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Abstract The integrated multi-depot vehicle and crew scheduling problem simulta-
neously builds vehicle blocks and crew duties. We present an integer mathematical
formulation that combines a multi-commodity flow model with a mixed set parti-
tioning/covering model. We propose solution approaches that start by solving the
linear programming relaxation of the model. Whenever the resulting linear program-
ming solution is not integer, three branching alternative strategies can be applied:
a branch-and-bound algorithm and two branch-and-price schemes. The branch-and-
bound algorithm performs branching over the set of feasible crew duties generated
while solving the linear relaxation. In the first branch-and-price scheme the linear
programming relaxation is solved approximately, while in the second one it is solved
exactly. Computational experience is reported over two different types of problems:
randomly generated data publicly available for benchmarking in the Internet and data
from a bus company operating in Lisbon.
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1 Introduction

The integrated multi-depot Vehicle and Crew Scheduling Problem (VCSP) consists of
determining minimal cost vehicle and crew schedules to perform a set of timetabled
trips. Usually, mass transit companies tackle these problems separately and solve
them in sequence. First, the vehicle scheduling problem is solved obtaining a set of
vehicle blocks. Then, drivers are assigned to the vehicle blocks. If necessary, some
adjustments are performed over the vehicle blocks to obtain better schedules for the
drivers. The strong dependency between these two problems suggests that an inte-
grated approach may lead to important cost reductions.

Since both the multi-depot vehicle scheduling problem and the crew scheduling
problem are NP-Hard problems, heuristic approaches are adequate for dealing with
the integrated problem. Heuristic algorithms for the multi-depot VCSP have been
proposed by Borndörfer et al. (2008), Gaffi and Nonato (1999), Huisman et al. (2005),
Gintner et al. (2005) and Valouxis and Housos (2002). In Gintner et al. (2008) the
authors present an approach for solving the crew scheduling problem where, instead
of using a fixed underlying vehicle schedule, they choose from a set of possibilities
the most consistent vehicle schedule with respect to the crew scheduling.

In real life problems, the main goal is to obtain “good” solutions in a short
time. Usually, obtaining an optimal solution requires a considerable increase in the
CPU time. Additionally, the quality of the solutions sometimes depends on factors
that have not been pointed out a-priori by the schedulers, but which are identified,
a-posteriori, making some solutions undesirable. Thus it is important to balance the
trade-off between the quality of a solution and the computational time required to
obtain it.

The research presented in this paper is motivated by some questions that were
raised and were left open in a previous work (Mesquita and Paias 2008). In this
work (Mesquita and Paias 2008), the VCSP was formulated using an integer lin-
ear programming (ILP) model. To solve the model, a non-exact branch-and-bound
algorithm was proposed where integer solutions were obtained by branching over the
set of columns generated while solving the linear programming (LP) relaxation. The
algorithm was tested with random data and the results obtained were promising when
compared to the results obtained by other authors for the same test instances. We be-
lieve that the reason for this good behavior was the fact that the subset of columns
generated at the root node of the branch and bound, although small, had a great di-
versity. However, this method and its results have led to several questions that remain
open, such as:

(i) Would the behavior of the method change for different test data or for different
choices of some parameters involved in the branch-and-bound algorithm?

(ii) What would be the effect in the quality of the solutions if new columns were
generated during the branching process? And, what will be the increase in the CPU
time?

In the current paper we try to answer these questions. Thus, we test the non exact
branch-and-bound algorithm presented in Mesquita and Paias (2008) with real data
and for different choices of some parameters involved in the algorithm and we com-
pare it with two new algorithms: an exact and a non-exact algorithm, both based on a
new branch-and-price scheme.
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The paper is organized as follows. In the next section (Sect. 2) we formulate the
VCSP as an ILP and discuss the use of a mixed set partitioning/covering model. In
Sect. 3, we propose a preprocessing phase to determine the set of tasks. In Sect. 4,
we describe a procedure to solve approximately the LP relaxation of the model by a
column generation scheme. In Sect. 5, we propose alternative branching schemes to
be used when the solution of the LP relaxation is not integer. Computational results,
with random and real data are presented and discussed in Sect. 6. Finally, in the last
section some conclusions are drawn.

2 The integrated vehicle and crew scheduling problem

First, we introduce some notation necessary to define the multi-depot integrated ve-
hicle and crew scheduling problem.

Consider a set of n timetabled trips, T1, . . . , Tn, that have to be operated in a plan-
ning interval T . The starting time and location, and the ending time and location of
each timetabled trip are known. Consider a set of k depots D1, . . . ,Dk . The location
and the number of vehicles available, vd , at depot Dd , d = 1, . . . , k are also known.

Two trips are compatible if the vehicle released after trip Ti completion can be
assigned to trip Tj . The corresponding ordered pair (Ti, Tj ) is said to be compatible.
Associated to each pair of compatible trips (Ti, Tj ) a deadhead trip may occur, where
the vehicle runs without passengers, between the end location of Ti and the start
location of Tj .

A vehicle block is a sequence of deadhead trips, linking compatible time-tabled
trips, which starts and ends at a depot. Deadhead trips from and to a depot are denoted
by pull-out and pull-in trips, respectively. In this paper, we consider each end location
of a trip as a potential relief point, where it is permitted to change drivers. Therefore,
each task, the minimum portion of work that can be assigned to a driver, corresponds
to a deadhead trip followed by a trip and the crew duties can start (end) at a depot
or at an end location of a trip Ti , i = 1, . . . , n. A crew duty is a combination of tasks
respecting several constraints such as: maximum and minimum spread; maximum
working time without a break; minimum and maximum break duration; maximum
number of changeovers.

The integrated multi-depot vehicle and crew scheduling problem determines the
vehicle and the crew schedules. It identifies pairs of compatible timetabled trips to
group into each vehicle block and tasks to group into crew duties, so that the resulting
crew duties cover all vehicle blocks.

Mathematical formulations for the integrated problem can be divided into two
types. One type combines a multi-commodity flow model to describe the vehicle
scheduling with a set partitioning model to describe the crew scheduling (Borndörfer
et al. 2008; Huisman et al. 2005). The other type uses a set partitioning model to
describe both problems (Haase and Friberg 1999; Haase et al. 2001). We present a
mathematical formulation that combines a multi-commodity flow formulation with a
mixed set partitioning/covering formulation.

Let N = {1, . . . , n} denote the set of vertices, where vertex i ∈ N represents trip Ti

and let D denote the set of vertices corresponding to the k depots, D1, . . . ,Dk . There



24 M. Mesquita et al.

is a vertex n + d , d ∈ D, corresponding to each depot Dd . Let I ⊆ N × N be the
set of compatible pairs of trips. For each d ∈ D we associate graph Gd = (Vd,Ad),
where the set of vertices and the set of arcs are defined by Vd = N ∪ {n + d} and
Ad = I ∪ {(n+ d)×N} ∪ {N × (n+ d)}, respectively. Let L be the set of all feasible
crew duties. The integrated vehicle and crew scheduling problem can be formulated
as an ILP model where two types of decision variables are considered. The decision
variables related with the scheduling of vehicles xd

i,j , (i, j) ∈ I , d ∈ D, xi,n+d , xn+d,i ,
i ∈ N , d ∈ D, and the decision variables y�, � ∈ L, related with the scheduling of the
crews. Let xd

i,j = 1 if a vehicle from depot d performs trips i and j in sequence, let
xn+d,i = 1, i ∈ N , d ∈ D, if a vehicle from depot d runs directly from depot d to
trip i and xi,n+d = 1, i ∈ N , d ∈ D if the vehicle returns directly to depot d after
performing trip i. Let y� = 1, � ∈ L, if the crew duty � is in the optimal solution.

The cost associated to deadhead trips cd
ij , ci,n+d , cn+d,i represents travel costs

related to fuel consumption and vehicle maintenance or penalties imposed by each
specific company as for example on idle times. Concerning the crews, let s� be the
cost associated to duty y�. Cost s� includes a fixed cost (a driver’s salary or a crew
unit) and operational costs related to overtime, evening periods, etc.

We define the following sets:

L(i, j) = {duties � covering the deadhead trip from trip i to trip j and covering

trip j},
DL(j) = {duties � covering the deadhead trip from any depot to trip j and covering

trip j},
LD(i) = {duties � covering the deadhead trip from trip i to any depot}.

The VCSP can be formulated through the following ILP model

[PCVCSP]
min

∑

d∈D

∑

(i,j)∈I

cd
ij x

d
ij +

∑

d∈D

∑

i∈N

(ci,n+dxi,n+d + cn+d,ixn+d,i) +
∑

�∈L

s�y� (1)

∑

d∈D

∑

j :(i,j)∈I

xd
ij +

∑

d∈D

xi,n+d = 1, ∀i ∈ N (2)

∑

j :(i,j)∈I

xd
ij + xi,n+d −

∑

j :(j,i)∈I

xd
ji − xn+d,i = 0, ∀i ∈ N, ∀d ∈ D (3)

∑

i∈I

xn+d,i ≤ νd, ∀d ∈ D (4)

∑

�∈DL(j)

y� −
∑

d∈D

xn+d,j = 0, ∀j ∈ N (5)

∑

�∈L(i,j)

y� −
∑

d∈D

xd
ij = 0, ∀(i, j) ∈ I − Ic (6)
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∑

�∈L(i,j)

y� −
∑

d∈D

xd
ij ≥ 0, ∀(i, j) ∈ Ic (7)

∑

�∈LD(i)

y� −
∑

d∈D

xi,n+d = 0, ∀i ∈ N (8)

xd
ij ∈ {0,1}, ∀(i, j) ∈ I, ∀d ∈ D (9)

xn+d,i , xi,n+d ∈ {0,1}, ∀i ∈ N, ∀d ∈ D (10)

y� ∈ {0,1}, ∀� ∈ L. (11)

Constraints (2) ensure that each trip i is operated by exactly one vehicle. Con-
straints (3) ensure that each vehicle returns to its source depot. Constraints (4) are
depot capacities on the number of available vehicles. Constraints (5) to (8) connect
the vehicle and the crews ensuring that each deadhead arc in the solution of the vehi-
cle schedule will be covered by a crew.

Concerning constraints (6) and (7), we have partitioned the arc set I into two
subsets, Ic and I − Ic. In the arc set Ic we have included the deadhead arcs where
changeovers may occur. Constraints (5), (6) and (8), ensure that there is a single
driver assigned to each vehicle in a vehicle block. Constraints (7) allow two different
situations. On the one hand, it allows deadhead trips to be covered by more than one
driver. On the other hand, it allows drivers to walk over deadhead arcs that are not
included in a vehicle block. This last situation corresponds to a walk movement of a
driver in order to change from the vehicle he was driving to another one. Note that,
over-covering only occurs when assigning several drivers to a task is cheaper than
assigning a single one. Consequently, the major role of constraints (7) is to allow
changeovers to be handled explicitly in the constraint set.

Although constraints (5) to (8) are stated just for arcs corresponding to deadhead
trips, according to our task definition—each task includes a deadhead trip, (i, j),
followed by a timetabled trip, j—they are sufficient to also guarantee the cover of all
timetabled trips in a vehicle block by crew duties.

The next lemma, obtained on a previous work (Mesquita and Paias 2008), shows
that, with Ic = ∅, the PCVCSP reduces to a mixed integer model where just one type
of the decision variables is required to be integer.

Lemma 1 The mathematical formulation PCVCSP with Ic = ∅ and x ≥ 0 has an
integer optimal solution.

This lemma suggests that on a branching scheme just one subset of the decision
variables might be considered.

3 Task definition

When the vehicle and the crew scheduling problems are solved sequentially, the set
of tasks is defined after the vehicle blocks are known. A task will cover one or a
few timetabled trips and the set of tasks usually does not coincide with the set of



26 M. Mesquita et al.

timetabled trips. In the integrated problem, vehicle blocks and crew duties are simul-
taneously built. Vehicle blocks cover deadhead trips and timetabled trips while crew
duties cover tasks. Due to their starting and ending times and locations, some pairs
of trips are expected to be covered by the same vehicle and the same crew in the op-
timal solution. These pairs can be, a-priori, included in the same task. The algorithm
presented in this paper starts with a preprocessing phase that defines the set of tasks.
After that, the algorithm builds an integrated solution based on this set of tasks.

The question is how to know, in advance, “which trips to merge into a task”. We
must be careful because merging trips has a big effect on the resulting schedule.
Merging two particular trips can be efficient from a vehicle scheduling point of view.
However it can be very inefficient from a crew scheduling point of view. On the one
hand, long tasks might reduce the dimension of the integer problem but might be
difficult to combine into feasible duties. On the other hand, tiny tasks are easier to
combine but the resulting combinatorial problem is expected to be more difficult to
solve.

The proposed preprocessing procedure is based on the optimal solution of a multi-
depot vehicle scheduling problem without requiring that each vehicle returns to the
source depot. The corresponding optimal solution can be obtained by a polynomial
algorithm and it is a set of vehicle blocks covering all timetabled trips. In the task
definition, it is important to consider both vehicle and crew features. Crew features
were included in the costs of the objective function. The cost of a deadhead arc was
set equal to the time spent by the crew to cover that deadhead trip. For all (i, j) ∈
I , cd

i,j was set equal to the starting time of trip j minus the ending time of trip i,
which minimizes the time a crew runs a vehicle without passengers (including idle
time). Concerning pull-out and pull-in trips, two cases were considered. In the first
one, a big cost was assigned to each pull-out and each pull-in deadhead time, to
minimize the number of vehicles in the schedule. In the second case, only pull-out
and pull-in deadhead times were considered. We have compared both options, from
a computational point of view, and we have concluded that better final solutions for
the integrated problem were obtained with the first one.

Tasks were obtained by analyzing each vehicle block and merging two consecutive
trips whenever the corresponding deadhead cost is smaller than a threshold value, ε,
and the resulting task does not violate duty constraints. Note that the dimension of
the input of the integrated problem is directly related with the choice of the ε value
and can somehow be managed by the scheduler. Large (small) ε values will lead to a
small (large) number of tasks.

4 Linear programming relaxation

Our solution approach uses column generation to solve the LP relaxation of model
PCVCSP. We consider all vehicle variables, xd

i,j , explicitly and all crew variables, y�,
implicitly.

Each feasible crew duty can be seen as an adequate path in a network that takes
into account special features of the integrated problem. Feasibility is established by
deciding which arcs are included in the network and by using resources that are con-
sumed along the network. Imposing time windows on each (some) vertex restricts the
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resource consumption. The pricing problem is a shortest path problem with resource
constraints and can be solved using dynamic programming where states are related
to crew duties while stages are related to tasks. A complete description of the duty
generator can be found in Mesquita and Paias (2008).

If the number of trips/tasks increases, the number of states of the dynamic problem
also increases and the pricing problem becomes hard to solve. For problems with a
large number of trips/tasks, we propose a heuristic pricing procedure that works with
a reduced state space. To obtain this reduced space we propose a combination of two
processes expecting to keep some diversity in the set of generated columns. On the
one hand, we look for states having a cost larger than a predefined constant δ, and
discard them. It is not expected that a state with a large cost will lead to a negative
reduced cost path. On the other hand, we construct a filter that discards some states
at random. We predefine two integers α and β where the rate α

β
is the probability

of a state to be discarded. At each stage, for each state of the dynamic program we
randomly generate an integer r ∈ [1, β] and if r ≤ α the state is discarded. If an
important state is discarded in one iteration then it is expected to be generated in
further iterations and not always discarded. If some columns with a high negative
reduced cost have been discarded, then lower reduced cost columns will be added
to the master problem, instigating some diversity in the set of added columns. Note
that with suboptimal pricing, we might not obtain the optimal solution for the LP
relaxation.

Finally, we also define a parameter γ , which is an upper bound on the number of
columns added to the master problem at each iteration of the column generator.

An initial set of duties is needed to start the pricing problem resolution. Therefore,
we solve a multi-depot vehicle scheduling problem, without requiring each vehicle
to return to the source depot. We consider the original deadhead costs and take as
input the set of tasks defined in the preprocessing phase. In the optimal solution, each
vehicle block is assigned to exactly one depot and is split into duties satisfying a
subset of the crew feasibility constraints. The resulting set of duties is checked for
the remaining duty constraints and a big cost is assigned to non-feasible duties.

5 Branching procedures

The formulation PCVCSP includes explicitly all possible columns for vehicle vari-
ables and includes implicitly all possible columns for crew variables. Thus, this for-
mulation corresponds to the initial Master Problem (MP), which is considered for
optimization at the root node of the underlying search tree. A Restricted Master Prob-
lem (RMP) consists of explicitly considering only a restricted set of feasible columns
in the master. At the root node, the initial set of columns, considered in RMP, con-
tains all vehicle variables and a small number of crew variables generated to start
the pricing problem as explained in the last paragraph of Sect. 4. To process a node,
the LP relaxation of the corresponding MP, further referred LP(MP), must be solved.
The process starts by solving the LP relaxation of the RMP. Then, other columns are
priced out by the column generation subproblem. If there exists a feasible attractive
column or set of columns (depending on parameter γ ), these columns are added to
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the RMP, setting up a new one. This process reiterates until the subproblem is unable
to find new feasible attractive columns. At this point, the LP relaxation of the current
RMP is also optimal for the LP relaxation of the MP in this node. Whenever this
solution is not integral, branching occurs giving rise to two new search nodes, and
two new MPs, respectively. The RMP in each of these nodes results from adding a
branching constraint in the current RMP.

5.1 Branch-and-bound procedure

The first branching approach uses branch-and-bound techniques over the set of feasi-
ble crew duties generated while solving the LP relaxation of PCVCSP. The resulting
solution is optimal for the set of columns generated at the root node. However, it
might not be an optimal solution for the VCSP, although it is still feasible. The main
advantage of the branch-and-bound procedure is to avoid the resolution of several
pricing problems during the branching process. Aiming at overtaking eventual draw-
backs, a set of varied duties is generated at the root node using the heuristic pricing
described in Sect. 4. This diversity of generated columns is an important factor to
obtain good quality feasible solutions for the integrated problem. Comparing with
the branch-and-price procedures, we expect to save some CPU time with the branch-
and-bound.

We have noticed that the decision variables corresponding to pull-in and pull-out
arcs with value one in the optimal solution of the LP relaxation often have value one
in the integer final solution. Hence, to decrease the computing time consumed by the
branch-and-bound, we fix the pull-out and pull-in vehicle variables whenever they
take value one in the optimal/suboptimal solution of the LP relaxation.

We have compared two branching strategies. In one strategy, we first branch on
the crew variables, while on the other we first branch on the vehicle variables. Com-
putational experience has shown that with the first option less computation time was
needed to obtain the optimal solution.

5.2 Branch-and-price procedures

The main difference between the branch-and-bound procedure and the branch-and-
price procedures is that for the branch-and-bound procedure columns are only gen-
erated at the root node, while for the branch-and-price procedures columns are gen-
erated during the overall process. Additionally, the branching constraints, which are
incrementally added along the path from the root of the search tree, are also different
for the referred procedures as explained next. For branch-and-bound, each branching
constraint relates to a single crew variable fixing it to 0 or 1. For branch-and-price,
before branching on single variables, branching constraints relate to a given subset of
columns setting up a new bound over the sum of the corresponding variables. At each
node a branching constraint is explicitly added to the current RMP in a way that the
structure of the pricing problem remains unchanged, contrary to the usual scenario.

Branching rule If at node u, LP(MPu) is not integral, branching is performed by
looking for an arc (i, j), corresponding to a deadhead trip, such that the sum of the
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vehicle variables covering this arc is not integer, respectively

0 <
∑

d∈D

xd
i,j < 1. (12)

The branching constraints will enforce either
∑

d∈D

xd
i,j = 1 or (13)

∑

d∈D

xd
i,j = 0. (14)

Two descendant nodes from u, uL and uR , are created and constraint (13) is added
to MPuL

, while constraint (14) is added to MPuR
.

Constraint (13) enforces one vehicle covering the fixed arc and, consequently,
there will be at least one crew covering it.

Two branching strategies were used, which only differ in the order different can-
didates for branching are considered. Strategy 1 gives preference to arcs linking
timetabled trips, while strategy 2 starts with arcs linking a depot to a timetabled trip
or vice-versa, as described below.

Branching strategy 1

1. Branch by considering a pair (i, j), such that (i, j) ∈ I and verify (12);
2. if there are no arcs satisfying the previous condition, branch by considering a pair

(i, j) verifying (12) and for which i ∈ N , j ∈ D or i ∈ D, j ∈ N .

Branching strategy 2

1. Branch by considering a pair (i, j) verifying (12) and for which i ∈ N , j ∈ D or
i ∈ D, j ∈ N ;

2. if there are no arcs satisfying the previous condition, branch by considering a pair
(i, j), such that (i, j) ∈ I and verify (12).

Upper bound We propose two methods for obtaining an initial upper bound. In the
first one, an initial set of crew duties is built from the optimal solution of a multi-
depot vehicle scheduling problem, without requiring each vehicle to return to the
source depot. An alternative method to obtain an upper bound is to use branch-and-
bound techniques over the set of feasible crew duties generated while solving the
LP relaxation of the RMP at the root. In fact, a feasible solution can be obtained
in a reasonable time by handling the parameters involved in the branch-and-bound
procedure, as we shall see in the next section.

Optimal versus suboptimal pricing Two different branch-and-price procedures are
proposed. For larger instances, the pricing problem becomes too difficult to be solved
to optimality and we may solve it approximately, as described in Sect. 4, by removing
some states of the dynamic state space. In such a case, the solution obtained at each
node u of the search tree might not be the optimal solution for the corresponding LP
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relaxation of the MP, LP(MPu). Consequently, the final solution given by the branch-
and-price procedure might not be an optimal solution, although it is still feasible for
the integrated problem. To overcome this situation, we also propose an exact branch-
and-price algorithm where, at each node of the tree, the pricing problem is solved to
optimality. In practice, this algorithm has shown the ability to handle only small sized
problems.

5.3 Tuning the parameters for non-exact procedures

In the previous sections we have mentioned some parameters whose values have a
great influence on the final solution. To achieve good quality solutions, a fine tun-
ing of these parameters is needed. In all, five parameters may be manipulated by the
scheduler, ε, p = α

β
, δ and γ . The first one, ε, is directly related with the dimen-

sion of the input of the problem. The scheduler can manage the number of tasks of
the problem. A large value of ε will result in a small number of tasks with a long
duration. In most cases, the resulting integrated problem is easier to solve. The dis-
advantage of large values of ε is that the resulting integer solution may have a large
number of crews, since it is difficult to combine long tasks into feasible duty crews.
Consequently, the resulting solutions for the integrated problem may only be feasible
if a great number of crews is available.

When suboptimal pricing is used we have to decide the probability p, p = α
β

, to
discard a state at each stage. If the value of p is small we will expect the same behav-
ior as if optimal pricing was performed meaning that only few states were discarded.
Increasing the value of p will result in discarding more states, which makes the dy-
namic program easier to solve, but might result in more iterations to solve the LP
problem. Another parameter related with the rejection of some states is δ. The choice
of value δ must take into account that states which may lead to negative reduced cost
paths should not be rejected.

Finally, we have to fix the value of parameter γ , which states the maximum num-
ber of columns with negative reduced cost to include in the master problem at each
iteration. If few columns are included then more iterations are needed to solve the LP
problem. If a large number of columns are included then the LP problem is hard to
solve and more CPU time is spent to obtain the optimal solution.

The values of all these parameters should be such that a great diversity occurs in
the set of the generated columns, allowing multiple combinations of columns.

Next, we discuss how to choose the values for the different parameters according
to some characteristics of the solution we want to achieve. The most relevant aspects
we have to take into account are the dimension of the original problem and the pur-
pose for obtaining its solution.

If our intention is to obtain a feasible solution quickly, then we should use a large
value of ε. Besides, a small value of p should be considered to avoid discarding too
many columns in the pricing subproblem and the parameter γ should take a large
value.

If our intention is to obtain a good quality feasible solution in a realistic time
then ε should have a value that leads to short tasks, concerning the time duration. The
values of p and γ should be chosen in such a way that allow us to obtain a smaller but
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varied set of duties, maintaining the quality of the LP relaxation bound but reducing
the corresponding CPU time.

In Sect. 6, we show how different choices for the parameter values affect the final
solutions and the computing time necessary to obtain them.

6 Computational experience

All the branching approaches were implemented in C. The LP relaxations and the
branch-and-bound procedure were solved using CPLEX 9.0 routines. We developed
and implemented, in C, the tree search procedure for the branch-and-price approach.
We used a quasi-assignment algorithm (Mesquita and Paixão 1992) to solve the multi-
depot vehicle scheduling problems without requiring that vehicles return to the source
depot.

We have considered different scenarios such as allowing/not allowing generating
columns in the branching tree. These scenarios were combined with solving/not solv-
ing the pricing problem to optimality. We have compared the quality of the solutions
and the time necessary to obtain them.

In the branch-and-bound approach we first branch on the crew variables, y�. Since,
for all the instances we considered, Ic 	= ∅ Lemma 1 is no longer valid. However, we
always obtained the optimal solution without branching on the xd

ij variables. This can
be explained by relation |Ic| 
 |I | that usually occurs in practice.

For the branch-and-price approach and concerning the two branching strategies
proposed in Sect. 5.2, we were not able to conclude which performs better in general,
as they showed similar average results. Consequently, only results obtained with strat-
egy 2 are presented. Moreover, it was sufficient to branch only over sums of vehicle
variables.

To obtain a fair comparison with the branch-and-bound approach, we considered
for the branch-and price that no upper bound was known in advance.

In order to minimize the number of vehicles a penalty is added to each pull-in
and each pull-out trip cost. In the same way, to minimize the number of crews a
fixed cost is assigned to each crew. The amount of time allocated before/after a crew
duty starts/ends is 10/5 minutes if the crew is driving a vehicle from/to the depot and
15 minutes if the crew leaves or enters the depot walking. A driver may start/end
its duty at the end location of each task or at a depot. We have considered that a
changeover might occur if and only if the location, where the driver leaves the first
vehicle, is the same where he picks up the second one.

All computational results presented were obtained on a PC Pentium IV 3.2 GHz.

6.1 Data from CARRIS

We investigated real-world data from CARRIS, a mass transit company operating in
the city of Lisbon. The data set corresponds to urban service inside the city of Lisbon
and involves four depots and 122, 168, 224, 226 and 238 trips.

According to some rules of the company, we have considered two types of duty
crews, namely a tripper type and a normal type. Tripper duties have a spread between
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60 and 300 minutes. For normal type duties, the minimum spread is 60 minutes and
the maximum working time is 615 minutes. The maximum idle time for a crew at a
relief point is 30 minutes. The time window for a break is [60,140] minutes and the
maximum time allowed before a break occurs is 300 minutes.

Our first objective was to analyze the effect of different values of parameters ε, α

and β on the final solution of the branch-and-bound procedure. In Table 1, the first
four columns report the number of trips, the value of ε, the resulting number of tasks
and the value of p = α

β
. The next three columns describe the solution given by the

branch-and-bound. More precisely, the number of vehicles, the number of crews and
the sum of these two numbers. The last three columns refer to the CPU times, all
measured in seconds. In particular, cpu_ l and cpu_ i are the CPU times consumed
by the linear relaxation and by the branching tree, respectively, while cpu is the total
CPU time.

Previous computational experience led us to fix ε within the set E = {5,7,10} and
p within the set P = {1/10,2/15,1/6}. Our computational experiments were set up
over E × P . On the one hand, we noticed that by increasing ε over E decreases the
total CPU time. On the other hand, by increasing p over P may lead to an increase
of the total CPU time. When the value of p increases more columns with negative
reduced cost are discarded, at each iteration of the column generator. Then more
iterations may be necessary for solving the LP relaxation and more CPU time is
needed. A large value of p might, also, cause an increase in the number of nodes of
the branch-and-bound tree.

Next, for each problem, we consider the set of parameters which provided the
smallest number of vehicles and crews and the smallest total CPU time. Table 2 dis-
plays the performances of the branch-and-bound (BB) and the branch-and-price (BP).
For the branch-and-price approach we also compare the performance of the optimal
pricing procedure (BP opt) with the performance of the suboptimal pricing procedure
(BP sub). Since in the branch-and-price algorithm, columns are generated during the
overall branching process, we set the value of parameter γ equal to 500. The value
of γ for the branch-and-bound was set equal to 3000, in order to overcome lack of
columns.

The solution quality is similar for both approaches. Except for a single instance,
the number of vehicles and the number of crews reached were equal. For this excep-
tion, the branch-and-bound obtained only one more crew. The total CPU time was
much smaller for the branch-and-bound. An exception occurs for the instance with
168 trips where the CPU time is almost the same.

Note that suboptimal pricing and optimal pricing had similar performances con-
cerning the number of vehicles and crews in the final solution. No conclusions can
be drawn concerning the CPU time. For three, over five instances, suboptimal pricing
was faster than optimal pricing.

6.2 Random data

In this section, we considered randomly generated instances available in the web page
http://www.few.eur.nl/few/people/huisman/instances.htm. A detailed description of
such instances is given in Huisman et al. (2005). We present computational results

http://www.few.eur.nl/few/people/huisman/instances.htm


Branching approaches for integrated vehicle and crew scheduling 33

Table 1 Testing different
values of ε and p Trips ε Tasks p vehicles crews total cpu_ l cpu_ i cpu

122 5 67 1/10 9 18 27 4 4 8

5 67 2/15 9 17 26 5 2 7
5 67 1/6 9 17 26 4 2 6
7 65 1/10 9 17 26 5 0.1 5
7 65 2/15 9 18 27 4 3 7
7 65 1/6 9 17 26 5 0.8 6

10 63 1/10 9 18 27 3 1 4
10 63 2/15 9 18 27 3 0.4 4
10 63 1/6 9 18 27 4 1 5

168 5 120 1/10 17 36 53 30 17 47
5 120 2/15 17 39 56 61 36 97
5 120 1/6 17 37 54 50 12 62

7 100 1/10 17 38 55 17 3 20
7 100 2/15 17 38 55 15 0 15
7 100 1/6 17 38 55 17 2 19

10 88 1/10 20 43 63 5 3 8
10 88 2/15 20 42 62 4 1 5
10 88 1/6 20 44 64 5 2 7

224 5 126 1/10 17 41 58 105 100 205
5 126 2/15 17 41 58 131 89 220
5 126 1/6 17 41 58 86 239 325
7 122 1/10 18 40 58 47 50 97

7 122 2/15 17 49 66 58 258 316
7 122 1/6 18 41 59 61 228 289

10 118 1/10 18 41 59 40 24 64
10 118 2/15 18 40 58 44 34 78
10 118 1/6 18 41 59 44 91 135

226 5 114 1/10 15 34 49 38 73 111
5 114 2/15 15 35 50 44 241 285
5 114 1/6 15 36 51 60 68 128
7 113 1/10 15 34 49 39 45 84
7 113 2/15 15 37 52 51 72 123
7 113 1/6 15 35 50 61 30 91

10 113 1/10 15 34 49 39 45 84
10 113 2/15 15 37 52 51 72 123
10 113 1/6 15 35 50 61 30 91

238 5 133 1/10 21 49 70 65 185 250
5 133 2/15 20 49 69 90 79 169
5 133 1/6 20 48 68 99 22 121
7 126 1/10 23 57 80 47 22 69
7 126 2/15 22 54 76 52 22 74
7 126 1/6 22 54 76 62 104 166

10 125 1/10 22 56 78 41 111 152

10 125 2/15 22 55 77 55 19 74
10 125 1/6 22 54 76 51 67 118
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Table 2 Comparing different
branching approaches: Real data Problem Approach vehicles crews total columns nodes cpu

122 BP opt 9 17 26 6040 10 17

BP sub 9 17 26 4397 4 15

BB sub 9 17 26 3880 0 5

168 BP opt 17 38 55 6190 2 21

BP sub 17 38 55 2395 0 2

BB sub 17 38 55 3783 0 15

224 BP opt 18 39 57 10965 106 1884

BP sub 18 39 57 5760 26 710

BB sub 18 40 58 6457 0 97

226 BP opt 15 34 49 9869 326 5031

BP sub 15 34 49 9680 688 11154

BB sub 15 34 49 6558 30 84

238 BP opt 20 48 68 6250 48 1934

BP sub 20 48 68 6909 62 2070

BB sub 20 48 68 6250 0 121

obtained for problems with 80, 100, 160, 200, 320 and 400 trips. In the above re-
ferred site, data is grouped into two sets of problems, A and B. We only present
results for problems of type A. Similar results were obtained for type B. We have
considered vehicles located in four depots as in data from CARRIS (Sect. 6.1).

We have considered three types of duty crews, namely a tripper type and two
normal types. Duties of tripper type have a spread between 30 and 300 minutes. For
both normal type duties, the minimum spread is 30 minutes, the maximum working
time is 540 minutes, the minimum break is 45 minutes and the maximum duration
allowed before a break occurs is 300 minutes. The first normal type has a maximum
spread of 585 minutes, while the second one has a maximum spread of 720 minutes.

In Table 3 we report average results obtained with the branch-and-price (BP) and
the branch-and-bound (BB) approaches. We have tested 10 instances of each prob-
lem size. For the 80 and 100 trip problems, we present the results obtained when
we solved the pricing problem exactly (opt) and when we solve it approximately
(sub). For problems with more than 100 trips, we only solved the pricing problem
approximately. For problems with more than 160 trips, only results concerning the
branch-and-bound are presented. For these size instances, the average CPU times for
branch-and-price exceeded one day of computation time. In Table 3, columns ‘vehi-
cles’, ‘crews’ and ‘total’ report, respectively, average number of vehicles, crews and
sum of vehicles and crews in the solution. The columns titled ‘columns’ and ‘nodes’
display, respectively, the number of generated duty crews and the number of nodes of
the branching tree. Finally, column ‘cpu’ shows the total computing time, measured
in seconds.

The branch-and-price obtained slightly better solutions. In fact, the number of
crews, the number of vehicles and the corresponding sum are slightly smaller for
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Table 3 Comparing different
branching approaches: Random
data

Problem Approach vehicles crews total columns nodes cpu

80A BP opt 9.4 18.9 28.3 16724 30 4212

BP sub 9.4 18.9 28.3 10289 27 2434

BB opt 9.4 18.9 28.3 16545 7 203

BB sub 9.4 19.3 28.7 8992 9 72

100A BP opt 12.0 22.8 34.8 35196 34 12939

BP sub 12.2 22.9 35.1 18795 52 4543

BB opt 12.1 23.4 35.5 28166 7 802

BB sub 12.1 23.4 35.5 17194 15 428

160A BP sub 15.2 30.7 45.9 34864 58 74676

160A BB sub 15.2 30.9 46.1 28617 18 2436

200A BB sub 18.7 38.2 56.9 30720 46 3064

320A BB sub 27.2 55.3 82.5 40557 127 11023

400A BB sub 33.2 68.6 101.8 49848 91 13453

the branch-and-price approach. However, this improvement required a significant in-
crease in CPU time (ranging from 30 times to almost 60 times the branch-and-bound
time). The branch-and-price approach is suitable for handling small to medium sized
instances, but consumed too much CPU time for the large sized instances. Concern-
ing the performance of the branch-and-bound approach, we noticed that the set of
duties generated at the root node was “large” enough to obtain good quality integer
solutions in terms of both the number of crews and the number of vehicles.

Table 4 depicts a comparison of the sub optimal pricing proposed algorithms with
the method presented in Borndörfer et al. (2008), which, to our knowledge, was the
best found in the literature for the same data instances. However, for instances with
80 trips, the results in Huisman et al. (2005) were similar to the ones of Borndörfer et
al. (2008). In Gintner et al. (2008), although the authors solved the crew scheduling
problem for the same test instances, they claim that their results are not comparable
with those of the integrated problem as in Huisman et al. (2005). Therefore, they are
also not comparable with ours. The results presented in Gintner et al. (2005) are also
not comparable, because the authors considered a subset of the instances (100, 160
and 200 trips) with two depots, while ours refer to four depots.

Regarding the results in Borndörfer et al. (2008), our approaches have led to a
smaller number of crews although, in some cases, a larger number of vehicles. How-
ever, we obtained smaller values concerning the sum of vehicles and crews. An im-
portant improvement over existing methods concerns, in our opinion, with the time
consumed by the branch-and-bound approach (BB sub). A direct comparison can not
be made due to differences in the computers used by the different authors. It is rele-
vant to note that CPU times marked with ‘*’ were obtained in a Dell Precision 650 PC
with 4 GB of main memory and a dual Intel Xeon 3.0 Ghz CPU. However, we can
state that when the size of the problem increases, the time spent by our branch-and-
bound becomes significantly smaller than the time spent by the algorithm proposed in
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Table 4 Comparing different
methods Problem Approach vehicles crews total cpu

80A BP sub 9.4 18.9 28.3 2434

BB sub 9.4 19.3 28.7 72

Borndörfer et al. (2008) 9.2 20.4 29.6 780 *

100A BP sub 12.2 22.9 35.1 4543

BB sub 12.1 23.4 35.5 428

Borndörfer et al. (2008) 11.2 24.5 35.7 1260 *

160A BP sub 15.2 30.7 45.9 74676

BB sub 15.2 30.9 46.1 2436

Borndörfer et al. (2008) 15.0 32.7 47.7 2640 *

200A BB sub 18.7 38.2 56.9 3064

Borndörfer et al. (2008) 18.5 40.5 59.0 5280 *

320A BB sub 27.2 55.3 82.5 11023

Borndörfer et al. (2008) 26.7 56.1 82.8 19680 *

400A BB sub 33.2 68.6 101.8 13453

Borndörfer et al. (2008) 33.1 69.8 102.0 43200 *

Borndörfer et al. (2008). From a transportation company point of view, an important
feature of an algorithm concerns the ability of producing ‘good’ solutions in short
time.

7 Conclusions

This paper focuses on the integrated vehicle and crew scheduling problem. The prob-
lem is described by an integer linear programming formulation that combines a multi-
commodity flow model with a mixed set partitioning/covering model. Two main con-
tributions have been presented. The first one concerns the proposal of a branch-and-
price approach to the integrated problem. Another contribution is the evaluation of
a specialized branch-and-bound algorithm, which has revealed a good trade-off be-
tween the quality of near-optimal solutions and computing time.

Three solution approaches were presented, compared and discussed: an exact
branch-and-price algorithm, a heuristic branch-and-price algorithm and an approx-
imated branch-and-bound algorithm. All of them rely on branching strategies along
a search tree combined with column generation to solve the linear programming re-
laxation of the model. These approaches start with a preprocessing phase, where the
set of tasks is defined.

On the heuristic approaches, the pricing problem is solved approximately. In such
cases, the scheduler can manage given parameters to control the cardinality and some
diversity of the set of columns, generated by pricing and further added to the master
problem. For the exact branch-and-price, the subproblem is optimally solved and all
the attractive columns are considered for possible introduction in the master.
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Branch-and-bound only performs column generation at the root node, though pro-
ducing a large and diverse set of columns over which branching is enforced after-
wards over a single variable at each time. For both branch-and-price proposed al-
gorithms branching concerns sum of variables and branching constraints are added
explicitly to the master. Computational results have shown that exact pricing was not
able to solve the linear programming relaxation of the “larger” sized problems, within
reasonable computing time. Concerning the branch-and-bound performance, with a
fine tuning of the parameters, this approach handled these “larger” sized problems,
giving good quality feasible solutions in a short time.

Acknowledgements This work has been partially supported by POCTI-ISFL-1-152 and by
POCI/MAT/57893/2004.

References

Borndörfer R, Löbel A, Weider S (2008) A bundle method for integrated multi-depot vehicle and duty
scheduling in public transit. In: Hickman M, Mirchandani P, Voß S (eds) Computer-aided systems
in public transport. Lecture notes in economics and mathematical systems, vol 600. Springer, Berlin,
pp 3–24

Gaffi A, Nonato M (1999) An integrated approach to ex-urban crew and vehicle scheduling. In: Wil-
son NHM (ed) Computer-aided transit scheduling. Lecture notes in economics and mathematical
systems, vol 471. Springer, Berlin, pp 103–128

Gintner V, Steinzen I, Suhl L (2005) A variable fixing heuristic for the multiple-depot integrated vehicle
and crew scheduling. In: Jaszkiewicz A, Kaczmarek M, Zak J, Kubiak M (eds) Advanced OR and AI
methods in transportation. Publishing House of Poznan University of Technology, Poznan, pp 547–
552

Gintner V, Kliewer N, Suhl L (2008) A crew scheduling approach for public transit enhanced with aspects
from vehicle scheduling. In: Hickman M, Mirchandani P, Voß S (eds) Computer-aided systems in
public transport. Lecture notes in economics and mathematical systems, vol 600. Springer, Berlin,
pp 25–42

Haase K, Friberg C (1999) An exact branch and cut algorithm for the vehicle and crew scheduling. In:
Wilson NHM (ed) Computer-aided transit scheduling. Lecture notes in economics and mathematical
systems, vol 471. Springer, Berlin, pp 63–80

Haase K, Desaulniers G, Desrosiers J (2001) Simultaneous vehicle and crew scheduling in urban mass
transit systems. Transp Sci 35(3):286–303

Huisman D, Freling R, Wagelmans APM (2005) Multiple-depot integrated vehicle and crew scheduling.
Transp Sci 39:491–502

Mesquita M, Paixão J (1992) Multiple depot vehicle scheduling problem: a new heuristic based on quasi-
assignment algorithms. In: Desrochers M, Rousseau JM (eds) Computer-aided transit scheduling.
Lecture notes in economics and mathematical systems, vol 386. Springer, Berlin, pp 167–180

Mesquita M, Paias A (2008) Set partitioning/covering-based approaches for the integrated vehicle and
crew scheduling problem. Comput Oper Res 35(5):1562–1575. (Available online 20 October 2006)

Valouxis C, Housos E (2002) Combined bus and driver scheduling. Comput Oper Res 29:243–259


	Branching approaches for integrated vehicle and crew scheduling
	Abstract
	Introduction
	The integrated vehicle and crew scheduling problem
	Task definition
	Linear programming relaxation
	Branching procedures
	Branch-and-bound procedure
	Branch-and-price procedures
	Branching rule
	Branching strategy 1
	Branching strategy 2
	Upper bound
	Optimal versus suboptimal pricing

	Tuning the parameters for non-exact procedures

	Computational experience
	Data from CARRIS
	Random data

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


