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Abstract
Purpose of Review In this review, we summarize the use of virtual physiologic functional assessments of coronary artery disease
and their utility to guide virtual coronary intervention (VCI).
Recent Findings Virtual fractional flow reserve (vFFR), coronary angiography–derived fractional flow reserve (FFRangio), virtual
contrast FFR (cFFR), and quantitative flow reserve (QFR) are four technologies that generate computer-based FFR measure-
ments comparable to the gold standard of pressure-wire-based FFR. VCI capitalizes on this technology by utilizing pre- and post-
vFFR assessments to predict the physiologic response to stenting.
Summary Physiologic assessment of coronary lesion significance has become a cornerstone of decision-making for revascular-
ization. FFR and non-hyperemic pressure ratio use is limited by the requirement for an intracoronary wire and the additional time
required. Virtual physiologic assessments address these shortcomings with accuracy comparable to FFR. Building on this
technology, VCI simulation has the potential to revolutionize the approach to percutaneous revascularization.

Keywords Virtual physiologic assessment . vFFR (virtual fractional flow reserve) . FFRangio (coronary angiography–derived
fractional flow reserve) . cFFR (virtual contrast FFR) . QFR (quantitative flow reserve) . VCI (virtual coronary intervention)

Introduction

Each year in the USA, percutaneous coronary intervention
(PCI) is performed in 7801 adults per million for acute coro-
nary syndromes (ACS) and in 922 per million for stable cor-
onary artery disease (CAD) [1]. Revascularization has been

shown to reduce death and recurrent myocardial infarction
(MI) in patients with ACS [2, 3].

The ISCHEMIA (International Study of Comparative Health
Effectiveness with Medical and Invasive Approaches) trial
showed that revascularizationwith PCI or coronary artery bypass
grafting, in comparison with optimal medical therapy (OMT),
did not result in a significant reduction in major adverse cardio-
vascular events (MACE) or death among patients with stable
ischemic heart disease at 3.2 years [4]. Of note, this trial did
exclude a significant number of participants due to an ejection
fraction less than 35%, class III or IV heart failure symptoms, or
screening coronary computed tomography angiography (CCTA)
demonstrating no obstructive CAD or unprotected left main ste-
nosis [4].

One explanation for the lack of observed reduction in
MACE or death in ISCHEMIA could be the reliance upon
imprecise anatomic guidance during coronary angiography,
rather than a physiologic assessment, as fractional flow re-
serve (FFR) was used in only 20.3% of cases [4]. In particular,
angiography-only assessments of CAD can be problematic
with lesions of intermediate severity (40–70% obstruction)
[5•] because additional variables including the lesion length,
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collateral flow, and functional status of the myocardial micro-
vascular bed downstream have not been assessed [6, 7]. When
FFR was used to guide PCI in patients with stable ischemic
heart disease in the FAME II (Fractional Flow Reserve Versus
Angiography for Multivessel Evaluation) trial, there was a
composite reduction in death, myocardial infarction, and un-
planned hospitalization requiring revascularization in compar-
ison to OMT alone at 5 years of follow-up, with the greatest
difference driven by a reduction in urgent revascularization
[8].

To evaluate intermediate coronary lesions more accurately,
physiological assessment has become one of the cornerstones
of revascularization, ensuring that only functionally signifi-
cant lesions are treated [5•]. In this article, we review the
origins of invasive physiologic assessment pre- and post-PCI
and its evolution into a virtual coronary investigation. Based
upon this technology, real-time virtual coronary intervention
(VCI) has the potential to become the next step in the evolu-
tion of our current approach to revascularization.

The Emergence of a Physiologic Assessment
for PCI: FFR

FFR, a well-validated index for the physiologic assessment of
coronary lesions, is defined as the ratio of the distal coronary
pressure (Pd) to the proximal aortic pressure (Pa) at maximum
hyperemia [9]. At maximum hyperemia, achieved most com-
monly by intravenous or intracoronary adenosine, resistance
is constant and minimal, and the coronary pressure correlates
to coronary blood flow, allowing for a physiologic assessment
of the stenosis [9]. In a normal coronary artery, the FFR equals
1.0 [10].

Pijls et al. demonstrated that an FFR value of < 0.75 cor-
related with inducible ischemia on multiple non-invasive
stress testing modalities, with positive FFR results reverting
to normal after revascularization [11]. Deferral of revascular-
ization based on an FFR ≥0.75 resulted in no mortality differ-
ence at 15-year follow-up in the DEFER (Fractional Flow
Reserve to Determine the Appropriateness of Angioplasty in
Moderate Coronary Stenosis) trial [12]. The subsequent
FAME (Fractional Flow Reserve Versus Angiography for
Multivessel Evaluation) trial then demonstrated that FFR-
guided PCI (using a cutoff for revascularization of FFR
≤0.80) is associated with a lower incidence of death, MI, or
repeat revascularization at 1 year in comparison to PCI guided
by angiography alone [10, 13, 14]. Thereafter, in FAME II,
patients with stable CAD were randomized to FFR-guided
PCI plus OMT or OMT alone [8]. This trial was prematurely
terminated due to a significantly lower rate of the primary
composite endpoint of death, MI, or urgent revascularization
in the PCI group (4.3%) in comparison to the OMT group
(12.7%) [8].

Based on these studies, FFR-guided PCI for angiographic-
ally intermediate stenoses to assess for hemodynamic signifi-
cance received a Class I, Level of Evidence A recommenda-
tion in the 2018 from the European Society of Cardiology and
a Class IIa, Level of Evidence A recommendation from the
2011 American College of Cardiology/American Heart
Association and Society for Cardiovascular Angiography
and Interventions guidelines [15, 16].

Despite the evidence and specialty societal recommenda-
tions for the use of FFR, global adoption has remained low,
with utilization in less than 6% of procedures [17]. This is
likely due in part to a combination of a prolongation of pro-
cedural time, added costs of the wire and vasodilating agent,
patient discomfort with adenosine, and the potential risk of
guide catheter and wire-related procedural complications
[17, 18••]. In addition, technical challenges with pressure drift,
inadequate induction of maximal hyperemia, or aortic wave-
form distortion limit accuracy and reproducibility [18••].
Nonetheless, the benefits of physiologically guided PCI have
led to the American College of Cardiology/American
Association for Thoracic Surgery/American Heart
Association/American Society of Echocardiography/
American Society of Nuclear Cardiology/Society for
Cardiovascular Angiography and Interventions/Society of
Cardiovascular Computed Tomography/Society of Thoracic
Surgeons 2017 Appropriate Use Criteria for Coronary
Revascularization in Patients with Stable Ischemic Heart
Disease to recommend that FFR may be helpful in defining
a need for revascularization and may substitute for stress test
demonstrated ischemia [19].

Non-hyperemic Pressure Ratios

Non-hyperemic pressure ratios (NHPR) provide an alternative
functional assessment without the need for adenosine. The
instantaneous wave-free ratio (iFR) is measured as the mean
ratio of the instantaneous phasic distal coronary pressure to
aortic pressure during the wave-free period (WFP) [17, 20].
The WFP begins 25% of the way into diastole and concludes
5 ms before the end of diastole; this period is characterized by
the lack of new waves propagating from the distal or proximal
ends of the vessels [20]. During this time, there is a direct
correlation between intracoronary pressure and flow, and mi-
crovascular resistance is minimal and stable [20].

The ADVISE (Adenosine Vasodilator Independent
Stenosis Evaluation) study and the ADVISE Registry were
the first comparisons of iFR versus FFR [20, 21], establishing
an iFR value of 0.89 to predict a functionally significant FFR
of 0.80 [21]. Several additional studies found no significant
difference between iFR and FFR performance for stenosis-
specific myocardial ischemia assessed by reference standards
of either positron emission tomography [22, 23] or myocardial
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perfusion scintigraphy [24]. iFR was found to be non-inferior
to FFR in guiding PCI for patients with both stable angina and
ACS with more PCI deferrals with iFR and no difference in
MACE including all-cause death, non-fatal MI, or unplanned
revascularization at 1 year in the DEFINE-FLAIR (Functional
Lesion Assessment of Intermediate Stenosis to Guide
Revascularization), with 6.8% of the iFR group versus 7.0%
of the FFR group (p <0.001), and iFR SWEDEHEART
(Evaluation of iFR in Stable Angina or Acute Coronary
Syndrome) trials, with 6.7% of the iFR group versus 6.1%
of the FFR group (p = 0.007) [17, 25, 26]. In addition, there
were fewer reported adverse procedural symptoms with iFR
over FFR [25, 26].

Shortcomings of a Pressure Wire Physiologic
Assessment Despite Advances in iFR
Technology

Despite equivalence in hard clinical outcomes, there has been
interest in understanding the differences in these technologies,
especially identifying the 20% discordance between FFR and
iFR measurements when evaluated by a core laboratory anal-
ysis [27, 28]. This discrepancy may be related to specific
lesion characteristics, inadequate hyperemia, or varied re-
sponses to microvascular dysfunction [20]. Predominantly fo-
cal lesions were more likely to have a FFR ≤0.80 and iFR >
0.90, while diffuse lesions were more commonly found to
have an FFR > 0.80 and iFR ≤0.89 [28]. Given that FFR
relies on hyperemia, it may be difficult to assess accurately
the individual contributions of different portions of a diseased
segment [5•], making iFR a more appealing functional assess-
ment in this subset. In addition, diffuse disease is associated
with changes in longitudinal pressure gradients affecting re-
sistance and microvascular dysfunction [29].

FFR and iFR Performance in Specific
Subgroups

Following an MI, an increase in left ventricular end-diastolic
pressure can precipitate an increase in microvascular resis-
tance, falsely elevating FFR measurements [30]; however
iFR is less affected [18••]. In patients with multivessel coro-
nary artery disease, iFR may also be preferred over FFR to
avoid multiple rounds of hyperemia [25, 26].

The assessment of CAD in patients with severe aortic ste-
nosis (AS) is challenging given the influence of AS on the
development of left ventricular hypertrophy, increased
afterload, and changes in microcirculatory and extravascular
resistance, leading to microvascular dysfunction which ap-
pears similar to CAD [31]. Ahmad et al. reported a significant
reduction in the FFR of angiographically intermediate

coronary lesions after transcatheter aortic valve replacement
(TAVR) in patients with AS, while iFR calculations were
unchanged after TAVR [32]. This may reflect coronary mi-
crocirculatory adaptation both to underlying CAD and AS as
independently contributory variables. Like the challenges
with the use of FFR in diffuse CAD discussed previously, it
is not possible to distinguish the independent influences of
CAD and AS with a hyperemia assessment, while it is possi-
ble to isolate the differences using iFR [32].

Despite iFR being a preferred physiologic assessment over
FFR in these clinical settings after an MI, with MVCAD, or
with AS, an important caveat is that precise algorithms and
supporting data are vendor-specific: the iFR technology be-
longs to Philips/Volcano (Amsterdam, the Netherlands)
[18••]; Abbott (Chicago, IL) systems calculate a resting full-
cycle ratio (RFR), and Boston Scientific (Marlborough, MA)
systems calculate a diastolic hyperemia-free ratio (dFR). Both
RFR and dFR demonstrate excellent agreement with iFR and
the same discriminatory agreement for low FFR [33].
Nevertheless, all these non-hyperemic pressure ratios still pro-
long procedural time, add to overall costs, and carry the risks
of placing a guidewire and guide catheter in a diseased coro-
nary artery [18••, 26].

A Gateway to the Future with a Virtual
Physiologic Assessment

Virtual FFR (vFFR) provides an assessment of physiologic
lesion significance without the risks of an invasive wire-
based technique. It utilizes a combination of computational
fluid dynamics (CFD) and coronary imaging [34]. CFD anal-
yses are best described by differential equations of the conser-
vation of mass and momentum, commonly utilizing the
Navier-Stokes Model [34–36]; however, these equations can
only be solved under circumstances of steady or pulsatile flow
in an idealized circular cylindrical geometry [37].

CFD models require anatomical and physiological inputs
to calculate the vFFR [34]. The luminal surface of an artery is
identified, analyzed, and segmented from invasive angiogra-
phy or CCTA, and a two- or three-dimensional model is gen-
erated [37], which is then discretized into volumetric elements
[34, 36]. CT-based vFFRmay be limited by insufficient image
quality for accurate segmentation due to “stair-step” artifact
from respiratory movement or arrhythmias, phase misregistra-
tion, or calcification causing “blooming or streaking” [34, 37].
Rotational coronary angiography allows for the selection of
two optimal projections, free from foreshortening or inade-
quate opacification, but this technology is not widely available
[34]. Other modalities such as intravascular ultrasound and
optical coherence tomography may add further anatomic data
but at the cost of intracoronary wire placement and an addi-
tional expensive procedure [34].
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To calculate vFFR, the boundary inlet and outlet conditions
are set by dedicated software, and this final closed surface is
meshed to provide a virtual model [38]. The inlet pressure of
the aortic root is simple to calculate from the direct measure-
ment of the aortic pressure (or using the non-invasive cuff
pressure and an adjustment equation with CCTA images)
[34]. The outlet boundary, including both the coronary vascu-
lature and ascending aorta, is very difficult to assess due to the
heterogeneity of coronary microvascular circulation [34].
Morris et al. applied a generic downstream boundary condi-
tion based on a Windkessel model, which used downstream
pressure and flow over a cardiac cycle to calculate microvas-
cular resistance for each patient [35, 38]. These measurements
were then averaged over their patient cohort to provide a uni-
versal boundary condition [35, 38]. While this generic bound-
ary condition has been widely adapted, it is important to real-
ize that the error for this generic application was halved when
using individual invasive measurements, as discussed below
[38].

Lastly, the optimal method for CFD simulation is challeng-
ing. Coronary circulation is dynamic and pulsatile, and a tran-
sient or time-dependent simulation is the most accurate meth-
od. This requires CFD to solve for millions of degrees of
freedom simultaneously and hundreds of thousands of times
over a cardiac cycle, which requires an average of 24 h to
compute [34]. However, a limited steady-state CFD analysis
can be performed over 2 min using a simplified estimate of
dynamic blood flow [34].

Virtual Physiologic Assessments Utilizing
Computational Fluid Dynamics

The VIRTU-1 (VIRTUal Fractional Flow Reserve from
Coronary Angiography) study was a single-center, observa-
tional study of 19 patients who underwent contrast single-axis
rotational coronary angiography (Philips, Best, the
Netherlands), and all vessels with >50% stenosis were
assessed by invasively measured FFR. Two clear projections
from similar phases of the cardiac cycle were used to recon-
struct arteries on a Philips 3D workstation [38]. The inflow
and outflow settings utilized the aortic pressure and the
Windessel model, as described above. Hemodynamically sig-
nificant lesions (FFR ≤0.80) were distinguished from non-
significant lesions (FFR >0.80) with 97% accuracy using
vFFR [38]. This model quantified invasive FFR to within
±0.06 using the vFFR assessment [38].

This full-transient-coupled method, requiring 24–36 h in
processing time, was then compared to novel “steady” and
“pseudo-transient” methods by Morris et al. [39]. Prediction
of pulsatile physiology using a steady-state flow assumption is
based on the work of Gorlin and Gorlin in 1951, who validat-
ed a formula for estimating mitral valve orifice area using a

mean, steady state as a surrogate for pulsatile flow [40].
Morris et al. created a pseudo-transient vFFR (vFFRps-trns) that
approximates the temporal variation of the pressure distal to a
lesion, which, when combined with the proximal pressure,
was used to calculate the vFFR. The vFFRps-trns calculation
uses several constructed variables including z1 and z2 from a
quadratic equation to represent the diseased vessel, imped-
ance, resistance, compliance, and four parameters describing
the timing and amplitude of the intramural myocardial systolic
pressure [39]. This model is compared to a steady vFFR
(vFFRsteady) which reduces the outlet parameters to a single
time-averaged resistance of the coronary microvasculature
[39]. The mean error of vFFRps-trns and vFFRsteady compared
to invasive FFR was ±0.86% and ±0.50%, respectfully. Both
vFFRps-trns and vFFRsteady independently showed interclass
correlation coefficients with FFR of 0.999 (95% confidence
interval [CI]: 0.998–0.999; p < 0.001) [39].

These calculations by Morris et al. utilized individual, in-
vasive pressure measurements for the input and output data
[39]. When the generic value for microvascular resistance as
discussed in the initial VIRTU-1 study [38] was used as the
distal boundary condition, the diagnostic accuracy for baseline
and hyperemic conditions fell from 100 to 52% [39]. This
improved to 82% when comparing artery-specific lesions un-
der hyperemic conditions [39]. These data confirm the inferior
accuracy of generic boundary conditions and remain an area
for further research.

Expanding an Imaging-Based Physiologic
Assessment: Vessel FFR, vFAI, cFFR, QFR,
and FFRangio

Several virtual FFR modalities and technologies have been
developed to simplify the use and increase the adoption of
these functional assessments. Advancements have included
the following methods: vessel FFR, virtual functional assess-
ment index (vFAI), contrast FFR (cFFR), quantitative flow
ratio (QFR), and coronary angiography–derived FFR
(FFRangio) (Table 1).

Building on the foundation of CFD, the FAST (Fast
Assessment of STenosis) study aimed to create and then val-
idate a new three-dimensional quantitative coronary angiog-
raphy (3D-QCA)–based software to calculate vessel FFR
using a phantom model. In the first phase of the study,
Masdjedi et al. created an in vitro model to validate the calcu-
lations performed by CAAS Workstation 8 (Pie Medial
Imaging, Maastricht, the Netherlands) software. This in vitro
model was comprised of a chamber mimicking the left ventri-
cle with artificial valves, and water-driven systemic and cor-
onary circulations modeled using input impedances from the
behavior of the systemic circulation and outputs modeled
using the Windkessel principle [41••]. The pressure drop over
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the phantom lesions was compared to the reference standard
computations of CFD [38, 39, 42] and the CAASWorkstation
8 software. Pulsatile and constant flow-based measurements
corresponded well, supporting the previous assumption by
Morris et al. that a single, steady-flow value assessment is
adequate [39, 41]. There was also an excellent agreement
between the in vitro model and CAAS Workstation vessel
FFR pressure drop results (r >0.99; p <0.002) [41••].

The FAST study then retrospectively compared invasive
FFR with vessel FFR. Computation of the vessel FFR utilized
conventional angiography, in comparison with rotational cor-
onary angiography in the VIRTU-1 study. Three two-
dimensional images of two vessels acquired in projections at
least 30° apart in angulation were utilized to model entire
vessels and adjust for overlapping and foreshortening, and
one view was used to see the position of the FFR wire.
Vessel FFR had a good linear correlation with invasive FFR
(r=0.89; p < 0.001) and accuracy for identifying patients with
significant FFR values (area under the receiver operating char-
acteristic curve [AUC] of 0.93; 95% CI: 0.88–0.97) [41••].
Additionally, there was low inter-user variability (r=0.95; p
< 0.001) [41••]. This vFFR platform is commercially available
in the USA and Europe (PIE Medical Imaging, Biltoven, the
Netherlands, Figure 1).

Papfaklis et al. also used a similar steady-state CFD analy-
sis with the CAAS QCA-3D system to compute a virtual
functional assessment index (vFAI) based on the distal pres-
sure to proximal pressure ratio over a lesion for flows of 1–
4 ml per second, normalized against the flow of a normal
artery over this range [43]. Siogkas et al. expanded vFAI tech-
nology past a coronary angiography–based assessment to uti-
lize CCTA and intravascular ultrasound [44, 45]. The limita-
tion of vFAI is that it is entirely a function of geometric ste-
nosis, ignoring significant changes in the coronary microvas-
culature; therefore, it cannot be a surrogate for FFR [43, 44].

The FLASH FFR trial introduced a different CFD model
with the FlashAngio software (Rainmed Ltd., Suzhou, China),
which in combination with thrombolysis in myocardial infarc-
tion (TIMI) frame counts from two angiographic projections
≥30° apart was used to calculate a virtual contrast FFR (cFFR)
[46•]. The diagnostic accuracy of a significant virtual cFFR
≤0.94 to predict an FFR ≤0.80 was 89.0% (95% CI: 85.1–
92.2%) [46•]. While encouraging, these data come from a
sub-study of FLASH FFR, and larger focused trials to validate
virtual cFFR as an independent physiologic assessment are
needed.

The FAVOR (Functional Assessment by Various Flow
Reconstructions) pilot study introduced quantitative flow ratio
(QFR) as another method for computation of FFR based upon
3D-QCA with end-diastolic frames from two angiographic
projections at least 25° apart to create a three-dimensional
reconstruction of a vessel [47]. The estimated contrast flow
velocity is then determined utilizing a contrast frame count,T
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and QFR is computed with the QAngio XA 3D/QFR system
(Medis Medical Imaging Systems, Leiden, The Netherlands)
[47]. This computation relies on estimating the coronary pres-
sure drop based on stenosis geometry and on the assumption
that the flow velocity is preserved across lesions. The mass
flow rate of coronary arteries decreases with artery tapering
and side branches; hence, the mass flow rate at a specific point
of a vessel can be determined by the mean flow velocity and
the reference sizing from 3D-QCA [47]. The performance of
QFR to predict an FFR ≤0.80 was 83% in the WIFI II (Wire-
Free Functional Imaging II) trial, 86.8% in the FAVOR II
Europe-Japan trial, and 92.7% in the FAVOR II China trial
[48–50]. In FAVOR II Europe-Japan, the QFR was computed
in a median time of 5 min versus 7 min for FFR [49]. One
additional benefit of QFR over vFFR and vessel FFR calcu-
lations is that QFR does not rely on generic boundary condi-
tions [49]. Conversely, a drawback of QFR is that coronary
flow velocity may be impacted by heart rate, blood pressure,
left ventricular end-diastolic pressure, and right/left ventricu-
lar hypertrophy [41••]. Furthermore, flow in the left coronary
artery is predominantly diastolic and in the right coronary
artery is both systolic and diastolic [41••]. These variables
could lead to significant differences in inter-observer or
inter-study contrast frame counts and QFR measurements that
were not addressed in the FAVOR II or WIFI II trials [41••].

Coronary angiography–derived FFR (FFRangio) utilizes
two or more single-plane angiograms with a minimum sepa-
ration of 30° and the CathWorks console (Kfar Saba, Israel) to
reconstruct the coronary artery network as an electric circuit
[51•]. Each segment acts as a resistor, and the vessel resistance

is calculated based on its length and resistance. Normal max-
imal flow is based on the volume of the vessel and the total
coronary length. The FFRangio is then calculated as the ratio of
maximal flow rate in the stenosed artery to the maximal flow
in the absence of the stenosis, utilizing a value of ≤0.80 as
physiologically significant [51•]. The FAST-FFR (FFRangio

Accuracy versus Standard FFR) trial demonstrated the diag-
nostic accuracy of FFRangio to predict an FFR ≤0.80 to be
92.2% (95% CI, 88.7–94.8) [51•]. One benefit of FFRangio is
the ability to map the entire coronary tree, which could assist
with complex anatomy [51•].

Physiologic Assessment After PCI:
a Measurement of Success

Post-PCI hemodynamic assessment can be performed to en-
sure optimization of stenting results and can predict the long-
term risk of adverse outcomes. Agarwal et al. found that post-
PCI FFR reclassified 21% of angiographically satisfactory
PCI results as persistently ischemic (with post-PCI FFR of
≤0.81) [52]. These findings were echoed in the DEFINE PCI
trial (Physiologic Assessment of Coronary Stenosis Following
PCI), where residual ischemia (assessed with a post-PCI iFR
< 0.90) was found in 21.9% of vessels after angiographically
satisfactory PCI [53]. Of these vessels, 81.6% had residual
discrete lesions proximal or distal to the stent, and 18.4%
had diffuse disease [53]. While the shortcomings of FFR in
the setting of diffuse disease has been previously discussed,
these findings also challenge the validity of iFR to assess

Figure 1. Utilizing two angiograms ≥30° apart (A, B), the CAAS virtual
fractional flow reserve (vFFR) software maps the stenosis of interest (C,
D) and generates a three-dimensional reconstruction (E), from which the
vessel FFR physiologic assessment may be calculated at any specified

point along the coronary artery in addition to anatomic information
including the percentage stenosis, reference and lesion diameters, and
the lesion borders. Images courtesy of PIE Medical Imaging
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serial lesions with a more diffuse pattern. To date, this poten-
tial shortcoming of iFR efficacy has not been validated against
FFR [28].

Agarwal et al. described how lesions with a final FFR ≤0.86
predicted a significantly higher risk ofmajor cardiac events (23%
vs. 17%, p = 0.02); however, it is unknown if acting on a post-
PCI low FFR valve is beneficial. Ameta-analysis by Rimac et al.
suggested that a post-PCI FFR ≥0.90 showed a lower risk of
repeat PCI (odds ratio [OR] 0.43; 95% CI: 0.34–0.56; p
<0.001) and MACE (OR 0.71; 95% CI: 0.59–0.85; p =
0.0003). Despite these advances, Tebaldi et al. report that wire-
based physiologic assessment after PCI is performed in only
13% of pressure-wire-guided procedures [54].

The Evolution of Virtual Coronary
Interventions

As an extension of their previous work with CFD and vFFR,
Gosling et al. have designed a paradigm for VCI, which al-
lows an idealized virtual stent to be inserted and the resultant
vFFR calculated [55••]. This prospective study analyzed an-
giographic and pre- and post-PCI invasive FFRmeasurements
using conventional coronary angiography with VCI and vFFR
measurements. The VIRTUheart workflow was used as an
offline analysis with a Philips 3D workstation to obtain vessel
geometry, stent dimensions, and position with input and out-
put measurements from the VIRTU-1 study that were utilized
[38, 39]. CFD analysis was allowed in all vessels and compu-
tational time averaged 95 s per case.

Before PCI, the mean FFR was 0.66 ± 0.14 and vFFR was
0.68 ±0.13 [55••]. The diagnostic ability of vFFR to predict
ischemia (FFR ≤0.80) was 93% [55••]. After PCI, the mean
FFR was 0.90 ± 0.05 and vFFR was 0.92 ±0.05 [55••].
Gosling et al. thereby demonstrated that vFFR analysis can
be produced in minutes, no more time than a post-PCI FFR
assessment, and without the risk of an additional wire or ad-
verse effects of hyperemia.

Additionally, this novel application of vFFR allows simu-
lated stent placement based on invasive angiography with pre-
and post-PCI physiologic assessments. The ability to predict
the outcome of different stenting techniques provides opera-
tors with the capability to select the optimal patient-specific
approach to PCI, and the final vFFR value can be used to
predict the future risk ofMACE [56, 57]. VCI also overcomes
the shortcomings of FFR and iFR to assess tandem and diffuse
lesions by treating them virtually [55••].

Conclusion

Physiologic assessment of CAD is a cornerstone of decision-
making to guide and evaluate revascularization, and

importantly FFR-guided PCI has been shown to reduce
MACE. The development of vFFR and vessel FFR may help
with limitations of FFR and iFR. Initial computational time
challenges of vFFR have been overcome with incorporation
of a non-inferior steady-state model in place of a fully tran-
sient CFD model. Continued research in coronary microvas-
cular disease, improvements in the generic output parameters,
and advancements in coronary flow hemodynamic models
will provide more accurate assessments of vFFR, vFAI, virtu-
al cFFR, QFR, and FFRangio. Nascent VCI technology repre-
sents a burgeoning field of personalized revascularization
strategies beyond conventional angiography with computer-
simulated stenting including pre- and post-PCI virtual FFR
analysis to predict the physiologic response to PCI with a high
degree of accuracy. We now await additional clinical trials
addressing the benefits of these approaches on clinical out-
comes; technology dissemination and reimbursement must
also be addressed to increase the application of these novel
technologies.
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