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Abstract
Purpose of the Review This review discusses the recent advances in automated echocardiography using artificial intelligence and
machine learning (ML) techniques. Specific emphasis is placed on the potential for machine learning-based methods to improve
accuracy and reproducibility of echocardiographic assessment as well as early cardiovascular disease detection and personalized
risk assessment.
Recent Findings Echocardiography remains the first line imaging modality for evaluation of many cardiovascular diseases. The
last few years have witnessed a rapid expansion and growth of ML-based automated analysis and interpretation of echocardi-
ography. These ML algorithms have shown great promise for improving data reliability, accuracy, and reproducibility of
echocardiographic results. We anticipate that the application of ML algorithms will further expand the indications of echocar-
diography to include diseases that are traditionally only diagnosed with the more advanced imaging modalities such as cardiac
magnetic resonance imaging. The ability to leverage ML’s robust capability for processing large and complex datasets will result
in improved diagnosis of cardiovascular disease at subclinical stages, enable prediction of disease progression and prognosis, and
facilitate the characterization of disease phenotypes to allow more targeted therapies.
Summary The paradigm is rapidly shifting in the field of echocardiography with the emergence of ML algorithms that are
promising to improve data reliability, accuracy, reproducibility, and workflow. Current and emerging evidence suggests that these
systems will undoubtedly revolutionize the diagnostic utility of echocardiography both at subclinical and clinical stages and are
expected to improve personalized cardiovascular risk assessment. However, widespread implementation of this novel technology
will need to overcome challenging regulatory body approval processes. At present, the technology shows promise in improving
diagnostic pathways, but evidence of clinical utility is lacking. Large trials will be required to provide robust evidence of ML’s
prognostic value in echocardiographic assessment before its implementation in routine clinical practice.
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Introduction

Echocardiography remains the most indispensable cardiac im-
aging modality for the diagnosis, prognostication, and follow-
up of various cardiovascular diseases (CVD). It allows for a
rapid and comprehensive noninvasive assessment and accu-
rate diagnosis of myocardial and structural heart diseases, pro-
vides quantifiable measurements of left and right ventricular
function and pulmonary pressures, and facilitates the assess-
ment of valvular function and intracardiac shunts [1].
Echocardiography is recommended as the first line cardiac
imaging modality due to its widespread availability, low costs,
versatility, acceptability, and safety profile. The demand for
echocardiography is predicted to rise over the next few years
due to the projected increase in the prevalence of CVD [2].

Despite its prolific utilization in clinical practice, echocardi-
ography has some well-recognized limitations that impact its
usefulness. For example, an echocardiogram generates a large
volume of data that must be subjectively interpreted, resulting
in significant inter-observer and intra-observer variability.
Large and complex datasets generated during an echocardio-
gram are difficult to interpret, and a significant portion of this
data remains underutilized [3]. Echocardiography is further lim-
ited by operator-dependent data acquisition, variability in in-
strumentation, poor image quality, and variability in data anal-
ysis and interpretation which often require expert skills.

Artificial intelligence (AI) has emerged over the last few
decades as a novel technique with great potential for enhanc-
ing the diagnostic utility of cardiac imaging. AI involves the
use of machine or computer systems to perform complex tasks
with good and reproducible accuracy [4, 5•]. This technology
has existed since the 1950s, but its application to medical
diagnostics, particularly in cardiology, is relatively new and
continues to evolve. AI is expected to be incorporated into all
forms of cardiac imaging including echocardiography, cardiac
magnetic resonance (CMR), cardiac-computed tomography
angiography, single-photon emission–computed tomography,
and positron emission tomography [6–10]. AI will undoubt-
edly have an impact on medical diagnostics, clinical decision-
making, and treatment choices [11].

In echocardiography, AI is expected to improve the
workflow by fully automating echocardiographic analysis and
reducing the time required to provide clinically meaningful
diagnostic information to the treating clinicians. Existing stud-
ies have now demonstrated that ML-based analysis of echocar-
diogram significantly reduce inter-observer variability and im-
prove reproducibility [10, 12]. These algorithms have ability to
analyse complex datasets and identify subtle cardiac structural
and functional patterns that could easily be missed by trained
observers [13, 14]. Current data suggest that the incorporation
of ML algorithms into routine echocardiography may allow
clinicians to expand indications for echocardiography to in-
clude a full assessment of conditions that are traditionally

diagnosed with the more advanced imaging modalities such
as CMR [15•]. Furthermore, ML techniques combined with
both clinical and imaging data variables will further enhance
clinical decision-making by allowing for personalized cardiac
risk assessment for individual patients [16]. Perhaps the greatest
benefits of ML-based echocardiographic analysis could be the
ability to detect CVD at subclinical stages, predict progression
and prognosis of CVD, and achieve the goal of personalized
medicine through characterization of disease phenotypes and
subsequent targeted therapies.

This review summarizes the recent discoveries and updates
in the field of ML-assisted automated echocardiography.
Recent updates in the use of ML-based models in the identi-
fication of echocardiographic views, image segmentation, and
image interpretation, as well as quantification of cardiac struc-
ture and function are discussed. We conclude the review by
highlighting specific areas of ML-based echocardiography
with the greatest potential to revolutionize modern echocardi-
ography, such as early detection of CVD at subclinical stages,
prognostication of CVD, and disease phenotyping.

The Basic Concepts of Artificial Intelligence

AI and ML are often used interchangeable although strictly
speaking, ML techniques can be best described as methods for
achieving AI [4]. For both AI and ML, statistical modelling
and mathematical algorithms are used to seek, quantify, and
interpret relationships between datasets [4]. As many reviews
have previously described in great detail the basics of AI and
ML and associated terminologies [4, 7, 8, 17•], our focus here
is on the recent developments in the field of echocardiography
and ML.

It is important, however, to appreciate the differences be-
tween the two types ofML that are commonly used to train AI
models, namely “supervised learning” and “unsupervised
learning”. An understanding of these two types of ML is im-
portant for the appreciation of recent advances made in the
field of automated echocardiography.

Supervised ML is used to teach an AI system to rapidly,
accurately, and efficiently analyze large quantities of data
using computing and statistical algorithms to achieve accurate
and reproducible classification of data [18]. This learning
technique is commonly used in medical diagnostics, such as
in the recognition of echocardiographic views and detection of
cardiac abnormalities on echocardiography [5•]. The key to
supervised learning is that it requires the input of pre-labelled
data to train a model to enhance classification and regression
of further data [19].

On the contrary, unsupervised ML focuses on discovering
patterns and associations between variables and uses
unlabelled datasets [4]. Unlike supervised ML, unsupervised
learning does not attempt to fit data to an outcome; rather, it
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identifies consistent patterns within datasets and lends itself to
data exploration and generation of new hypotheses [4, 20]. As
such, unsupervised ML promises to play a significant role in
the unmet areas of cardiovascular imaging and practice. As an
example, using an unsupervised, hierarchical cluster analysis
technique, Lancaster et al. have previously demonstrated that
their clustering algorithms improved the prediction of event-
free survival over conventional classification for all-cause
mortality and cardiac mortality in patients being evaluated
for diastolic dysfunction [21]. Limited evidence also suggests
that unsupervised ML techniques could identify specific char-
acteristics and phenotypes of heart failure with preserved ejec-
tion fraction that are not visible to a human observer [22].

For both types of learning, the performance of ML pro-
grams improves as the dataset increases in size [23].
Because supervised and unsupervised learning techniques
have distinctive roles, the learning technique that is utilized
to train an AI model should carefully consider the intended
use of the model.

Deep learning (DL) is a subset of AI inspired by the
workings of the human brain, commonly referred to as an
artificial neural network (ANN). The main advantage of
DL is its iterative ability to continue learning and thereby
improving its processing speed and diagnostic accuracy
over time without explicit guidance [24–26]. There are 3
types of nodes in an ANN: input nodes, hidden nodes, and
output nodes. The hidden nodes are analogous to the in-
terneurons and perform the processing of information
[26]. There can be any number of interconnected layers
within the network with each layer containing any number
of nodes [24]. Each layer receives inputs from previous
layers and sends outputs to subsequent layers until the
output layer is reached [26].

A convolutional neural network (CNN) is a subtype of
ANN that mimics the visual cortex. Its main function is to
process two-dimensional (2D) image–based data using multi-
ple layers [24, 25]. Typically, a CNN is structured so that the
lowest layers recognize the simplest features of the image such
as the edges, with subsequent layers recognizing combina-
tions of simple features. As such, each layer provides increas-
ing levels of abstraction while the top layer provides the out-
put [4, 5•, 27].

DL methods play significant roles in echocardiography
such as identification of echocardiographic views, and recog-
nition of useful associations between images and pathologies
[5•, 9, 27]. DL has already proven itself to be of value in the
fields of radiology (detecting boundaries of organs in comput-
ed tomography and magnetic resonance imaging), pathology
(alerting suspicious areas of tissue biopsies), and dermatology
(interpreting skin lesions as benign or malignant) [28–30].
These qualities readily translate to echocardiography and are
discussed in the following sections and summarized in
Table 1.

Artificial Intelligence in Echocardiography

Image Acquisition and Recognition of Views

The accuracy of transthoracic echocardiography (TTE) relies
upon accurate image acquisition, traditionally achieved with
the standard windows, beginning with the parasternal views
(long axis and short axis) followed by apical and subcostal
views. These result in the acquisition of approximately 70
unlabelled videos collected from non-consecutively acquired
views [5•]. The conclusion or diagnosis is achieved by inte-
grating these acquisitions and by approximating three-
dimensional (3D) objects from 2D cross-sectional images.
As a result, the first step to interpretation of echocardiography
is the ability to recognize and appreciate the limitations of
each of the echocardiographic views [3]. Echocardiography
can be limited by variability occurring during image acquisi-
tion, challenging boundary detection, as well as variability
occurring during image interpretation [31]. Indeed, variability
in image quality and interpretation are well-recognized limi-
tations in echocardiography, resulting in poor reproducibility
and significant controversies [31, 32].

Recent advances in state-of-the-art computer vision soft-
ware and ML techniques have potential for reducing this var-
iability and improve accuracy. Several studies have now dem-
onstrated that using novel ML-based approaches can accurate-
ly and efficiently distinguish echocardiographic views.
Khamis et al. used a multi-stage classification algorithm that
employed spatio-temporal feature extraction (cuboid detector)
and supervised dictionary learning (LC-KSVD) approaches to
identify apical four, two, and three-chamber views with an
accuracy of approximately 95% [33]. A CNN model tested
by Zhang et al. had an accuracy of 84% in distinguishing
between parasternal long axis, parasternal short axis, apical
2-chamber, apical 3-chamber, and apical 4-chamber views
[5•]. On a larger scale of images, Madani et al.’s CNN was
able to classify 15 major views (12 from B-mode and 3 from
pulsed-wave Doppler, continuous-wave Doppler andM-mode
recordings). Using cluster analysis, this method achieved an
accuracy of 97.8% on videos from patients who had a variety
of pathologies, including normal variants and suboptimal
views [34]. On still images, the model performed better than
board-certified echocardiographers with an accuracy of 91.7%
compared with 79.4%, respectively [34]. The study by
Madani and colleagues further demonstrated the potential
mechanisms by which the CNN is able to classify echocardio-
graphic views [34]. By performing exclusion experiments, the
authors showed that the CNN perhaps works in a similar fash-
ion to an expert echocardiographer when classifying echocar-
diographic views (Fig. 1).

These studies demonstrate the ability of trained AI-based
models to identify standard echocardiographic views, a first
step towards echocardiographic image analysis. Importantly,
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ML algorithms are able to recognize these views in less than a
minute (21 ms in the case of Madani et al’s model), thereby
demonstrating the potential for ML to improve speed and
efficiency of echocardiographic workflow. Further work is
still required before these innovations are incorporated into
routine clinical practice. As demonstrated by Madani and col-
leagues, the accuracy of most ML algorithms used for identi-
fication of echocardiographic views is highest for views that
are most highly represented in the training data, and lowest for
views which are closely related, e.g., apical three-chamber vs
apical two-chamber views and apical four-chamber vs apical
five-chamber views [34]. Furthermore, real-world data are still
needed to demonstrate that the incorporation of these ML-

based view recognition algorithms into modern echocardiog-
raphy translate into cost-efficient and effective strategies.

Image Analysis and Interpretation

Assessment of Left Ventricular Function

The interpretation of acquired echocardiography images re-
quires expertise and can be challenging to a less experienced
reader. The assessment of left ventricular function (both visu-
ally and quantitatively) is the most commonly performedmea-
surement in echocardiography and has significant prognostic
value [1, 32]. The assessment of left ventricular ejection func-
tion (LVEF) is subject to significant inter-observer variability
and poor reproducibility [33].

There is good evidence that ML can improve the assess-
ment of left ventricular function and reduce this variability.
Knackstedt et al. demonstrated that LVEF and longitudinal
strain could rapidly and reproducibly be analysed in 8 s using
a ML algorithm, and this was not subject to the variability
encountered when visually assessing or manually tracking
[35]. Several other studies have also shown that automated
software in 3D TTE can reproducibly interpret end-diastolic
volume, end-systolic volume, and LVEF. Levy et al. studied
54 patients who had comprehensive 3D TTE and CMR per-
formed on the same day and found significant correlations
between CMR and ML-based 3D TTE assessment of end-
diastolic volume (r = 0.93), end-systolic volume (r = 0.93),
and LVEF (r = 0.91) [36]. Tsang et al.’s study calculated au-
tomated measurements of LVEF, left ventricular end-systolic
volume, and left atrial volumes with ML-based methods and
demonstrated strong agreement with CMR-derived values
(r = 0.84 to 0.95) [37]. A similar technique for left chamber
quantification in 88 patients with atrial fibrillation using single
beat full-volume 3D TTE data correlated well with manual
tracing while, taking significantly less time (5 min) than the
manual tracing method (27 min) [38].

These data demonstrate the potential of ML techniques to
revolutionize the echocardiographic assessment of cardiac
function and disease detection by rapidly providing accurate
and reproducible measurements with good diagnostic accura-
cy [4]. Furthermore, because the manual tracing required to
achieve quantitative assessment of ventricular function (rec-
ommended by guidelines) is often not feasible in routine clin-
ical practice, this rapid and reproducible assessment by ML
algorithms will be increasingly important with the increasing
numbers of echocardiograms being performed worldwide,
both in cardiology and emergency departments.

Assessment of Right Ventricular Function

Many pathologies can cause right ventricular (RV) dysfunc-
tion, including chronic left-sided heart failure, acute coronary

Fig. 1 Potential mechanisms of the inner workings of convoluted neural
networks (CNNs). In the study performed by Madani et al., the authors
sought to clarify the mechanisms by which a neural network classifies an
echocardiographic view by performing occlusion experiments on test
images within their CNN. a (short axis basal image) Stated accuracy of
92% falls significantly when the most clinically relevant structures (heart
chambers, valves) are occluded, suggesting that the CNN works in a
similar fashion to an expert echocardiographer when classifying views.
b (top; suprasternal aorta/aortic arch, bottom; short axis mid/mitral input)
Adds further weight to this theory. By illustrating saliency mapping, the
authors demonstrated that the most important input pixels center around
the same clinically relevant areas a human expert would use to classify the
correct view. Reproduced from [34]
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syndromes, pulmonary embolism, pulmonary arterial hyper-
tension, and congenital heart diseases. Irrespective of the
aetiology, patients with RV dysfunction experience excess
morbidity and mortality [39]. Because of its complex anatom-
ic features (crescent shaped) and retrosternal position, the as-
sessment of RV with 2D echocardiography is challenging and
is associated with many limitations such as foreshortening,
geometrical assumptions, cumbersome acquisition, and long
post-processing times [31]. As a result, although the RV
carries invaluable prognostic information, it has traditionally
received less attention in echocardiographic assessment.

Accurate and reproducible quantification of the RV size and
function can be achieved with 3D echocardiography. However,
the existing software programs used with 3D echocardiography
are time-consuming and require specialized training in image
acquisition and data analysis [40]. 3D echocardiography has
therefore not been widely implemented in routine clinical as-
sessment of the RV [40]. Could AI become the answer to opti-
mal and reproducible echocardiographic evaluation of the RV?
In an unselected cohort of 56 patients with a wide range of RV
sizes and function who underwent 3D echocardiography and
CMR imaging on the same day, Genovese et al. recently dem-
onstrated that the RV size and function could be evaluated with
ML-based methods with excellent reproducibility [16]. In this
study, accurate and fully automated measurements of the RV
size and function were possible in 32% of the patients while
accurate measurements were obtained in the remaining patients
with minimal boundary editing.

Although more studies are needed to demonstrate the re-
producibility of ML-based methods for the assessment of RV,
the study by Genovese and colleagues offer very promising
results. With the rapid expansion of ML algorithms, it is an-
ticipated that incorporation of ML-based techniques into 3D
echocardiography could potentially become the standard as-
sessment of the RV.

Valvular Function

Early diagnosis and treatment of primary valvular diseases
such as primary mitral and tricuspid regurgitation are associ-
ated with improved outcomes [41]. However, current analysis
of valvular diseases requires manual imputation of datasets or
multiple echocardiographic measurements and is subject to
inter-observer variability [42]. Limited data suggest that the
assessment of valvular function and identification of patholo-
gy may be amenable to ML techniques. Jeganathan and col-
leagues have previously shown that automatedML techniques
improve reproducibility of mitral valve assessment using 3D
transesophageal echocardiography [43]. ML algorithms could
also be used to assess the severity of mitral regurgitation (MR)
with one study demonstrating that this can be achieved with a
sensitivity of 99.38% and specificity of 99.63% for differen-
tiating between normal, moderate, and severe MR [42].

Emerging data indicate that aortic stenosis can be predicted
from other echocardiographic data without the need for any
left ventricular outflow tract measurements (gradients, veloc-
ity, and diameter) [44]. This would have great potential for
improving efficiency and reducing study duration and cost.
However, the current data for using ML-based algorithms
for valvular assessment remain limited, and more studies are
needed. We are yet to see quality studies demonstrating the
utility of ML-assisted automated analysis and quantification
of tricuspid and pulmonic valves as well as mitral stenosis.
Nonetheless, the smaller number of existing studies suggests
that ML-assisted valvular assessment will become a reality in
the next few years.

Diagnostic Utility

Emerging data suggest that ML-based echocardiographic
models may improve the diagnosis of cardiac diseases that are
traditionally challenging to diagnose with echocardiography,
and that often require more advanced imaging modalities, such
as CMR. Narula et al. combined the techniques of support
vector machines, random forests, and ANNs to accurately dif-
ferentiate pathologic from physiologic cardiomyopathy in ath-
letes [10]. This ensemble model displayed higher sensitivity
and specificity when compared with the standard quantitative
measurements of early-to-late diastolic transmitral velocity ratio
(p < 0.01), average early diastolic tissue velocity (e’) (p < 0.01),
and strain (p = 0.04) [10]. Zhang et al. trained different CNNs to
recognize the appearance of 3 chronic structural heart diseases:
hypertrophic cardiomyopathy, cardiac amyloidosis, and pulmo-
nary arterial hypertension with C statistics (area under the re-
ceiver operating characteristic curve, AUC) of 0.93, 0.87, and
0.85, respectively [5•]. Finally, Raghavendra et al. deployed an
unsupervised learning model (double density-dual tree discrete
wavelet transform to detect 12 echocardiographic features to
distinguish patients with obstructive coronary artery disease
from those without disease with accuracy of 96.05%, sensitivity
of 96.12%, and specificity of 96.00% [45].

Furthermore, ML-assisted strain imaging and speckle
tracking echocardiography (STE) could potentially be used
to differentiate between commonly mistaken conditions.
Sengupta et al. found that an ML algorithm was able to dif-
ferentiate between restrictive cardiomyopathy and constrictive
pericarditis using 15 STE variables (AUC of 89.2%) [13].
This algorithmic approach, referred to as an associative mem-
ory classifier, achieved an AUC of 96.2% after the addition of
4 echocardiographic variables (e’, E/e’, septal, and posterior
left ventricular wall thickness). Furthermore, the model was
superior to commonly used echocardiographic variables such
as early diastolic mitral annular longitudinal velocity and
global longitudinal strain. The study demonstrated the ability
of an ML algorithm to be taught and then recall key compo-
nents of a complex echocardiographic evaluation, and has, as
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the authors concluded, the “potential for standardizing and
improving workflow in busy echocardiography laboratories”
[12]. Further AI developments and improvements are expect-
ed over the next few years, and these will radically transform
modern echocardiography.

Stress Echocardiography

Stress echocardiography is vulnerable to wide variations in
sensitivity and specificity [46, 47]. ML techniques show
promise in identifying and quantifying inducible wall motion
abnormalities, thereby demonstrating an ability to overcome
the limitations in accuracy. Mansor et al.’s automated model
showed improved classification of wall motion abnormalities
(84%) compared with individual rest (73%) and stress (68%)
sequences [48]. Another study that compared random forests,
support vector machines, and CNN on a 3D dobutamine stress
echocardiography dataset demonstrated that these automated
techniques could differentiate between normal and abnormal
wall motions, and that this ability was slightly higher for deep
learning approach [49].

3D Echocardiography

Despite the superior accuracy and reproducibility of 3D echo-
cardiography compared with 2D echocardiography, wide-
spread application of 3D echocardiography for quantitative
assessment of left atrial and left ventricular volumes has not
yet been implemented due to the increased time and expertise
required to obtain these measurements [37]. As discussed
above, current data indicate that the transition to 3D echocar-
diography may be hastened with incorporation of well-trained
and validated ML algorithms [12, 50].

The Future of Artificial Intelligence
in Echocardiography

Detection of CVD Disease at Subclinical Stage

CVD can progress at subclinical stages for many years before
the onset of symptoms. Delayed diagnosis can lead to poor
prognosis often related to irreversible pathophysiologic
changes that occur over many years. With the increasing prev-
alence of obesity, hypertension, and metabolic diseases such
as diabetes, there is a growing interest in the identification of
disease at subclinical stages which may facilitate early inter-
ventions and improve outcomes. Many noninvasive tech-
niques such as electrocardiograms and echocardiography,
which are readily available in community settings, coupled
with ML algorithms, could be used to achieve this goal [51].

LVEF has traditionally been used as a marker of LV dys-
function, with low LVEF being associated with poorer

outcomes [1]. However, LVEF is highly dependent on hemo-
dynamic conditions and is less sensitive to minor changes
occurring over time. Global longitudinal strain (GLS), a mea-
sure of myocardial deformation, is a novel and relatively
newer marker of subclinical LV dysfunction and has useful
prognostic value [52, 53]. The prognostic value of GLS is
observed in patients with heart failure irrespective of the
LVEF [53, 54]. GLS can be measured with tissue Doppler
imaging or 2D stress echocardiography. However, GLS is
not routinely measured in clinical practice as it requires appro-
priate training. Zhang et al. demonstrated that fully automated
assessment of an entire echocardiogram including the evalua-
tion of GLS is possible with ML algorithms [5•]. Once incor-
porated into routine echocardiography, ML-based models
may improve the detection of CVD at subclinical stages by
enhancing the detection of subtle changes that are not detect-
able or feasible with the current methods.

Furthermore, there is a highly anticipated expectation that
ML technology will improve access to echocardiography in
rural and less developed parts of the world. This would facil-
itate early detection of CVD and help to close the gap in
disease outcomes between these regions and the more affluent
areas. Zhang et al. postulated that AI could help detect early
signs of heart disease in a cost-efficient manner by having
non-experts use handheld imaging devices at point-of-care
locations and subsequently uploading images to a cloud-
based automated interpretation system that would allow com-
parison with prior studies [5•]. Such an approach would pro-
mote early detection of CVD and potentially reduce the mor-
bidity and mortality associated with CVD [55].

Prognostication and Risk Prediction

In an era of sophisticated noninvasive cardiovascular imaging
modalities, molecular profiling, andML technologies, there is a
growing interest in achieving personalized risk assessment and
prognostication. LVEF is currently the most commonly used
echocardiographic prognostic marker despite its limited prog-
nostic value [52, 54]. A search for improved prognostic markers
is an area where application of ML-based methods may play a
substantial role in improving prognostic assessment. Samud
et al. have previously demonstrated that ML-based echocardi-
ography combined with electronic health records could signif-
icantly improve the prediction of adverse outcomes with an
accuracy of 96% [56•]. Unsupervised ML techniques using
clustering methods are also promising to improve the identifi-
cation of at-risk patients and the prediction of cardiovascular
outcomes. These techniques have been demonstrated to identify
a cluster of echocardiographic phenotypes associated with an
increased risk of adverse cardiovascular outcomes in patients
with type 2 diabetes [57], diastolic dysfunction [21, 58], and
heart failure [59]. Using guideline-recommended echocardio-
graphic parameters for assessment of left ventricular diastolic
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dysfunction, an unsupervised cluster analysis identified unique
patterns that predicted outcomes better than conventional clas-
sifications recommended by the guidelines [60•].

These results suggest that ML techniques may uncover as-
yet unknown, but significant, echocardiographic measure-
ments that have a real impact on clinical outcomes. Zhang
et al. previously demonstrated that an ML algorithm could
play a significant role in longitudinal monitoring for
cardiotoxicity in cancer survivors [5•]. Based on these prelim-
inary findings, it is anticipated that ML-based techniques will
improve the prognostic assessment of various cardiovascular
diseases. The current and potential applications of ML algo-
rithms in echocardiography are illustrated in Fig. 2.

Implications for Echocardiography Workforce

AI and ML algorithms are expected to radically change echo-
cardiographic imaging practice. This has raised great concerns
that “machines” may potentially replace echocardiographers in
the future. This may not be the correct assumption at least based
on current evidence. Instead, the echocardiographers will ben-
efit from the support that will be offered byML-assisted cardiac
imaging. These technologies will significantly reduce the time
that the imagers spend extracting and integrating the echocar-
diographic data and will therefore improve the workflow. The
echocardiographers of the future will be expected to understand
the basic principles of AI and possess abilities to integrate ML-
based applications into routine echocardiography. Therefore,
echocardiographers who embrace this innovative technology
will stand to benefit rather than lose.

Challenges and Pitfalls

Despite the significant progress that has been made in ML-
based echocardiography, there are still many challenges to over-
come. First, our understanding of the inner workings of the

hidden networks of ML models, often involving thousands of
interconnections, remains limited [61]. Second, the training of
ML models is restricted by the availability of large datasets
covering a broad range of patients and pathologies/normal var-
iants. As demonstrated in previous studies, these large datasets
are required for optimal training and validation of clinically
useful ML algorithms [34]. In particular, labelling of diagnostic
images, required for supervised ML, is challenging, time-con-
suming, and requires appropriate training and expertise.
Generative adversarial networks are now being explored as
potential strategies for addressing this limitation. A generative
adversarial network consists of a generator which generates an
image, and a discriminator that predicts whether an image is a
real or generated image [17•]. Generative adversarial networks
were initially developed for use in unsupervised learning but
can now be leveraged in semi-supervised ML to perform auto-
mated image analysis in data-limited settings [62].

A third challenge is the lack of data demonstrating clinical
utility. Current studies investigating the use of ML in echocar-
diography have compared their results against expert readers
rather than disease outcomes. For AI to be incorporated into
clinical practice, it will need to prove its clinical utility beyond
being diagnostically useful. Figure 3 demonstrates the stages
in the development of a clinically useful AI model and high-
lights the limitations related to each stage. As shown in the
figure, the current data demonstrate feasibility of ML-based
echocardiography, with limited single-center studies suggest-
ing potential diagnostic utility. However, there are currently
no data to show that these ML-based models improve clinical
outcomes. Therefore, studies evaluating the effects of ML
applications on these outcomes will be required before the
integration of ML into modern echocardiography practice.
Linking electronic health records to existing imaging data-
bases will perhaps be the first step towards achieving this goal,
but this is yet to be fully accomplished [11, 63].

Finally, due to the potential legal liabilities and clinical
governance issues, application of this technology will require

AI = ar�ficial Intelligence; ML= machine learning;  GANs = genera�ve adversarial networks; CVD = cardiovascular disease
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generative adversarial networks;
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extensive validation prior to regulatory approval. The success
of ML-based models in echocardiography will rest upon the
ability of computer scientists, echocardiographers, and cardi-
ologists to collaborate in order to address these limitations.

Conclusion

AI is promising to transform all forms of cardiac imag-
ing, including echocardiography. Current and emerging
data suggest that these ML algorithms are able to rec-
ognize echocardiographic views, automatically evaluate
left and right ventricular function, and quantify chamber
and valvular measurements. The main clinical benefits
of ML algorithms in echocardiography will include re-
duction in time spent extracting and integrating echocar-
diographic data and improvement in reproducibility of
echocardiographic assessments. This revolutionary ap-
proach will allow patients to obtain a more objective
assessment in a timely manner. It is also expected that
improvement in workflow and efficiency will reduce the
costs of echocardiography imaging. Other potential ben-
efits will include incorporation of ML into risk

prediction models and early detection of cardiovascular
diseases at preclinical stages.

Although significant progress has been made over the
last few years, we are currently still many steps behind
the incorporation of ML technology into routine echo-
cardiography. Clinical utility lags behind diagnostic util-
ity as we are yet to demonstrate that ML-based diag-
nostic models improve clinical outcomes. Extensive val-
idation and robust clinical benefits will need to be dem-
onstrated before regulatory approval can be provided.
Current evidence suggests we are still a long way from
clinical application.

Nonetheless, the future of AI and echocardiography is
bright, and with the rapidly expanding knowledge of ML al-
gorithms, the application of ML-based echocardiography is
within reach and is expected to radically transform modern
echocardiography in the near future.
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