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Abstract Coronary CT angiography (CTA) has become a
well-accepted imaging modality in the evaluation of coronary
artery disease (CAD) due to its high negative predictive value.
The ability to exclude CAD in patients presenting with chest
pain in a low to intermediate risk population makes it very
useful in emergency departments for optimizing resource uti-
lization and reducing expenditure. The limited availability of
trained cardiac imagers is a potential obstacle in implementing
this strategy. Towards the goal of prompt and accurate inter-
pretation of coronary CTA, there has been a recent interest in
the development of automated coronary CTA interpretation
and reporting. This article aims to review the current applica-
tions and scientific evidence on the utility of automated tech-
niques for interpretation and reporting of coronary CTA.
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Introduction

Coronary CTangiography (CTA) has become a well-accepted
imaging modality in the evaluation of coronary artery disease.
The high negative predictive value of this modality has been
demonstrated in several multicenter trials, whichmakes it very
useful in the exclusion of coronary artery disease in low to
intermediate risk population [1]. Several centers have
implemented coronary CTA to exclude the presence of coro-
nary artery disease in patients presenting with acute chest

pain, but with low to intermediate pre-test probability. Coro-
nary CTA has been shown to be useful in the emergency room
in establishing the etiology for patients presenting with chest
pain, reduce the time to diagnosis, and decrease the duration of
hospital stay [2]. The recently published ROMICAT (Rule Out
Myocardial Infarction using Computer Assisted Tomography)
trial showed the utility of CT in improving resource utilization
and reducing expenditure [3]. A negative CTscan also predicts
absence of future major adverse cardiovascular outcomes [4].
However, interpretation of coronary CTA requires highly
trained cardiac imagers, who may not be routinely available
outside normal working hours. Interpretation of coronary CTA
may take up to 30–40 minutes since it requires careful analysis
of all the segments of the coronary arteries in multiple orien-
tations and possibly several phases of the cardiac cycle.

Computer aided detection (CAD) is being successfully used
in several anatomic regions, including mammography for de-
tection of breast lesions, chest CT for detection of lung nodules,
and in CT colonography for detection of polyps. Although
coronary artery disease is one of the most common medical
problems encountered in the western world, computer-aided
detection has not yet been utilized on a large scale.

Interpretation of coronary CTA typically requires complex
postprocessing, which includes segmentation of coronary ar-
teries, centerline extraction, and evaluation of the coronary
arterial wall and lumen. Typically, this is performed using
multiple projections, such as multiplanar reconstruction
(MPR) in the short axis of the vessel for evaluation of plaque
and lumen, curvedMPR for evaluation of a tortuous branch in a
single 2D image and maximum intensity projections (MIP) for
analysis of complex anatomy. Using a combination of multiple
techniques and planes, the presence and extent of plaque as
well as the presence and severity of luminal stenosis/occlusions
can be determined. Because of these complex postprocessing
needs, a significant amount of time and a well-qualified reader
are often required for interpretation of coronary CTAs.

Automated techniques have been used for calcium scor-
ing and semiautomated techniques have been used for
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segmentation and display of coronary arteries to provide
more reproducible measurements and reduce inter and intra
observer variability [5–10]. There are several algorithms that
are available for automatic centerline extraction of the coronary
arteries from CCTA. These algorithms are based on several
different techniques including morphologic operators [11],
model fitting [12], medialness filter [13], or fuzzy connected-
ness [14]. Often, these techniques are not completely success-
ful regarding the extraction of the distal coronary arterial tree.
More accurate techniques include combination of gradient
vector flow and Frangi’s vesselness measure [15–18] or
connected component analysis and wave propagation [19].
Another technique is an improved Frangi’s vesselness filter,
which uses a discriminator based on local geometric features
to decrease false positive responses in Frangi’s vesselness
filter [10]. In the last mentioned technique, preprocessing,

improved Frangi’s vesselness filter, automatic ostium detec-
tion, centerline extraction, branch searching, and centerline
refinement are performed with minimal human interaction
(Fig. 1). Full description of these algorithms is beyond the
scope of this article. The algorithms have been evaluated using
Rotterdam Coronary Artery Algorithm Evaluation Frame-
work, which consists of 128 reference centerlines that were
used in MICCAI Coronary artery tracking challenge (CAT08)
[19]. Most of these techniques require some form of human
interaction to correct for incorrect segmentation/centerline
extraction,

Using a fully automated system for the interpretation and
reporting of coronary CTA has many potential applications
including in the emergency departments. Several studies
have recently explored the utility of automated systems in
evaluating coronary CTA [20••, 21].

Fig. 1 Semiautomatic centerline extraction and lesion analysis using the
algorithm of Yang et al (QAngio CT Research Edition, Medis Medical
Imaging Systems, Leiden, The Netherlands) [10]. (A) Image of LAD has
been extracted from CTA data and shown as blue curve in 3D and curved
MPR on the right. Automatically calculated segment labels and positions
are also shown in the 3D view. (B) Initial step of the automatic contour
detection showing 4 longitudinal cuts of the stretched MPR stack of the
LAD. The lumen (yellow) and vessel (orange) contours are automatically
detected.Manual modifications to the contours at this stage can be used to
improve the transversal contour detection in the next step. The current
transversal slice position is synchronized with the 3 orthogonal views on
the side and indicated in the 3D view. (C) After transversal contour
detection, the current intersections of the contours with the curved MPR

as shown in the left panel. Also the segment labels are shown. The mean
diameter of the lumen (yellow) and orange (vessel) contours are show in
the graph. The x-axis shows the distance (in mm) from the aorta. (D)
Automated lesion analysis in the proximal LAD. The markers in the
curved MPR and the graph indicate the lesion definition markers. The
markers "S" (green) and "E" (red) indicate the region of interest of the
lesion. The reference lines in the graph are calculated based on a regres-
sion analysis of the diameters in this region. The "P" and "D" (blue)
markers indicate the extent of the lesion. The "O" marker indicates the
location of theMLD. Lesion definitions are shown in the full graph. In the
transversal lumen contour the minimal diameter is also indicated. Images
courtesy of de GraafMA,Kitslaar PH, Leiden UniversityMedical Center,
The Netherlands
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This article aims to review the current evidence on the
utility of automated coronary CTA techniques for interpre-
tation and reporting, and the probable limitations.

Techniques

To our knowledge, there are currently 2 computerized auto-
mated algorithms for interpretation and reporting of coro-
nary CTA studies. One is the COR Analyzer, (Rcadia, Haifa,
Israel) [22] and the other is the Siemens software (Siemens
AG, Erlangen, Germany) described by Kelm et al [21]. The
COR Analyzer v. 1.8R755 (Rcadia, Auburndale, MA) [23]
is approved by the FDA.

The COR Analyzer algorithm performs automated CTA
in 3 steps, namely coronary artery segmentation, coronary
artery labeling, and detection of stenosis [24]. In the initial
step, lungs are detected as air filled areas that are segmented
using morphologic filters and distinguished from air outside
the body by a set of heuritistics. Mediastinum is segmented
as the area between the lungs. Ascending aorta is detected
using circular Hough transform, which looks at circular
cross sectional within the mediastinum in the axial slices
and then segmented using 3D active surface minimization,
based on the distinct edges of contrast filled aorta with
surrounding structures. Coronary arteries are segmented by
following contrast filled areas connected with the ascending
aorta and tracked by following tubular components attached
to it [20••].

Coronary arteries are then labeled using a probabilistic
model that utilizes reference CTA studies that were used to
train the algorithm. Main arteries such as the left main (LM),
left anterior descending (LAD), left circumflex (LCX), and
right coronary artery (RCA) are labeled and validated based
on spatial relationships between arteries (Fig. 2). If there is

as a variation of the arterial anatomy, such as anomalies
where a major artery is missing, it will be read as incomplete
segmentation [20••, 22].

The labeled coronary arteries are then analyzed following
split of the vessels into disjoint segments. The lumen and the
wall are delineated using iterative model based variation.
Calcified lesions are detected and segmented by hyestersis
based adaptive binarization. Noncalcified plaques are detected
as hypodense areas without calcium between the vessel wall
and the lumen. Each segment is analyzed for cross sectional
area (of vessel and lumen), plaque (presence, size), noise,
artifacts (presence, extent), bifurcations, and distance from
ostium. These features are then matched with characteristic
lesions that were used to train the algorithm. Detection marks
are placed over significant stenotic areas (>50 %) along an
automatically generated curved multiplanar reformation along
the centerline of the vessel and warning marks are placed over
segments with potential processing failure [20••].

At every step in this algorithm, validation tests are
performed to verify the correctness of the process. The system
reports a failure if the confidence level of the result is low or it
reports a warning if there is a problem in a part of the study.
The system determines the adequacy of vessel tracking, abrupt
vessel disappearance, imaging artifacts, low likelihood of
named vessel to specific coronary artery, and insufficient
coverage of AV groove by tracked vessels. The total time for
all the above mentioned steps is expected to be 5–7 minutes
[20••].

A report is generated with each coronary artery coded
with a different color, and significant stenotic areas marked
by thick red overlay. An orthogonal set of images with the
ability to scroll through coronary vessels to evaluate stenosis
identified on color coded coronary tree is also provided. A
table showing the interpretation of stenosis for each vessel
and branch is also provided.

Fig. 2 Right anterior oblique
(A) and left anterior oblique (B)
views of the aortic root and
coronary arterial tree using the
Cor A algorithm, which
involved automatic
segmentation, centerline
extraction, and labeling of
branches. With kind permission
from Springer Science+Business
Media: Goldenberg R, Eilot D,
Begelman G, et al. Computer-
Aided Simple Triage (CAST) for
coronary CT angiography:
Fig. 4. Int J Comput Assist
Radiol Surg 2012;7:819–827
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The second algorithm by Siemens described by Kelm et al
has 4 steps, namely vessel tracing, centerline verification, lu-
men estimation, and stenosis detection and classification [21].

In this algorithm, vessel tracing is performed using multi-
scale medialness filters in a graph based algorithm that
extracts centerlines of the 4 major arteries (LM, LAD,
LCX, RCA) and their major first order branches by com-
puting minimum-cost paths.

Centerline verification is an additional step that is used in
this algorithm. Using learning based method, noncoronary
portions of the study such as coronary veins, pulmonary
vessels, and cardiac chambers are excluded. The algorithm
also traces centerlines in vessels completely occluded by
non-calcified plaques that have the same attenuation as that
of the vessel wall. A cylindrical sampling pattern for feature
extraction with its axis aligned to coronary centerline is
employed and multiple rotation invariant features are
extracted along the entire length of cylinder at varying radii,
which are then used to train a random forests (RF) classifier.
When a particular coronary artery is extracted, the RF clas-
sifier generates a probability that a given point in centerline
belongs to a non-vessel structure. Points with scores higher
than a particular threshold are then eliminated from further
analysis.

Luminal dimensions are estimated along the centerline
using an automatic nonlinear regression method to directly
estimate the vessel radius and cross sectional area from local
image features. Using imaging features and feature vectors
of the vessel, a regression tree is evaluated by following its
splits from the root to a leaf with an associated radius. This
method of luminal estimation using regression analysis is
considered significantly faster than luminal segmentation
approach [21].

Stenosis is detected and quantified along the lumen as
max-min-max triples of baseline-corrected and smoothed
radius curve along with an estimation of grade. From the
estimated radius, stenosis is identified and estimated. The
vessel tree is decomposed into disjoint segments, starting
from ostium or vessel bifurcation and subsequently ana-
lyzed. Stenosis is graded as significant, >50 % or discarded
<50 % or short <0.9 mm or narrow (<1 mm) or close to
distal end of vessel (<7.5 mm). Then using probability
scores obtained from classifiers, stenosis is classified as
calcified, non-calcified, or mixed type [21].

Applications of Automated Coronary CTA
Interpretation and Reading

There are several clinical scenarios where an automated
coronary CTA interpretation and reading could be useful.

One situation where this system has the highest potential
is in emergency department for patients who present with

acute chest pain. CTA is increasingly used in emergency
departments in patients with suspected acute coronary syn-
dromes who have low to intermediate probability of coro-
nary artery disease, with indeterminate EKG or enzyme
findings, to exclude coronary artery disease [3]. As de-
scribed above, several studies have demonstrated the utility
of CTA in this scenario [2]. However, a major obstacle in the
implementation of this strategy is the lack of availability of
adequately trained cardiac imagers outside normal working
hours. Accurate interpretation of coronary CTA require
trained cardiac imagers, who will require significant amount
of time for evaluation of the entire coronary tree since it
requires substantial post processing including multi-planar
reconstructions in several projections. Since the primary
intention of using CT in this setting is to optimize resource
utilization and discharge patients at the earliest, it is imper-
ative to provide a prompt reading. In such a scenario, it
might be useful to implement an automated coronary CTA
interpretation and reporting algorithm.

After CTA is performed, the images could be sent to a
workstation where the software performs a completely au-
tomated analysis and give preliminary result on whether
there is a significant (>50 %) stenosis or not or if the result
is indeterminate. If there is no significant stenosis, the
patient can be discharged and a full report can be furnished
when an expert radiologist is available. If there is suspicion
of a significant stenosis, an expert reader can be alerted to
provide a final report and the patient can be admitted to the
hospital for further intervention and management. This al-
gorithm would in this way optimize utilization of available
resources, providing confidence to less trained personnel for
excluding coronary artery disease and utilizing the expert
readers only for positive cases.

Another potential use is as a second reader to enhance the
interpretation of expert readers. This concept has been used
in other anatomical regions such as mammography, CT of
lung nodules, and CT colonography for detection of polyps
to validate the findings and enhance the diagnostic capabil-
ities of the expert reader. There exists a similar potential in
coronary CTA as well, although the only study that evalu-
ated this aspect [25] has not shown any significant benefit.
The automated system may also work as a quality assurance
tool providing measurable end points in trials.

In summary, there are few scenarios, where the automat-
ed CTA algorithm can be employed either as a ‘first reader’
to be followed with an expert manual read or as a ‘second
reader’ to enhance the report of an expert reader.

Literature Review

Several studies have been performed on the utility of the
automated coronary CTA in various settings (Table 1). Most
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of these studies have been performed on COR Analyzer
software [26•, 27–37] and 1 study by Kelm et al [21] on
the Siemens algorithm.

Arnoldi et al correlated the results of automated coronary
CTA system with quantitative coronary angiography (QCA)
in 59 patients who presented to outpatient cardiology depart-
ment with atypical chest pain or stress studies (Fig. 3). The
algorithm was found to have a sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value
(NPV) for predicting stenosis >50 % of 74 %, 83 %, 46 %,
and 94 %, respectively, on a per vessel basis and 100 %,
65 %, 58 %, and 100 %, respectively, on a per patient basis.
False positive results were seen in 33 patients at a rate of 0.56
per patient, 19 of which were associated with stenosis < 50%
(Fig. 4) and 14 were associated with no stenosis in QCA.
False positives were found in studies with motion/stairstep
artifacts [3] (Fig. 5) or high image noise (1 case) and in some
cases the cause remained unexplained (10 cases). They con-
cluded that the high NPV makes it valuable as a second
reader to enhance the confidence in excluding coronary
artery stenosis. The false positive rate was also relatively
low compared with other modalities. On a per patient basis,
there is high performance for diagnosing CAD. On a per
vessel basis there is high sensitivity for RCA (70 %) and

LAD (94 %), while low sensitivities were found for LM
(33 %) and LCX (43 %), which is probably related to low
prevalence of CAD in this group (just 3 in LM and 7 in LCX)
[22]. Thus the technique is more suitable for excluding CAD
in a low to intermediate prevalence population rather than a
high prevalence population. This is in line with the current
consensus that coronary CTA is appropriate only in low-to-

Fig. 3 Use of Cor A algorithm in a 46-year-old man with atypical
chest pain. (A) Following automatic segmentation, labeling, and centerline
extraction of the coronary arterial tree, the software places red marks on
areas of suspected significant stenosis. Curved multiplanar reconstructed
image of LAD shows the areas of significant stenosis, denoted by red
arrows. (B) Left anterior oblique view of coronary catheterization study of
the same patient shows areas of significant stenosis in the proximal and
mid LAD (black arrows). The stenosis in the mid segment (white arrow) is
minimal (10 %). With kind permission from Springer Science+Business
Media: Arnoldi E, Gebregziabher M, Schoepf JU, et al. Automated
computer-aided stenosis detection at coronary CT angiography: initial
experience: Fig. 1. European Radiology 2010;2:1160–1167

Fig. 4 Curved MPR image of LAD in a 74-year-old man with atypical
chest pain shows 2 calcified atherosclerotic plaques. The automated
algorithm marked 2 areas as having significant stenosis (red arrows).
(B) However cardiac catheterization (right anterior oblique view) did
not show any significant stenosis. In this case, software likely
overestimated the severity of stenosis due to blooming from calcified
plaques. With kind permission from Springer Science+Business Me-
dia: Arnoldi E, Gebregziabher M, Schoepf JU, et al. Automated com-
puter-aided stenosis detection at coronary CT angiography: initial
experience: Fig. 3. European Radiology 2010;2:1160–1167

Fig. 5 False positive interpretation. Curved MPR image of the right
coronary artery in a 47-year-old man with exertional chest pain shows
red arrows placed in an area, which the software interpreted as an
abnormal area. Review of this region shows significant stair-step
artifact in the RCA as the cause of this red marker and no significant
stenosis was identified in this location on cardiac catheterization (not
shown here). With kind permission from Springer Science+Business
Media: Arnoldi E, Gebregziabher M, Schoepf JU, et al. Automated
computer-aided stenosis detection at coronary CT angiography: initial
experience: Fig. 5. European Radiology 2010;2:1160–1167
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intermediate risk population and not in a high risk group. A
limitation of this study is that the CTA was performed on
patients who were referred for cardiac catheterization, which
will be a high risk population. However, it could be extrap-
olated that the test will perform better in a low risk popula-
tion group [22].

Halpern et al correlated the results of COR Analyzer inter-
pretation with human expert interpretation for stenosis >50 %
in a population of 207 patients. Unlike the study by Alridch et
al this study evaluated first order coronary artery branches as
well. COR Analyzer had sensitivity, specificity, PPV, and
NPVof 92 %, 70 %, 48 %, and 97 %, respectively, on a per
patient basis. False positive results were seen in 20 of patients
(23 stenoses). This was due to either calcified vessel, blurred
vessel, misidentified vessel (misclassification of non-vascular
or extracardiac structure as vessel), coronary stents, or myo-
cardial bridges. False negative results were due to small ves-
sels (<1.5 mm), left dominant coronary system with small
RCA (<1.5 mm), vessel misidentification and stenosis close
to 50 %, failure to include branches, and no obvious explana-
tion. COR Analyzer agreed with the expert interpretation in
75 %. However, this study is limited by absence of correlation
with coronary catheterization [23].

Kang et al evaluated the potential of this software in eval-
uating ED patients presenting with acute chest. This retro-
spective study correlated the patients with <50 % stenosis in
automated coronary CTA with formal radiology report in a
group of 398 patients who presented to ED with acute chest
pain. Eighteen patients were excluded due to failure of image
transmission or insufficient number of image slices. Of the
380 eligible patients, CAD had sensitivity, specificity, PPV,
and NPVof 94%, 63%, 76%, and 89% on a per patient basis.
The NPV increased to 93 % after exclusion of 37 cases
interpreted as invalid by auto CAD algorithm. The NPV
further increased to 97 % after excluding the 75 % of false
negative cases that were eventually showed to have non-
significant CAD by using coronary angiography. The causes
of false negative studies were; high calcium, stent, or previous
CABG. False positive studies were associated with severe
calcification [15], previous PTCA [8], CABG [4], small
RCA [3], calcified plaque [16], myocardial bridge [13], or
anomalous RCA origin [9]. Anomalous RCA resulted in
failure to correctly track the RCA, which was interpreted as
abnormal. The kappa value between auto CAD and radiology
report was 0.58. The study also showed that it took 180±
30 minutes from the time of acquisition to provide a formal
radiology report, while the algorithm provided report in 11±
5 minutes after acquisition. This study proved the potential for
auto CAD to be used in emergency setting. In addition, it has
potential to reduce intra and inter-observer variability and
make it more reproducible. However the limitations of this
study are that it is retrospective and not all the results were
compared with coronary angiography [26•].

Goldenberg et al evaluated the use of CAD as a CAST
(Computer aided simple triage) to exclude the presence of
coronary artery disease in patients presenting in ED with
chest pain. The aim of CAST is to provide a prompt auto-
matic interpretation or wet read indicating presence or ab-
sence of the disease. They summarized the results from 14
independent trials, 3 of which have been described above.
The other results are summarized in the Table 1. In general,
it can be seen that the automated CTA has high NPV and
sensitivity (90 %–95 %), while specificity was lower (40 %–
70 %). The specificity was particularly lower in those stud-
ies where the disease prevalence was high, such as in car-
diology outpatients. In this group, mild disease was present
in those patients who had negative CAD, which was
interpreted as positive by the system, resulting in false
positive studies and hence decreased specificity. The system
will call a study as negative if there is no disease at all,
particularly in the ED population, where the prevalence is
less than 20 %, as a result of which the specificity is high, up
to 60 %–70 % in this population. The system also performed
better with higher quality studies. Higher false positive re-
sults were seen in prospective gating due to misregistration
artifact, noisy low dose scans, or patients with high heart
rate. It can be inferred that the patient selection, patient
preparation, scanning parameters, and staff experience all
play an important role in the performance of the system.
There is an average of 0.72 false positives per study after
analysis of all coronary arteries (8 vessels on average) and
looking for all types of plaques [20••]. In comparison , the
study performed by Kelm et al using the other algorithm had
2.97 false positives per study, while just analyzing 3 major
coronary arteries and looking only for noncalcified lesions.
If it is assumed that the prevalence is same in both studies and
the ratio is the same for both studies between false positives
per negative study and per positive study, the average number
of false positives per negative study is 0.48 in this study,
compared with 2.18 in Kelm et al [20••, 21].

Sansoni et al followed 209 patients who had automated
coronary CTA interpreted for a period of 12.8±7 months
and found that no adverse events happened in those 78
patients who were reported negative by the system, thus
indicating a 100 % NPV. In the 131 positive patients, 40
major adverse events were reported in 28 patients [38].

Anders et al in their recent study, confirmed that the
automated technique (COR Analyzer) has high sensitivity,
and NPV [25] in the detection of significant coronary artery
stenosis (>50 %). In addition, they sought to find out if the
automated reading increases the diagnostic accuracy of
manual interpretation in the detection of CAD. In 100 pa-
tients, with a CAD prevalence of 40 %, they correlated the
presence of significant stenosis (>50 %) between manual
approach (2 independent readers), automated approach, and
expert interpretation aware of automated findings with
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invasive angiography. Reader 1 read the odd cases and then
reviewed the findings after results of COR analyzer were
available. Reader 1 valuated the even studies after initial
evaluation by COR Analyzer. Reader 2 then read the odd
studies, with software first, and even studies, manual inter-
pretation first, blinded to reader 1 [25].

The sensitivity, specificity, PPV, and NPV of automated
reading was 89 %, 79 %, 74 %, and 92 %, respectively, on a
per patient basis and 82 %, 85 %, 48 %, and 96 % respectively
on a per vessel basis. However, the automated segmentation
failed in 10 % of patients and 12 % of vessels. This was either
due to motion artifacts, insufficient contrast, segmental occlu-
sions or pronounced calcification, or unexplained. This implies
the need for additional manual processing in these patients.
False negative results were due to tracing of segmental or side
branches instead of main vessels in case of ostial occlusions.
With expert reading, 100 % of studies were evaluable and
sensitivity, specificity, PPV, and NPV of 95 %, 95 %, 93 %,
and 97 % was found on a per patient basis and 89 %, 98 %,
88 %, and 98 %, respectively, on a per vessel basis. Knowing
the results of the automated approach did not improve the
performance of expert readers. With manual reading following
automatic reading, sensitivity, specificity, PPV, and NPV were
95%, 98%, 98%, and 97%, which is comparable withmanual
interpretation alone. With the expert as the second reader,
sensitivity, specificity, PPV, and NPV were 95 %, 95 %,
93 %, and 97 % respectively, which did not improve the initial
diagnosis by manual interpretation alone. On a per patient
basis, automated detection of stenosis had inferior accuracy
compared with manual interpretation, and had little impact on
expert readers, either if applied first or second. The 16 (12 false
positive, 4 false negative) misdiagnosed patients by automated
analysis alone could be reduced to 5 (3 false positive, 2 false
negative) by adding the expert read. The limitations of this
study are the retrospective nature and a higher prevalence of
CAD than typical in this population. Hence, the rate of false
negatives in this study might overestimate the false negative
rate in a standard clinical setting. However, this study stresses
the importance of manual reading, due to the high rate of
segmentation failure and false negative rate [25].

Kelm et al evaluated the other available Siemens auto-
mated coronary CTA algorithm. In a study of 229 coronary
CTAs [21] performed on a variety of scanners, this algo-
rithm was shown to have a sensitivity, specificity and NPV
by-vessel of 97 %, 67 %, and 100 %, respectively, and
sensitivity of 95 % and false positive of 2.97 % by lesion.
The high sensitivity and negative predictive values make it
valuable as a second reader, comparable with the CorA
system. The authors claim that the total processing time is
1 minute for centerline processing after which 1.8 to 3.9 sec-
onds is required compared with 10 minutes for Rcadia
system [21]. The faster time is due to the lumen regression,
which is much faster and accurate than lumen segmentation,

which takes 21 seconds. The centerline verification system
enables the system to cope with tracing errors and low
quality vessels.

Challenges and Limitations

With an average specificity of 60 % in the above studies and
an estimated prevalence of CAD of 15 % in these studies, at
least 51 % of typical patients undergoing coronary CTAwill
be reported as negative, implying that half of the patients
could be discharged or observed safely based on an auto-
mated analysis alone. With an NPV of 99 %, only 1 % of
patients are expected to be misdiagnosed. However, it
should be understood that this automated system is ideal
only for a low to intermediate risk population and is not
appropriate for use in a high risk population. Final interpre-
tation should be provided by an expert reader, whether it is
negative or positive on an automated system. One should
also be aware that segmentation fails in some patients. For
example, there was a 10 % failure rate in the study published
by Anders et al [25], 8 % in Halpern et al [23], and 5 % in
Arnoldi et al [22]. Implementing this algorithm in routine
practice, particularly in the emergency setting will require
adequate training of all the personnel involved, particularly
the staff of the emergency department. Workflow should be
established after consensus among all the personnel in-
volved on how to manage the patients who are utilizing this
algorithm. The cost of implementing this strategy is not
insubstantial and lack of reimbursement is a potential obsta-
cle. Prospective multicenter trials need to be performed to
evaluate the outcomes of patients who had their initial
evaluation performed by an automated coronary CTA
system.

Conclusions

Automated coronary artery interpretation and reporting
have been shown to provide high sensitivity and negative
predictive values in the evaluation of significant coronary
arterial stenosis compared with invasive coronary angiog-
raphy and expert readers. It has high potential as an
initial reader to triage patients who present with acute
chest pain in the ED and rule out coronary artery disease
in patients with low to intermediate probability of coro-
nary artery disease. The limitations of this technique
should be understood, particularly the failure of segmen-
tation. Final interpretation by an expert cardiac imager is
mandatory in all these studies.
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