f,m) | t = t, c =
c} denotes all nodes belonging to a trip t ∈ T operated with a vehicle configuration
c ∈ C(t). Each V (t, c) with t ∈ T and c ∈ C(t) is a hypernode v ∈ V . A hypernode
can be seen as a feasible assignment of a vehicle configuration to a trip.

A link is a tuple (v,w) ∈ V × V . A hyperarc a ∈ A—or short arc—is a non-
empty set of links, thus a ⊆ V × V . For a ∈ A we define the tail component of a by
tail(a) = {v ∈ V | ∃w ∈ V : (v,w) ∈ a} and the head component by head(a) = {v ∈
V | ∃u ∈ V : (u, v) ∈ a}.

We assume that the tail set and head set of a hyperarc must be not empty and of
equal cardinality, because hyperarcs model the transition of individual vehicles. In
addition we do not assume that the tail set and head set have to be disjoint due to the
cyclicity. There is an hyperarc a ∈ A if the operational rules, e.g. the turn times of
the involved configuration, are fulfilled. The objective function c : A �→Q

+ includes
vehicle cost, deadhead cost, coupling cost, and regularity aspects.

Let G = (V ,V,A) be a hypergraph modeling the VRPP as described above. We in-
troduce binary decision variables xa ∈ {0,1} and yv ∈ {0,1} for each hyperarc a ∈ A

and each hypernode v ∈ V of G. Those variables take value one if the correspond-
ing nodes and hyperarcs are used in the vehicle rotation plan and otherwise zero.
The set of all hypernodes v ∈ V for trip t ∈ T is denoted by V(t) and V(v) de-
notes the set of all hypernodes of G containing v. By definition, the set V(v) for
v ∈ V has cardinality one. The set of all ingoing hyperarcs of v ∈ V is defined
as δin(v) := {a ∈ A | ∃(u,w) ∈ a : w = v} ⊆ A, in the same way δout(v) := {a ∈
A | ,∃(u,w) ∈ a : u = v} ⊆ A denotes the set of all outgoing hyperarcs of v.

Our hyperflow based Integer Programming formulation (HFIP) states:

min
∑

a∈A

caxa (5.1)

such that
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∑

v∈V(t)

yv = 1, ∀t ∈ T , (5.2)

∑

a∈δin(v)

xa −
∑

v∈V(v)

yv = 0, ∀v ∈ V, (5.3)

∑

a∈δout(v)

xa −
∑

v∈V(v)

yv = 0, ∀v ∈ V, (5.4)

xa ∈ {0,1}, ∀a ∈ A, (5.5)

yv ∈ {0,1}, ∀v ∈ V . (5.6)

Our objective function (5.1) minimizes the total cost. Constraints (5.2) assign one
hypernode of graph G to each trip of the VRPP. This models the configuration as-
signment of vehicle configurations to trips. Constraints (5.3) and (5.4) can be seen as
flow conservation constraints for each node v ∈ V . If one interprets an (5.3) equation
as a departure and the (5.4) equation as an arrival node, a hypernode v ∈ V can be
even seen as a hyperarc between these departure and arrival nodes. With this interpre-
tation the (5.3) and (5.4) constraints become constraints conserving hyperflow on the
trips and connections between trips. Finally, (5.5) and (5.6) states that all variables
are binary.

5.2 Solution approach

In this section we present our rapid branching approach for the VRPP. In case of only
trivial configurations the hypergraph is a standard graph. In this case our problem re-
duces to the Integer Multi-Commodity-Flow problem, which is known to be NP-hard,
see Löbel (1997). Furthermore, if all trip configurations are fixed, problem VRPP is
a simple assignment problem and hence an optimal solution of the LP relaxation of
our model is already integral.

Due to the NP-hardness of problem VRPP, we propose a heuristic Integer Pro-
gramming approach to solve model HFIP. We are mainly utilizing two general tech-
niques. First we use a column generation approach to solve the LP-relaxation of
model HFIP. Note, that the number of variables is very large, i.e., one for each hy-
perarc and hypernode. Second, we adapt the rapid branching heuristic of Sect. 2 and
consider only a subset of the variables—in our case the y-variables for the hypern-
odes assigning the vehicle configurations to the trips. The reason is the observation
that the model is almost integral and rather easy to solve if the configurations for
the trips are fixed. After the arc generation and rapid branching we use CPLEX 12.2
to solve the generated model so far, i.e., a restricted variant of model HFIP, as a
static IP.

5.3 Results

We tested the hypergraph based model HFIP and our algorithmic approach on a large
set of real world instances that are provided by our project partner DB Fernverkehr.
The problem set contains small and rather easy instances, e.g., instance vrp015 and
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Table 4 Characteristics of the VRP test instances

Scenario Trains Configurations Fleets Nodes Hypernodes Hyperarcs

vrp001 410 8 8 10913 10913 19372792

vrp002 61 1 1 310 310 109480

vrp003 288 6 4 2433 2038 1687668

vrp004 298 6 6 7379 7379 10706855

vrp005 298 24 24 26396 26396 34414338

vrp006 298 2 2 2753 2753 4327785

vrp007 298 8 8 9896 9896 14016078

vrp008 298 18 18 7474 7474 8078048

vrp009 298 8 8 3619 3619 3932239

vrp010 298 7 7 2913 2913 3312612

vrp011 443 16 16 13538 13538 24996096

vrp012 443 16 16 9275 9275 10314664

vrp013 252 1 1 406 406 167231

vrp014 443 24 24 20124 20124 24278320

vrp015 19 4 2 534 387 47542

vrp016 19 4 2 534 387 47542

vrp016 with only 19 trains, as well as very large scale ones, e.g., instance vrp011 and
vrp014 with more than 24 million hyperarcs. We consider instances for the currently
operated high speed intercity vehicles (ICE) of DB Fernverkehr as well as instances
of conceptional studies for future rolling stock fleets. Today, there are some fleets in
operation that can not be coupled on the fly and some of the conceptional studies also
consider only scenarios with trivial configurations. Therefore, most of the instances
contain only trivial configurations.

Table 4 gives some statistics on the number of trains, the number of vehicle groups,
and the number of vehicle configurations. In addition, the number of nodes, number
of hypernodes, and the total number of hyperarcs of the hypergraphs associated with
model HFIPare listed. In case of only trivial configurations the number of hypernodes
equals the number of nodes, otherwise it has to be smaller because the set V is a
subset of V , e.g., instance vrp015.

All our computations were performed on computers with an Intel Core 2 Extreme
CPU X9650 with 3 GHz, 6 MB cache, and 16 GB of RAM. CPLEX Barrier was run-
ning with 4 threads as well as the CPLEX MIP solver. We were able to solve all 31
instances to nearly optimality by the solution approach presented in Sect. 5.2. Table 5
shows the detailed results, i.e., the number of vehicles v to operate the |T| trains, the
total objective value of the solutions, the optimality gap, and the total running time
in seconds. We marked 5 instances which are solved to proven optimality. Except for
instance vrp005 the gap is considerably below 1 %. This demonstrates that our so-
lution approach can be used to produce high quality solutions for large-scale vehicle
rotation planning problems.
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Table 5 Results for all 30 instances

Scenario Trains Vehicles Objective value Gap Time

vrp001 410 175 22846 0.14 % 2755

vrp002 61 17 1742 0.41 % 19

vrp003 288 104 5571434 0.14 % 410

vrp004 298 117 5875729 0.55 % 33564

vrp005 298 118 5979407 1.72 % 74946

vrp006 298 116 6442855 0.00 % 634

vrp007 298 116 6472379 0.00 % 42558

vrp008 298 117 5949035 0.43 % 6529

vrp009 298 117 6270215 0.18 % 2551

vrp010 298 117 6533280 0.02 % 478

vrp011 443 187 26378130 0.34 % 45438

vrp012 443 190 26390306 0.00 % 757

vrp013 252 127 9266682 0.00 % 84

vrp014 443 192 26033013 0.80 % 28125

vrp015 19 13 792806 0.08 % 24

vrp016 19 13 1064958 0.06 % 20

6 Conclusion

We provide a computational study for rapid branching applied to several real world
transportation problems. By different variants of rapid branching we were able to
compute high-quality integer solutions for the mentioned large-scale problems in
practice. The core idea of all presented solution approaches is the same, namely,
rapid branching. This documents that rapid branching is a general solution ap-
proach and a successful method for large scale optimization problems in public trans-
port.

Applications of the rapid branching heuristic are not limited to optimization prob-
lems in transportation. There are several other areas for which also very large scale
and similar linear programming models are used. A prominent example is the steel
mill slab problem or other production planning problems, e.g., the integrated sequenc-
ing and scheduling problem of coils presented in König (2009). These problems are
typically tackled by a large scale set partitioning formulation.
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