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damage the human immune, nervous and secretory systems 
(Deng et al. 2023). Therefore, the assessment of pollution 
and risk for HMs in agricultural soil is essential for the pro-
tection of food security and ecosystems.

Pollution source apportionment is the basis for effective 
intervention and treatment of soil contamination for HMs. 
The HMs were released into agricultural soils through 
anthropogenic and natural sources, among which anthropo-
genic sources were an important cause of agricultural soil 
pollution for HMs (Deng et al. 2023; Wang et al. 2022a). 
The complexity of soil composition, the spatial heterogene-
ity of concentration distribution, and the diversity of sources 
posed great difficulties for the study of source analysis of 
soil contamination with HMs (Zhang et al. 2023a). At pres-
ent, source apportionment methods can be roughly divided 
into two categories (Ran et al. 2021). One category mainly 
identified sources qualitatively by methods such as geosta-
tistical analysis and multivariable statistics (Su et al. 2023; 
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Soil contamination of heavy metal (HM) has become one of 
the serious environmental problems globally, and its impact 
on human health and ecosystems should not be underesti-
mated (Bi et al. 2020; Han et al. 2020). In particular, the 
accumulation of HMs in agricultural soils has aroused wide-
spread concern because they cannot only jeopardize human 
health through intake, skin contact, and respiration (Jafarza-
deh et al. 2022), but also transport to crops and thus accu-
mulate in the humans along the food (Du et al. 2021; Zhang 
et al. 2022b). Excessive intake of HMs may irreversibly 
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Abstract
The quality and safety of agricultural soil are the foundation of crop production, and the traceability of heavy metals 
(HMs) is a prerequisite for effective contamination control. In order to identify the risks and contaminationc sources of 
HMs in agricultural soils, a combination of multivariate statistics, geographic information system (GIS), and positive 
matrix factorization model (PMF) was used to identify sources of contamination in agricultural soils of Tongren City; 
besides, potential ecological and health risks specific to the contaminant sources were calculated on the basis of contri-
bution from variables. The results indicated that the mean values of Cd (0.34 ± 0.17 mg/kg), Cu (30.76 ± 10.94 mg/kg), 
Hg (2.51 ± 4.71 mg/kg), Pb (36.06 ± 35.95 mg/kg), and Zn (112.10 ± 62.29 mg/kg) in agricultural soil were significantly 
greater than the local background values. The HMs content of agricultural soil performed a clustering trend in space, 
showing a positive correlation. High values of soil Hg content were concentrated in the eastern areas of the Tongren 
City, where mining activities were intensive, and high values of soil Cd content were mainly found in the central areas. 
The HMs in the agricultural soil were generally at moderately contaminated levels. Sources of pollution for HMs were 
identified as smelting source (39.7%), natural source (33.2%), agricultural source (15.8%), and mining source (11.3%). 
Agricultural soils in the study area were generally at a high potential ecological risk level. The health risks for children 
were high level and required attention. The mining and smelting source were the main risk sources of the study area. In 
this study, a comprehensive methodology for risk assessment based on pollution sources was proposed to provide a valu-
able reference for risk prevention and control of HMs in agricultural soils.
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Wang et al. 2022a). The other category used receptor mod-
els for quantitative analysis for contamination sources, such 
as chemical mass balance (CMB), UNMIX models, abso-
lute principal component score-multiple linear regression 
model (APCS-MLR), isotopic tracer technology and posi-
tive matrix factorization (PMF) (Shi et al. 2022; Wang et al. 
2022b; Wei et al. 2023b). The PMF models has been widely 
used for quantitative source apportionment of soil HMs in a 
variety of environments.

Regional soil contamination identification and risk 
assessment of HMs can provide theoretical references for 
environmental prevention and policy development. The geo-
accumulation index (Igeo) and nemerow integrated pollution 
index (NIPI) were often used to measure the soil contamina-
tion levels of HMs (Xiang et al. 2022; Zhang et al. 2023b). 
In addition, the potential ecological risk index (PERI) and 
the health risk assessment method (HRA) were used to eval-
uate the threats on HMs to the ecosystem and human health. 
The Monte Carlo simulation can decrease the uncertainty 
in the process for health risk evaluation to a greater extent 
and make the evaluation results more appropriate (Liu et 
al. 2023b; Yang et al. 2022b). Meanwhile, it is important 
to combine various indicators to systematically assess soil 
contamination of HMs. It is also important to consider that 
HMs from different sources exhibited a great difference in 
the level of health risk due to the diversity of bioavailabil-
ity, concentration, and toxicity (Jing et al. 2023; Liang et al. 
2023). Therefore, it is crucial to assess health risks and iden-
tify risk zones for specific contamination sources to develop 
targeted remedial and preventive measures.

Most studies on agricultural soil pollution by HMs were 
concentrated in some industrial areas and economically 
developed zones, for instance, the northeast, central south, 
and the east coast of China (Liu et al. 2023b; Ran et al. 
2021; Wu et al. 2022). The southwest of China is one of 
the regions with the most concentrated and extensive dis-
tribution of karst landforms (Xiao et al. 2022; Zhang et al. 
2022a), which is rich in mineral resources, numerous smelt-
ing enterprises and frequent mining activities (Xia et al. 
2022). The formation of a large number of slag fields has 
brought the hard threat to the fragile karst ecotope (Eugenio 
D’Amico et al. 2023; Kong et al. 2018). The high geological 
background superimposed on the karst landscape has led to 
the high background values and phenomenon of abnormal 
enrichment of soil HMs in the southwest region of China 
(Wen et al. 2020; Yin et al. 2023). In addition, the southwest 
region is an important eco-security shield for the upstream 
of the Yangtze River in China, and soil contamination with 
HMs has become a major hidden danger affecting regional 
ecological and environmental safety (Du et al. 2021; Li et 
al. 2022a). Therefore, it is of great relevance to carry out 
research on the distribution and sources of HMs in typical 

agricultural ecosystems in Southwest China. In particu-
lar, Tongren City has been known as a location of rich Hg 
resource, but the long-term extraction of minerals in the area 
left a potential source of environmental pollution. The min-
erals are mainly located in the Wanshan district, Songtao 
and Bijiang counties. The main aims of this study were to 
(1) describe the contamination level and spatial distribution 
of HMs in agricultural soils; (2) quantify and define the con-
tribution sources for soil HMs using PMF and GIS models; 
(3) evaluate the health risks of HMs for adults and children 
based on risk modeling and Monte Carlo simulations; and 
(4) quantify the impact of contamination sources on eco-
logical and human health risks. The results of the study can 
provide valuable theoretical references for the distribution 
and risk control of HMs in agricultural soils.

Materials and Methods

Study Area and Sample Collection

Tongren City, a city in the northeastern part of Guizhou 
Province of China, is a typical karst landscape area with high 
elevation in the northwest and low elevation in the south-
east of the City. The area of city covers longitude 107°45′E 
− 109°30′E, and latitude 27°07′N − 29°05′N (Fig. 1). The 
study area lied in the central subtropical monsoon humid 
climate zone, with annual rainfall of 1100.0–1400.0  mm. 
The main rock-forming soil is the limestone soil developed 
by carbonate rocks. The minerals gained from the study area 
were mainly minerals of Hg, Mn, Cu, Pb and Sn.

According to the principle of classification sampling of 
soil, combined with a land use type map, mineral distribu-
tion map, and topographic map, the location and number of 
sample points were decided through grid distribution. The 
mining-affected areas and main grain-producing areas was 
determined by mining distribution and agricultural soil dis-
tribution, and the density of sample collection was appro-
priately adjusted according to the cultivated land area and 
the degree of concentration and contiguity. A total of 467 
farmland soils and 83 natural soils were collected. The natu-
ral soils were collected from 10 to 20 cm soil layer in natu-
ral woodland and barren grassland, which were far away 
from human industrial and agricultural activities and had no 
or little human activities. Five-point sampling method was 
used to collect agricultural soils. The soil layer (0–20 cm) 
was selected for sampling, and 1 kg was evenly mixed for 
bagging. GPS was used to locate the sampling sites coordi-
nates. After removal of plant roots and stones, soil samples 
were crushed in a porcelain mortar and sieved through a 
0.149 mm nylon sieve before being put into envelope bags 
for chemical measurements.

1 3



Comprehensive Risk Assessment of Heavy Metals Based on Pollution Sources: A Case Study for Agricultural…

Chemical Analysis

An inductively coupled plasma mass spectrometer (ICP-
MS, PerkinElmer, ELAN DRC-e) was used to detect the 
Cd, Cu, and Ni. An inductively coupled plasma emission 
spectrometry (ICP-OES, Perkin Elmer, Optima 8000) was 
used to determine the Cr, Pb, and Zn concentrations of soil. 
The samples were digested in an aqua regia bath, and then, 
As and Hg were detected using an atomic fluorescence spec-
trophotometer (AFS-9700). Soil pH was extracted using a 
1:2.5 soil-water ratio and measured using the glass electrode 
technique. A soil reference material (GBW07404) and blank 
samples were added for quality control during the analysis. 
The reference material’s recoveries varied from 88 to 106%. 
The RSDs of the duplicate samples were less than 10%, 
while the reproducibility of the examined samples varied 
from 10 to 15%.

Spatial Clustering

Spatial autocorrelation analysis allows users to evaluate the 
spatial autocorrelation of a certain set of geographic data, 

i.e., whether they have some regular pattern in the spatial 
context (Zhang et al. 2022c). Spatial analysis can identify 
data spatial heterogeneity by determining whether there is a 
consistent pattern in the data across space. Spatial autocor-
relation index (Moran’s I index, I) was used to determine 
whether the HMs content of agricultural soils in the study 
area had spatial clustering characteristics (Anselin 2010). 
The Moran’s I index was calculated using Eqs. (1) and (2):

Ii =
xi − X

S2
i

n∑

j=1,j �=i

wi,j(xj − X)� (1)

S2
i =

∑n
j=1,j �=i(xj − X)2

n − 1
−X2� (2)

where Ii is the value of Moran’s I index of x; xi
 is the con-

tent of x at location i;xj  is the content of x at other locations; 
X  is the average content of x; wi,j  is the spatial weight 
between samples i and j, i.e., the reciprocal of their distance; 
S2

i  is the variance of x content; and n is the total number of 
samples.

Fig. 1  Distribution map of soil samples, elevation, metal mines and landuse in Tongren City
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the ecological environment. Equation (6) provides a demon-
stration of the calculation:

RI =
n∑

i=1

EIi =
n∑

i=1

(Tri × Ci

Bi
)� (6)

Where EIi is the single ecological risk that HMs i could 
pose, and Tri is the individual toxicity response coefficients 
which is 10 for As, 30 for Cd, 2 for Cr, 5 for Cu, 40 for Hg, 5 
for Ni, 5 for Pb, and 1 for Zn. The Ci is the actual measured 
level of soil HMs. Bi is the background value of local soil 
HMs (Table  1). The criteria for classifying potential eco-
logical risks were listed in Table S1.

Health Risk Assessment (HRA)

Using the HRA model published by the U.S. Environmen-
tal Protection Agency (USEPA 1997), health risks (carcino-
genic and non-carcinogenic) for adults and children were 
estimated through three pathways: direct ingestion (ing), 
oral-nasal inhalation of suspended soil particles (inh), and 
dermal exposure (dermal), respectively (Jafarzadeh et al. 
2022; Liu et al. 2023a). The three pathways of average daily 
human exposure to soil HMs were calculated as Eqs. (7)–(9):

ADDing =
Ci × OSIR × ABSo × EF × ED

BW × AT
× 10−6 � (7)

ADDdermal =
Ci × SAE × SSAR × Ev × ABSd × EF × ED

BW × AT
× 10−6� (8)

ADDinh =
Ci × DAIR × EF × ED

PEF × BW × AT
× 10−6� (9)

where ADDing, ADDdemalr, ADDinh(mg/kg/d) is the aver-
age daily intake dose of i heavy metal through soil direct 
ingestion, dermal contact, and oral-nasal inhalation of sus-
pended soil particles, respectively. OSIR (mg/d) is the daily 
ingestion of soil, ABS0 is the unit conversion factor, ED 
(a) is the soil exposure duration, EF (d/a) is the soil expo-
sure frequency, BW (kg) is the body weight of the exposed 
individual, AT (d) is the exposure average time, SAE (cm2) 
is the exposed skin surface area, SSAR (mg/cm2/d) is the 
adherence factor, Ev (unitless) is the daily frequency of der-
mal exposure events. ABSd (unitless) is the dermal absorp-
tion factor. DAIR (m3/d) is the inhalation rate of soil. PEF 
(m3/kg) is the soil particle emission factor.

The formulas for calculating the non-carcinogenic risk 
index (IHQ) and carcinogenic risk index (ICR) are listed in 
Eqs. (10)–(11):

IHQ =
n∑

i=1

HQi =
n∑

i=1

3∑

j=1

ADDij

RfDij
� (10)

Pollution Assessment Methods

According to the contents of various HMs, the soil pollution 
was evaluated by the Nemerow Integrated Pollution Index 
(NIPI) (Gui et al. 2023; Zhang et al. 2023b) using the fol-
lowing formulas Eq. (3) and Eq. (4):

Pi = Ci/Si � (3)

NIPI =

√
(Piave)

2 + (Pimax)
2

2
� (4)

Where Pi is the single factor contamination index of soil 
HMs; Ci is the contents of soil HMs; and Si is the soil 
environmental standard for HMs (GB15618-2018) (MEE 
2018); Piave is the mean value of the single factor contami-
nation index of HMs in soil, Pimax is the maximum value 
of the single factor contamination index of HMs in soil. 
The NIPI was classified into 5 grades: NIPI ≤ 0.7, safe; 
0.7 < NIPI ≤ 1.0, precaution; 1.0 < NIPI ≤ 2.0, slightly con-
taminated; 2.0 < NIPI ≤ 3.0, moderately contaminated; 
NIPI > 3.0, seriously contaminated.

The Igeo is an important parameter to distinguish the 
impact of anthropogenic activities (Wei et al. 2023a). The 
calculation of Igeo was shown in Eq. (5):

Igeo = log2
Ci

KBi
� (5)

where Ci is the measured value of agricultural soil HMs 
content, Bi is the background value of HMs in the soil of the 
study area (the natural soil content in Table 1 was used as 
the background value for study area), K was used to correct 
for regional differences in the background value of HMs in 
the soil (generally a constant of 1.5). Classification stan-
dard: Igeo ≤ 0, uncontaminated; 0 < Igeo ≤ 1, uncontaminated 
to moderately contaminated; 1 < Igeo ≤ 2, moderately con-
taminated; 2 < Igeo ≤ 3, moderately to heavily contaminated; 
3 < Igeo ≤ 4, heavily contaminated; 4 < Igeo ≤ 5, heavily to 
extremely contaminated; Igeo > 5, extremely contaminated.

Risk Assessment

Potential Ecological Analysis (PERI)

The PERI approach was used to calculate the single poten-
tial ecological risk (EI) and integrated potential ecological 
risk (RI) associated with HMs in the research area (Li et al. 
2022b; Wang et al. 2023a; Zhang et al. 2020a). The con-
centration, properties, and ecological effects of HMs were 
comprehensively considered to evaluate the risks by HMs to 
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Source Apportionment Model

The positive matrix factorization (PMF) is a type of multi-
variate factor analysis model, which decomposes the matrix 
(X) of sample data into factor contribution matrix (G) and 
factor spectral matrix (F), identifies the factor spectral 
matrix, and quantitatively calculates the factor contribution 
of the sample (Zhou et al. 2023). In the source analysis of 
soil HMs, the PMF was used to organize the HMs content 
of soil samples, extract several factors, identified the factors 
as different sources by using the identification components, 
and then calculated the contributions of different factors 
(sources) to soil samples by multiple linear regression. Fac-
tor profiles and contributions were derived by minimizing 
the objective function Q (Eq. (12) and Eq. (13):

Xij =
p∑

k=1

GikFkj � (12)

Q =
n∑

i=1

m∑

j=1

[
Xij −

∑p
k=1 GikFkj

uij

]2

� (13)

where Xij is the matrix of sample data; Gik is the factor con-
tribution matrix; Fkj is the factor spectral matrix; eij is the 
residence of each sample; uij is the uncertainty; p is the num-
ber of factor; i denotes the sample count; and j denotes the 
HM species.

Data Analysis

The Kolmogorov-Smirnov (K-S) test was employed to 
assess the normality of the data. Variables that did not have 
a normal distribution underwent a logarithmic modifica-
tion. Principal Component Analysis (PCA) and Correlation 
Analysis (CA) were carried out using R software (Zhang et 
al.2023b).

Results

HMs Content in Soil

Soil HMs Background Values

The contents of As, Cd, Pb, Cu, Hg, and Zn in natural 
soil in the study area were in accordance with the nor-
mal distribution after logarithmic transformation, and the 
Cr and Ni concentrations were by the normal distribution 
(Table  1). Therefore, the geometric means were used to 
represent the contents of Zn (96.74 mg/kg), Pb (25.16 mg/
kg), As (18.62 mg/kg), Cu (27.47 mg/kg), Cd (0.15 mg/kg), 

ICR =
n∑

i=1

CRi =
n∑

i=1

3∑

j=1

ADDij × SFij � (11)

where Ci is content of HM i of soil; HQi is the non-carci-
nogenic risk index for HM i which is small and negligible 
when HQi is less than 1, and vice versa (Yang et al. 2022b); 
ADDij is the dose of HM i through route j; CRi is the carci-
nogenic risk index of HM i which shows no evidence of a 
carcinogenic risk CR < 1 × 10− 6), evidence of a carcinogenic 
risk (10− 6 < CR < 10− 4), and evidence of an intolerable 
carcinogenic risk (CR > 1 × 10− 4); SFij is the carcinogenic 
slope factor, and RfDij is the reference dose of HM i cor-
responding to pathway j. The reference values and related 
parameter values (Table S2 and S3) were obtained from the 
technical guidelines for risk assessment of soil contamina-
tion of land for construction (MEE 2019) and related stud-
ies at home and abroad (Liang et al. 2023; Liu et al. 2023a; 
USEPA 2011).

The Monte-Carlo Model

The Monte Carlo simulation, based on the Central Limit 
Theorem, is a fundamental concept that utilizes the law of 
large numbers and other statistical inference methods to 
repeatedly perform experiments and obtain more fitting dis-
tribution values (Liu et al. 2023b). It is used to estimate the 
propagation of uncertainty in the output results of a model 
and calculate confidence intervals. By utilizing computers 
to perform a large number of repeated random sampling 
on the analyzed data, random variables that conform to 
certain probability distribution forms are constructed. For 
each parameter in the mathematical model, a possible range 
of values and accompanying probability distributions are 
developed to account for these parameters’ unpredictable 
fluctuations. Pseudorandom means are used to simulate the 
selection of values by particular probability distributions. 
Ultimately, important parameters that affect the model 
results were obtained.

The specific steps of the Monte Carlo simulation model 
operation are as follows: (1) configure the variables for HMs 
data and input the measured HMs values, fitting the distri-
bution function type of HMs data; (2) generate probability 
density distribution functions for each variable based on the 
data type by random sampling within the range of values; 
(3) establish a mathematical model for health risk functions 
of HMs, and calculate the model findings for each variable, 
resulting in a probability density distribution function for 
health risk assessment; (4) ascertain each HM’s sensitivity 
contribution.
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soil in the study area showed a spatial clustering trend, with 
positive spatial correlation. The local spatial autocorrelation 
was performed to plot the cluster distribution (Fig. 2). The 
results showed that the clustered (high-high value) and out-
liers (low-high value) points of Hg in agricultural soils in 
the study area were concentrated in the Bijing, Wanshang 
and Yinjiang areas in the eastern region of Tongren City. 
The low-low value clustered points of Hg was mainly dis-
tributed in the central region and accounted for a higher 
percentage (38.1%). The clustering distribution of Cd, Pb, 
and Zn in agricultural soils was similar, with high-high 
value clustering points mainly distributed in Songtao and 
Jiangkou areas, and low-low value clustering points mainly 
distributed in central Yinjiang and Sinan areas and eastern 
Bijiang and Wanshan areas. The clustering distribution of 
Ni, Cu, and Cr is similar, with high-high values clustering 
points mainly in Songtao and Sinan areas, and low-low val-
ues clustering points mainly in Dejiang, Bijiang and Wan-
shan areas.

Empirical Bayesian Kriging (EBK) was performed to 
map the spatial distribution of HMs in agricultural soils 
(Fig. 2). The results showed that the content of Hg showed 
a trend of gradually increasing from the central to the sur-
rounding area, and the high values were mainly distributed 
in the eastern region of the study area. Pb, Cd, Zn, and Cu 
levels all followed a similar pattern of progressively declin-
ing from the center to the edges. The As content gradually 
increased and subsequently decreased from the center to the 
eastern area. Low levels of Cr and Ni were present gener-
ally. To sum up, the spatial distribution of HMs content in 

and Hg (0.14 mg/kg) in the natural soils of the study area 
(local background values, LBV), and the mean values were 
used to represent the contents of Cr (69.83 mg/kg) and Ni 
(37.57 mg/kg) (background values).

HMs Contents in Agricultural Soil

Agricultural soils in the research region had mean Cd, Pb, 
Hg, Cu, and Zn levels that were all considerably higher than 
the local soil background values (LBV) (GB15618-2018). 
pH of the soil varied from 4.40 to 8.56 (mean: 6.84 ± 0.90) 
(Table 1). The descriptive statistics of soil HMs content in the 
study area revealed that the mean values of As, Pb, Cd, Hg, 
Cr, Cu, Ni, and Zn in agricultural soils were 16.5 ± 17.25, 
36.06 ± 35.95, 0.34 ± 0.17, 2.51 ± 4.71, 61.88 ± 30.36, 
30.76 ± 10.94, 32.52 ± 11.82, and 112.1 ± 62.29  mg/kg, 
respectively. The proportion of agricultural soils exceed-
ing the risk screening values (GB15618-2018) (MEE 2018) 
for Hg and Cd was 38.9% and 13.5%, respectively. The 
results indicated that Hg and Cd in the agricultural soils of 
the study area need to be given priority attention. Although 
accumulating to a certain extent, Zn, Ni, and Cu were within 
a manageable risk range for the quality and safety of agri-
cultural products.

Spatial Distribution and Clustering of Soil HMs 
Content

The Moran’s I index for soil HMs in the study area was pre-
sented in Fig. 2. The concentrations of HMs in agricultural 

Fig. 2  Spatial distribution and cluster of content of heavy metals (HMs) for agricultural soil

 

1 3



Y. Zhang et al.

closely related to soil background values, and the assess-
ment results based on local background values (LBV) com-
pared to those based on reference background values (RBV) 
(CNEMC 1990) showed a decrease in the pollution levels of 
HMs (Table S4). The results were more consistent with the 
actual situation as the pollution levels aligned with the spa-
tial distribution and considered the variations in background 
values caused by temporal and spatial factors. Therefore, 
Hg in the study area was at a moderate to heavy pollution 
level, Cd was at an unpolluted to moderate pollution level, 
and the other HMs were at an unpolluted level.

The range of the NIPI for agricultural soil HMs in the 
study area was 0.25–38.69, with an mean of 2.52 (Fig. 3c). 
The proportions of slightly, moderately, and seriously con-
taminated levels were 20.6%, 6.0%, and 16.5%, respec-
tively. Additionally, there was no significant difference in 
NIPI values between dryland and paddy fields. The spatial 
distribution of NIPI indicated that the eastern and central 
regions of the study area had more severe pollution, while 
the western region showed no pollution, consistent with the 
high values of Hg content. These results indicated that the 

the study area was generally aligned with the spatial cluster-
ing results.

Evaluation and Spatial Distribution of Agricultural 
Soils Pollution for HMs

The Igeo approach was used to assess soil contamination 
caused by single HMs in the research region (Fig. 3a). The 
soil pollution levels of HMs were represented by the aver-
age values of the Igeo. The mean Igeo values for Hg and Cd 
were larger than 0, coming in at 2.01 and 0.44, respectively. 
The soil Hg showed a moderate to extremely contaminated 
level (categories IV, V, VI, VII) with a proportion of 45%, 
mainly distributed in the eastern part of the study area, 
including Bijiang, Wanshan, and Yuping regions (Fig. 3b). 
The soil Cd exhibited a moderate to heavily contaminated 
level (categories III, IV) with a proportion of 19%, mainly 
distributed in regions such as Songtao, Jiangkou, and Sinan 
(Fig. 3b). The soil Pb showed proportions in categories II, 
III, IV, I, totaling 32%, primarily distributed in Songtao, 
Jiangkou, and other areas (Fig.  3b). The Igeo method was 

Fig. 3  Distribution map of the nemerow integrated pollution index (NIPI) and the geo-accumulation index (Igeo) for soil HMs
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high ecological risk. The study area exhibited an average 
potential ecological risk index (RI) of 813.5, signifying a 
generally high level of potential ecological risk. To break 
it down further, the proportions of RI falling into different 
classes were as follows: Class I (low risk) accounted for 
18.4%, Class II (moderate risk) for 30.4%, Class III (con-
siderable risk) for 24.2%, Class IV (high risk) for 11.7%, 
and Class V (extremely high risk) for 15.3%. The spatial 
distribution of ecological risk showed that high-risk areas 
were mainly concentrated in the southeast of the study area 
(Fig. 5c), consistent with the spatial distribution of soil Hg 
content. The mean RI values of factor 3 and factor 1 were 
approximately higher (Fig. 5d). In a word, Hg and Cd were 
the primary elements contributing to the potential ecologi-
cal risk in the study area.

Monte Carlo-Based Health Risks by Pathways

Based on the results of Monte Carlo simulations, the HQ and 
CR resulting from different exposure pathways and HMs of 
the study area were performed. The calculation results have 
been detailed in Table S5 and Table S6. From Table S5, it 
can be observed that the relative magnitude of non-carcino-
genic health risks for different HMs was generally consis-
tent. Among them, both the HQ and the IHQ for children 
were higher than those for adults. Specifically, the exceed-
ance rates of HQ for Cr, Hg, and As in children are 39.2%, 
2.73%, and 1% respectively (Fig. 6). The average IHQ for 
adults in the study area is 0.11, indicating that it is below 
the acceptable limit of 1. The results indicated that IHQ of 
HMs was acceptable for adults. The IHQ for children was 
1.5. Among them, 83.8% of soil samples had a risk index 
exceeding 1 (Fig. 6). Furthermore, dermal contact was the 
main exposure pathway, and Cr, As, and Pb are the primary 
contributing elements to the non-carcinogenic health risks 
of agricultural soils in the study area. Although the pollution 
levels of Cr, As, and Pb were low, low-contamination soils 
may still pose higher health risks.

The Cd, As, Cr, and Ni were recognized as carcino-
gens by the International Agency for Research on Cancer 
(IARC). Only Cd, As, Cr, and Ni had carcinogenic slope 
factors, so this study only assessed the carcinogenic risks 
associated with these four HMs (Fig. S1). The individual 
adult CR for each HMs were all less than 1E-04, which was 
below the maximum acceptable level and considered an 
acceptable risk level. The CR for children was found to be 
higher than that for adults, and the average individual CR 
for Ni in children exceeded 1 × 10− 4, suggesting a potential 
health risk associated with nickel exposure for children. The 
average ICR for adults was 4.8 × 10− 5, which was below the 
limit of 1 × 10− 4 and considered within an acceptable or tol-
erable level. The average ICR for children was 1.7 × 10− 4, 

overall level of soil pollution for HMs in the study area was 
moderately contaminated, mainly derived from Cd and Hg.

Source Apportionment

The Pb and Zn had a particularly high correlation coeffi-
cient of 0.67, according to the CA findings, which also 
showed a strong positive correlation between Cu, Zn, Ni, 
and Cu (p < 0.01) (Fig.  4a). The significant correlations 
appeared between Cr, Cu and Ni (p < 0.01). Hg and As 
exhibited significant associations (p < 0.01) with various 
HMs. The eigenvalues of the three principal components 
was greater than 1, accumulatively explaining 75% of the 
total variance(Fig. 4b).

Based on the results of PCA, the PMF analysis was per-
formed with 3–7 factors, and when the number of factors 
was 4, QRobust and QTrue were close, achieving the best fit 
between observed and predicted values. Most residual val-
ues fell within the range of -3 to 3, and all of the fitting 
curves’ R2 values were higher than 0.7, suggesting strong 
analytical performance in general (Fig. 4c). Factor 1 had the 
main loading for Cd, Zn, Pb, and Cu, with contribution rates 
of 88.3%, 50.8%, 49.8%, and 47.9% respectively. Factor 1 
was the smelting source. Factor 2 had the main loading for 
As, with a contribution rate of 85.4%. Factor 2 was the agri-
cultural source. Factor 3 had the main loading for Hg, with a 
contribution rate of 84.3%. Factor 3 was the mining source. 
Factor 4 exhibited the highest loading for Cr (62.6%), Ni 
(58.9%), Cu (50.0%), and Zn (48.4%). Factor 4 was the 
natural source.

The results of PMF analysis for the source apportion-
ment of soil HMs in the study area and their contribution 
rates were presented in Fig. 4d. The findings suggested that 
Factor 1 was associated with smelting source, contributing 
39.7%, Factor 2 was linked to agricultural source, contribut-
ing 15.8%, Factor 3 was related to mining source, contrib-
uting 11.3%, and Factor 4 was attributed to natural source, 
contributing 33.2%.

Risk Assessment

Potential Ecological Risks

Based on the risk screening values for agricultural soil, 
the potential ecological risk index of the study area was 
evaluated, considering the distribution of different sources 
and HMs of the ecological risk index (Fig. 5). The results 
showed extremely high risk for Hg and moderate risk for 
Cd in the study area, while other elements were classified 
as low risk (Fig. 5b). The results indicated that the wide-
spread enrichment of Hg and Cd in the study area, coupled 
with their high toxicity coefficients, contributed to their 
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location to location and are usually expressed as a range 
of values for a particular country or region (da Silva et 
al. 2020; Shi et al. 2023). Therefore, to evaluate the con-
tamination and risk of HMs in regional soils, it is advis-
able to determine the background soil values for the region. 
If environmental processes, including natural factors and 
human activities, affect the capacity of the soil, the back-
ground values may change over time (Yang et al. 2022a). 
Thus, more representative soil HM background values need 
to be obtained to reasonably evaluate the soil pollution sta-
tus. The results of the one-sample T-Test showed that As, 
Cd, Hg, Ni, Cu, and Zn of the natural soil in the study area 
were significantly higher than those in the background soil 
of Guizhou Province (CNEMC 1990), which might be due 
to the rich metallic minerals such as mercury, manganese 
and non-metallic minerals such as coal in the study area, and 

indicating a potentially high risk of cancer among children 
in the study area. In the study area, the proportion of sample 
points exceeding the carcinogenic limit for ICRI was 94.9% 
for children (Fig. S1). Thus, the results indicated that the 
health risk for adults in the study area was low and falls 
within an acceptable risk range, while children were more 
affected by HM exposure in agricultural soils and should be 
paid special attention.

Discussion

“Soil background values” refer to contents of elements or 
constituents from the soil that are minimally influenced 
by human activities and reflect underlying geological and 
soil formation processes (Sun et al. 2019). They vary from 

Fig. 4  Source analysis of HMs in agricultural soils in the study area. 
(a) A correlation heat map depicting the relationships between soil 
HMs; (b) A principal component load map of soil HMs; (c) A load map 

representing the sources of soil HMs; (d) The contribution of the four 
sources of soil HMs
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Combining CA, PCA and PMF methods, the contamina-
tion sources of soil with heavy metal in the study area were 
identified, namely smelting sources, agricultural sources, 
mining sources and natural sources. Factor 1 was the smelt-
ing source with major loadings of Cd, Zn, Pb, Cu. The con-
tents of Cd, Pb, Zn, and Cu in soil varied greatly in the study 
area, indicating significant anthropogenic influences. The 
Fig. 4c showed consistent trends in their distribution, being 

the frequent production activities such as mineral extrac-
tion, separation, and smelting in the southeastern areas. The 
mean Hg content of the agricultural soils in the study area 
was higher than that of the paddy soils in Guizhou Province 
studied by (Li et al. 2022a) and significantly higher than 
that of the Chinese agricultural soils studied by (Zhang et 
al. 2020b).

Fig. 5  Distribution maps of potential ecological risk index in the study 
area. (a) A spatial distribution map of four sources; (b) A map dis-
playing the single-factor ecological risk index (EI) for soil HMs; (c) A 

spatial distribution map depicting the integrated ecological risk index 
(RI); (d) Distribution map of RI based on four pollution sources
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the spatial distribution of factor 2 (Fig. 5a). Factor 3 was 
the mining source with major loadings of Hg. According to 
Table 1, Hg exhibited high variability in the study area, and 
its content was high, indicating significant enrichment pri-
marily influenced by anthropogenic factors. Previous stud-
ies had indicated that Hg accumulation in soil was mainly 
derived from industrial activities including the burning of 
fossil fuels, nonferrous metal extraction, and smelting. The 
Hg was released to the environment in the form of exhaust 
gases, wastewater and sludge, and eventually entered the 
soil through various deposition pathways. The hotspots 
of Hg were observed in the eastern part of the study area, 
including Wanshan, Bijiang, and Yuping counties (Fig. 2). 
The study area has abundant Hg mineral reserves, mainly 
distributed in counties such as Wanshan and Bijiang. In par-
ticular, Wanshan has a history of mercury mining and smelt-
ing activities spanning several decades (Li et al. 2022b). 
Additionally, previous research had shown that wastewater, 
waste rock, and leachate from upstream Wanshan mercury 

evenly distributed in areas such as Songtao and Jiangkou 
counties. The spatial distribution of factor 1 also supported 
this observation (Fig.  5a). Research findings reveal that 
Cd, Pb, and Zn primarily emanate from ore extraction and 
smelting operations, with Cd predominantly coexisting 
within Pb/Zn ores and subsequently being introduced into 
the soil during their smelting processes (Peng et al. 2022). 
Factor 2 was the agricultural source with major loadings of 
As. The study area displayed significant variation in soil As 
content, primarily driven by both structural and stochastic 
factors, suggesting the presence of certain human-induced 
influences. Previous studies had suggested that As primarily 
originated from the application of arsenic-containing pes-
ticides and fertilizers, as well as the discharge of arsenic-
containing wastewater from mines and factories, and the 
deposition of airborne arsenic dust emitted from coal com-
bustion and smelting (Zhu et al. 2018). However, there were 
few reports of arsenic mines in the study area, and the accu-
mulation of As in the soil was not severe, consistence with 

Fig. 6  The cumulative probability distribution of non-carcinogenic risk (HQ) in the study area was simulated based on the Monte Carlo simulation
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1 (smelting source) contributed 28.6% and 35.7% to IHQ 
and ICR, respectively. This was due to the fact that Cd, 
Cr, and Ni were mainly derived from F1 and F4, and Cd 
and Cr showed high bioavailability and toxicity (Peng et 
al. 2022). It is worth noting that although factor 3 (min-
ing sources) contributed 84.3% of Hg, it had the lowest 
IHQ and ICR (8.75% and 0.15% respectively). The carci-
nogenic risk of Hg has not been calculated because a car-
cinogenic slope factor was unavailable (Gui et al. 2023; 
Wang et al. 2023b). Regarding the potential ecological 
risk index (RI), factor 3 (mining source) had the highest 
contribution rate at 56.6%, followed by factor 1 (smelting 
source) at 29.1%. This is attributed to the higher ecotox-
icity response factors of Hg and Cd and the severe con-
tamination of soil with Hg and Cd in the study area (Wu 
et al. 2020). The results indicated that the health risks and 
potential ecological risks caused by sources differ in their 
contributions to soil contamination, and the relationship 
was not only related to soil HMs concentrations but also 

mines had entered rivers, leading to increased Hg concen-
trations in the surrounding rivers and enrichment of Hg in 
the adjacent soils (Liu et al. 2021). Factor 4 was the natural 
source with major loadings of Cr, Ni, Cu, and Zn. The aver-
age values of Cr and Ni show not significant differences from 
the background values, indicating that the spatial heteroge-
neity is primarily controlled by structural factors. Studies 
had suggested that Cr and Ni in the soil were mainly con-
trolled by soil parent materials, with minimal influence from 
anthropogenic factors (Sun et al. 2019; Wen et al. 2020). 
Based on the soil formation characteristics, rock weathering 
released certain amounts of HMs, resulting in background 
values in the soil environment (Yang et al. 2022a).

Based on the findings of the potential ecological risk 
index (RI) and health risk index (IHQ, ICR), a Sankey 
diagram was constructed to illustrate the links between 
HMs contents, sources and risks (Fig. 7). Factor 4 (natu-
ral source) made the largest contributions to IHQ and ICR 
for children (49.2% and 57.2% respectively), while factor 

Fig. 7  Sankey diagram for integrated analysis of soil HMs source risks
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