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Introduction

Groundwater serves as a vital natural resource that is intri-
cately linked to various aspects of human life, such as 
domestic drinking, agricultural irrigation, and economic 
production (Wu et al. 2020; Agbasi et al. 2023; Li et al. 
2024). According to numerous reports, around 33% of the 
world’s population depends on groundwater, which has been 
crucial in facilitating the expansion of the global popula-
tion, currently standing at 7.5 billion individuals as of 2018 
(Falkenmark 2005; He et al. 2019; Li et al. 2019). Ensuring 
access to uncontaminated and secured underground water is 
a crucial necessity for upholding human well-being and pro-
moting socially sustainable progress, especially in arid and 
semi-arid areas with inadequate precipitation and surface 
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Abstract
Selecting a suitable number of parameters for water quality assessment can make the assessment cost-effective. The cur-
rent investigation involved the collection of 64 groundwater samples from the Baojixia irrigation district located in China. 
These samples were then analyzed for 17 water quality parameters. Two minimum entropy water quality index (EWQImin) 
models were proposed by selecting the key parameters from the analyzed water quality parameters through principal com-
ponent analysis (PCA) and multiple linear regression analysis (MLR), correspondingly. Then, the two proposed EWQImin 
models were utilized to evaluate the water quality within the study area. The findings revealed that the EWQImin−MLR 
model, which comprised 5 key parameters (total dissolved solids (TDS), sodium (Na+), nitrate (NO3

−), total hardness 
(TH), and fluorine (F−), exhibited better performance in groundwater quality evaluation. This model demonstrated a higher 
coefficient of determination (R2 = 0.953, P < 0.001), coupled with lower values of Root Mean Square Error (RMSE, 4.948) 
and Percentage Error (PE, 5.823%) when compared to the EWQImin−PCA model consisting of 6 key parameters including 
TDS, Na+, TH, chloride (Cl−), nitrite (NO2

−) and chemical oxygen demand (CODMn). Furthermore, the groundwater qual-
ity in the Baojixia irrigation district was considered a moderate quality category, with the eastern region displaying poorer 
water quality in comparison to the western area. The comparison of EWQImin and EWQI indicated that the developed 
EWQImin model was a suitable and effective method as its performance in evaluating groundwater quality within the Bao-
jixia irrigation district is excellent. The results of this research have significant implications for the effective management 
of groundwater and the promotion of sustainable development of water resources in future investigations.

Keywords  Key Parameters Selection · Principal Component Analysis · Stepwise Multiple Linear Regression · Baojixia 
Irrigation District · Groundwater Quality Assessment
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water resources (Gao et al. 2020; Zhang et al. 2021a). Unfor-
tunately, in recent years, both the volume and excellence of 
groundwater have been adversely affected by the rapid pace 
of economic development, population expansion, as well as 
certain anthropogenic activities, leading to a global predica-
ment (Ahmed et al. 2019; Khan et al. 2020; Mohammadi et 
al. 2020; Liu et al. 2021). To comprehend the present condi-
tion and identify current water quality trends, water quality 
assessment emerges as an effective approach. Conducting 
water quality assessments enables us to acquire valuable 
insights into the current state of water quality and monitor 
any changes that may occur over time. By employing appro-
priate assessment models and techniques, researchers and 
policymakers can make informed decisions regarding the 
management and preservation of groundwater resources. 
Consequently, water quality assessment serves as an essen-
tial tool for addressing the challenges posed by deteriorating 
groundwater quality.

Numerous methodologies are available for conducting 
water quality assessments, such as the fuzzy analytical hier-
archy process, set pair analysis, numerical modeling, and 
multivariate statistical analysis (Ali et al. 2017; Zhang et al. 
2021a; Yang et al. 2023; Ayejoto et al. 2023). The water qual-
ity index (WQI) is the most commonly employed method 
for evaluating water quality among these approaches (Singh 
et al. 2023). The WQI utilizes an aggregation function to 
convert an assortment of water quality data into a singu-
lar measure that represents the comprehensive state of the 
water (Kangabam et al. 2017; Nath et al. 2018; Wu et al. 
2018a; Gao et al. 2020). The effectiveness of this index in 
assessing water quality has been globally recognized (Ben-
ouara et al. 2016; Sutadian et al. 2016). Nevertheless, the 
conventional WQI possesses certain limitations, such as its 
inflexible framework and reliance on subjective weights for 
evaluating the parameters (Abtahi et al. 2015; Gao et al. 
2020). Consequently, considerable efforts have been under-
taken to enhance the WQI. Li et al. (2010) developed the 
formulae of entropy-weighted water quality index (EWQI) 
by incorporating entropy weights, thereby eliminating the 
subjectivity associated with parameter weighting in the tra-
ditional WQI. Since then, the EWQI has been successfully 
employed in numerous studies, demonstrating its reliability 
in assessing water quality (Ali et al. 2017; Islam et al. 2020). 
Nonetheless, the EWQI involves a large number of water 
quality parameters in the assessment, making it time-con-
suming and costly to analyze so many parameters in the lab-
oratory (Xu et al. 2018). Therefore, there is a need to refine 
the assessment process by selecting a suitable number of 
parameters that ensure both accuracy and cost-effectiveness.

Incorporating data reduction methods in water quality 
assessment helps in finding an appropriate set of param-
eters. For instance, Li et al. (2012) applied the concept of 

rough set attribute reduction in selecting appropriate water 
quality assessment parameters and proposed the rough set-
TOPSIS method for groundwater quality evaluation. The 
WQImin method, created by Pesce and Wunderlin (2000), 
evaluates water quality by choosing various essential fac-
tors. The development of the WQImin was based on the WQI, 
and there have been reports of strong correlations between 
the WQImin and WQI results (Sánchez et al. 2007). The uti-
lization of the WQImin approach has demonstrated its advan-
tages in decreasing the expense associated with assessing 
water quality (Kannel et al. 2007; Nong et al. 2020). Nev-
ertheless, the WQImin model may select different numbers 
of water quality parameters for the assessment. Simoes et 
al. (2008) conducted a study that exemplifies this concept 
and employed the WQImin method to evaluate the degrada-
tion of water quality in São Paulo State, Brazil. The evalua-
tion focused solely on dissolved oxygen, turbidity, and total 
phosphorus. Meanwhile, the water quality of the Dongjiang 
River, China was evaluated using the WQImin method by 
Sun et al. (2016). This method considered factors such as 
the pH, temperature, total suspended solids, ammonium, and 
nitrate. Moreover, previous WQImin models have typically 
used only one method to choose the key parameters, which 
may lead to an overestimation of the water quality (Kannel 
et al. 2007). Up to the present, there are few reports on the 
minimum EWQI (EWQImin) model for evaluating ground-
water quality, and the performance of the EWQImin model 
for groundwater assessment is still unclear. Given this, the 
EWQImin model was proposed in this study for groundwater 
quality assessment.

The Baojixia irrigation district, located in Shaanxi Prov-
ince, China, is acknowledged as the largest water diversion 
irrigation area within the Wei River Basin (Zhang et al. 
2021b), with an extensive irrigated area spanning 1890 km2 
(Cheng et al. 2019). This area has been actively involved in 
water diversion since 1972. Several diversion canals have 
been constructed to support agriculture in the area (Wu et 
al. 2012). In the Baojixia irrigation district, the primary 
water source for irrigation is the Wei River, supplemented 
by groundwater resources. Recently, the rise in water usage 
in the upstream area of the Wei River, coupled with ongo-
ing ecological degradation, has resulted in decreased river 
runoffs and a scarcity of surface water resources, particu-
larly in the dry seasons. As a consequence, the exploitation 
of groundwater in the Baojixia irrigation district has been 
increasing recently to meet the irrigation purpose (Minhas 
et al. 2019). Groundwater is critical for human consump-
tion and agricultural irrigation in this area. For the water 
quality of the study area, most researchers tend to explore 
its water quality impact factors, the water quality assess-
ment is currently limited to either a single-indicator analysis 
or a simple comprehensive analysis of multiple indicators. 
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However, these methods are subjective and time-consuming 
and do not provide more accurate and valuable information. 
Therefore, it is imperative to find a comprehensive, accu-
rate, convenient, and efficient method to understand the 
water status and assess the water quality in the Baojixia irri-
gation region.

Hence, the objectives of this study were to (1) identify 
key parameters from the various groundwater quality indica-
tors using principal component analysis (PCA) and stepwise 
multiple linear regression (MLR) to build EWQImin−PCA and 
EWQImin−MLR models, respectively, (2) compare the EWQI, 
EWQImin−PCA and EWQImin−MLR models and determine the 
optimal model for water quality assessment, and (3) com-
prehensively assess the groundwater quality and its spa-
tial variability in the Baojixia irrigation district using the 
best EWQImin model. This study is to furnish valuable and 
dependable information for assessing the quality of ground-
water in the Baojixia irrigation district. Furthermore, it can 
serve as a reference for future studies, thereby contributing 
to the attainment of sustainable water resource development.

Materials and Methods

Study Area

The Baojixia irrigation district is situated in the west-
ern region of the Guanzhong Basin in Shaanxi Province, 
Northwest China (Fig. 1). It holds the distinction of being 
the largest irrigation district in Shaanxi Province and ranks 
among the top ten irrigation districts in China. Stretching 
across a length of 181 km from east to west and a width of 
14 km from north to south, the Baojixia irrigation district 
encompasses a significant expanse. The irrigation water for 
this district is sourced from the Wei River, and the effective 
irrigation area spans approximately 1890 km2 (Gao et al. 
2021).

The Baojixia irrigation district falls within the semi-
humid zone of the monsoon climate, characterized by 
distinct seasonal patterns. This region experiences severe 
droughts during the spring (March-May) and winter 
(December-February) while experiencing relatively heavy 
precipitation in the summer (June-August) and autumn 
(September-November) seasons. The average annual pre-
cipitation in the area is recorded at 566 mm, accompanied 
by an average annual evaporation of 1110 mm. The aver-
age temperature is around 14 °C, and the frost-free period 
extends for approximately 220 days, with frost occurring 
between December and March (Wang et al. 2023a). The 
geographical characteristics of this research area consist 
of a variety of features, such as the alluvial plains of the 
Wei River and its tributaries, terraces made of loess, alluvial 

plains in the Piedmont region, and areas with low hills. Pore 
water is found mainly in sandstone aquifers combined with 
pebbles, gravel, and clay, and serves as the main supplier 
of groundwater in the area. Groundwater recharge primarily 
occurs through atmospheric precipitation and lateral runoff, 
while artificial extraction, discharge into the Wei River, and 
evaporation are the main processes through which ground-
water is discharged. As one moves from the loess hill to 
the Weihe alluvial plain, the groundwater level gradually 
decreases and the overall flow direction of groundwater is 
from northwest to southeast (Feng et al. 2020). The soils in 
the Baojixia irrigation district are fertile, characterized by 
two distinct types: Wei River alluvial soils beneath the Loess 
Plateau and loess on the upper part of the Loess Plateau. 
The fertile soils create a conducive atmosphere for farming, 
enabling the growth of diverse crops like wheat, corn, cot-
ton, canola, and economically important fruit groves. The 
agricultural productivity in this irrigation area plays a cru-
cial role in ensuring food security within Shaanxi Province.

Sample Collection and Analysis

During August in the year 2020, a total of 64 samples of 
groundwater were gathered from the designated region. The 
exact positions of the sites where the samples were taken 
were meticulously documented with the aid of a portable 
GPS apparatus. All samples were obtained by pumping 
water from existing hand pumps or boreholes with depths 
not exceeding 100 m. Pumping was carried out for 3 min 
before the actual sampling process. Each sample was care-
fully collected in two polyethylene bottles, which had been 
rinsed with raw water two to three times before sampling. 
To ensure the stability and reliability of heavy metal analy-
sis, a small amount of HNO3 was added to one of the two 
bottles for each of the samples. After sampling, the bottles 
were immediately sealed, labeled, and stored in a refrigera-
tor set at 4  °C for subsequent laboratory analysis. A total 
of 17 parameters were measured in the collected ground-
water samples. Among the measured parameters analyzed, 
the pH value was obtained directly onsite using a portable 
water quality device (OTT HydrolabDS5X). The total hard-
ness (TH) was determined by employing the EDTA titration 
method, while total dissolved solids (TDS) were quantified 
using the drying and weighing method. The concentra-
tions of sodium (Na+) and potassium (K+) were ascertained 
using flame atomic absorption spectrophotometry. The 
EDTA titrimetric method was utilized to quantify calcium 
(Ca2+), magnesium (Mg2+), and ammonium (NH4

+). The 
levels of carbonate (CO3

2‒) and bicarbonate (HCO3
‒) were 

determined by alkalinity titration. Sulfate (SO4
2‒), chlo-

ride (Cl‒), nitrite (NO2
‒), nitrate (NO3

‒), and fluoride (F‒) 
were analyzed using Ion Chromatography. Lastly, arsenic 
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the specimens were within the acceptable range, suggesting 
that the precision of the conducted physicochemical analy-
sis in this research was adequate.

CBE(%) =
∑

Cations −
∑

Anions∑
Cations +

∑
Anions � (1)

Calculations and Establishment of the EWQImin

The EWQImin model is established through a five-step pro-
cess depicted in Fig.  2. Initially, data from 38 groundwa-
ter samples, distributed across the study area, were used as 

(As) was measured through plasma emission spectrometry 
(ICAP6300).

Furthermore, the chemical oxygen demand (CODMn) 
was examined by employing the potassium permanganate 
index technique. The laboratory conducted all the necessary 
analyses in accordance with the quality assurance and qual-
ity control procedures specified in the national standards 
established by the Ministry of Environmental Protection of 
the People’s Republic of China (2009). Moreover, the pre-
cision of the physicochemical examination was evaluated 
by computing the charge equilibrium discrepancy (CBE, %) 
for every groundwater specimen (Eq. 1), within a permissi-
ble range of plus or minus 5%. The findings showed that all 

Fig. 1  Location of study area and groundwater sampling sites
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the Kaiser criteria. Subsequently, the primary groundwater 
quality parameters with high loadings on the selected PCs 
were retained as the minimum number of parameters for 
water quality assessment. MLR was performed using a step-
wise approach, with the EWQI as the dependent variable 
and the physicochemical parameters as independent vari-
ables. The key parameters for water quality assessment were 

the training set for key parameter selection. The parameters 
considered included pH, TDS, TH, Na+, Cl‒, SO4

2‒, NO3
‒, 

NO2
‒, NH4

+, F‒, CODMn, and As.
In the second step, PCA and MLR were employed to 

identify the minimum number of appropriate water qual-
ity parameters for the assessment. PCA was conducted to 
extract the significant principal components (PCs) using 

Fig. 2  Steps for calculation and 
establishment of the EWQImin 
model
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suitability of the data for PCA. These tests help assess the 
adequacy of the data for the PCA and ensure that the vari-
ables are sufficiently correlated. Additionally, for the MLR 
analysis, the data underwent a preprocessing step. Specifi-
cally, a log transformation was applied to the data, following 
the methods outlined in a previous study conducted by the 
researchers (Mu et al. 2023). This preprocessing step aimed 
to enhance the accuracy and reliability of the MLR analysis. 
The IBM SPSS 25 software Package and Origin 2021 were 
utilized for all the data processing. The geospatial map was 
generated using ArcGIS 10.7 based on the Kriging interpo-
lation, which allowed for the visualization of the spatial pat-
terns of water quality parameters within the study area.

Results

Physicochemical Characteristics of Groundwater

The minimum (Min), maximum (Max), mean (Mean), stan-
dard deviation (SD), and coefficient of variation (CV) of the 
physicochemical parameters were calculated and listed in 
Table 1. The pH values of the groundwater ranged from 7.65 
to 8.82, with an average value of 8.22, indicating that the 
groundwater samples in the Baojixia irrigation district were 
generally slightly to strongly alkaline. The concentrations 
of TDS were between 280.00 and 1652.00 mg/L, with an 
average concentration of 640.23 mg/L. The TH concentra-
tion of the groundwater samples exhibited a wide range of 
variation, from 95.10 to 651.00 mg/L, with a mean concen-
tration of 333.17 mg/L. The categorizations of TDS and TH 
of the groundwater suggested that the majority of the water 

determined by considering the physicochemical parameters 
that demonstrated optimal performance in formulating the 
MLR model.

After the key parameters were selected using PCA and 
MLR, the third step involved calculating the EWQImin 
values based on these selected parameters. To verify the 
reliability of the developed EWQImin models, the remain-
ing 26 groundwater samples, distributed across the study 
area, were used as testing data to validate the established 
EWQImin−PCA and EWQImin−MLR models in the fourth step. 
Finally, the performance of the models was evaluated based 
on the coefficient of determination (R2), while the predic-
tive accuracy of the different EWQImin models was assessed 
using the Root Mean Square Error (RMSE) and Percentage 
Error (PE). The PE was calculated according to the method 
of Canfield and Bachmann (1981) as follows (Eq. 2):

PE =
∑

|P/O − 1| × 100/n � (2)

where P represents the minimum EWQI value according 
to the chosen parameters and O represents the EWQI value 
considering all parameters.

The groundwater quality in the current research is cate-
gorized into five grades based on the EWQImin values (Yang 
et al. 2023), including excellent quality (< 25), good quality 
(25–50), moderate quality (50–100), poor quality (100–150) 
and very poor quality (> 150).

Data Processing

The Kaiser-Meyer-Olkin (KMO) test (KMO > 0.6, 
p < 0.001) and Bartlet test were conducted to ensure the 

Table 1  Statistical summary of the chemical composition of groundwater in the study region
Parameters Unit Chinese Standard (grade III) a Min Max Mean SD CV (%)
pH / 6.5 ≤ pH ≤ 8.5 7.65 8.82 8.22 0.30 3.63
TDS mg/L 1000 280.00 1652.00 640.23 261.26 40.81
TH mg/L 450 95.10 651.00 333.17 139.48 41.86
Na+ mg/L 200 11.70 396.00 100.86 79.97 79.29
K+ mg/L / 0.35 20.50 1.90 3.26 171.33
Ca2+ mg/L / 14.00 156.00 57.86 36.67 63.38
Mg2+ mg/L / 14.60 92.40 45.86 19.87 43.34
CO3

2− mg/L / 0.00 30.00 3.13 7.22 230.91
HCO3

− mg/L / 195.00 793.00 466.39 115.68 24.8
Cl− mg/L 250 6.00 238.00 51.46 50.40 97.94
SO4

2− mg/L 250 4.80 183.00 56.54 51.64 91.33
NO3

− mg/L 88.50 1.25 671.00 66.81 100.84 150.93
NO2

− mg/L 3.29 0.002 1.641 0.073 0.246 338.08
NH4

+ mg/L 0.64 0.015 0.150 0.044 0.039 89.86
F− mg/L 1 0.26 2.40 0.86 0.53 60.94
CODMn mg/L 3 0.24 3.60 0.74 0.58 77.46
As mg/L 0.01 0.0005 0.0060 0.0016 0.0011 65.19
a Standards for groundwater quality of the People’s Republic of China
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falls comfortably within the permissible standard in China 
(3.29 mg/L). The concentration of SO4

2− ranged from 4.80 
to 183.00 mg/L, with an average of 56.54 mg/L. The con-
centration of Cl− ranged from 6.00 to 238.00  mg/L, with 
an average of 51.46 mg/L. In this research, both the SO4

2− 
and Cl− were found to be below the acceptable threshold of 
250 mg/L.

Although the CODMn of the groundwater reached a 
peak of 3.60  mg/L, surpassing China’s drinking water 
limit of 3  mg/L, the average value remained relatively 
low at 0.74 mg/L. The levels of F− and As varied between 
0.26 and 2.40  mg/L and 0.0005 to 0.0060  mg/L, respec-
tively, with mean concentrations of 0.86 and 0.0016 mg/L, 
correspondingly.

Additionally, a Piper diagram was generated to uncover 
the hydrochemical attributes of the groundwater samples 
(Fig.  3). The diagram illustrates the hydrochemical facies 
displayed by the 64 groundwater samples in the current 
investigation. On the cation plot, the majority of samples 
fell in the middle of the plot (Zone B), suggesting that there 
is no notable cation dominance in the groundwater of the 
Baojixia irrigation district. Furthermore, around 23% of 
the groundwater samples displayed diminished levels of 
calcium, manifesting in Zone D situated at the lower right 

samples gathered from the Baojixia irrigation district met 
the criteria established for groundwater excellence in China.

The analysis of cation concentrations in the groundwater 
revealed the following order: Na+ > Ca2+ > Mg2+ > K+ > 
NH4

+. Among these measured cations, Na+ was found to 
be the most abundant in the groundwater of the Baojixia 
irrigation district, ranging from 11.70 to 396.00  mg/L. It 
was worth noting that the mean value fell within the stan-
dard limit of 200  mg/L for drinking water in China. The 
levels of Ca2+ and Mg2+ were found to be within the range 
of 14.00 to 156.00 mg/L and 14.60 to 92.40 mg/L, respec-
tively. Moreover, the K+ concentration varied between 0.35 
and 20.50 mg/L, with an average of 1.90 mg/L. NH4

+ levels 
ranged from 0.015 to 0.150 mg/L, averaging at 0.044 mg/L.

The anion concentrations of the groundwater were 
arranged in the following sequence: HCO3

− > NO3
− > 

SO4
2− > Cl− > CO3

2− > NO2
−. The CO3

2− concentrations 
ranged from 0.00 to 30.00  mg/L, while the HCO3

− con-
centration ranged from 195.00 to 793.00 mg/L, averaging 
466.39  mg/L. The NO3

− concentration ranged from 1.25 
to 671.00 mg/L, with a mean value of 66.81 mg/L, which 
fell within the acceptable limit according to Chinese regu-
lations of 88.5  mg/L. The concentration of NO2

− ranged 
from 0.002 to 1.641 mg/L, averaging at 0.073 mg/L, which 

Fig. 3  Piper diagram representing groundwater types in the Baojixia irrigation district
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loading on TH. PC3 accounted for 14.46% of the total vari-
ance and showed notable loadings on NO2

− and CODMn. 
On the contrary, PC4 contributed only 8.70% of the total 
variance and did not display any substantial loadings on the 
groundwater parameters (Fig. 4). Consequently, the primary 
indicators selected for evaluating groundwater quality in the 
Baojixia irrigation district using the EWQImin−PCA model 
were Na+, Cl−, TDS, TH, NO2

− and CODMn, which were 
represented in the first three principal components (PC1, 
PC2, and PC3).

Table  3 summarizes the findings of the multiple linear 
regression analysis conducted on the groundwater qual-
ity parameters in the Baojixia irrigation district. The find-
ings revealed that TDS had the most significant impact 
on the EWQImin based on the data, as indicated by an R2 
value of 0.548 (P < 0.001). When the parameters of Na+, 
NO3

−, and TH were sequentially put into the model, the R2 
values of the regression model increased significantly to 
0.802, 0.828, and 0.865 (P < 0.001), respectively. In addi-
tion, the inclusion of F− and CODMn further enhanced the 
performance of the model, resulting in R2 values of 0.908 
and 0.963 (P < 0.001), respectively. Hence, the TDS, Na+, 
NO3

−, TH, F−, and CODMn were chosen as the key factors 
in the EWQImin−MLR method to assess the water quality of 
the Baojixia irrigation district.

The performance of the EWQImin−MLR model, established 
with the six selected basic indicators, was comprehensively 
evaluated using R2, RMSE, and PE values based on the test-
ing data. The R2 values can be significantly improved by 
increasing the number of indicators selected through regres-
sion selection analysis, as demonstrated in Table  4. The 
results revealed that the M1, M2, and M3 models exhibited 
relatively low R2 values (0.535, 0.782, and 0.811, P < 0.001), 
whereas the R2 values of the M4, M5, and M6 models sur-
passed 0.90. Upon comparing the M4, M5, and M6 models, 

section. In contrast, Zone A had only four sampling sites 
with comparatively elevated levels of calcium. According to 
the anion diagram, the majority of the samples were found 
in Zone E, exhibiting elevated levels of the HCO3

−. Only 
two samples were located in Zone B, while no samples were 
observed in Zone F or Zone G. These findings indicate that 
the groundwater in the Baojixia irrigation district is primar-
ily dominated by HCO3

−, resulting from the weathering of 
lithology rich in carbonates. Furthermore, the comprehen-
sive features of groundwater composition can be acquired 
by utilizing the diamond of the Pieper diagram. According 
to Fig. 3. In the groundwater of the Baojixia irrigation dis-
trict, there were four primary chemical types present. These 
included the SO4·Cl-Ca·Mg type in Zone I, SO4·Cl-Na type 
in Zone I, HCO3-Na type in Zone III, and HCO3-Ca·Mg 
type in Zone IV. The majority of samples were found in 
Zone IV, with Zone III following closely behind. This sug-
gests that the predominant hydrochemical type of ground-
water in the Baojixia irrigation district was HCO3-Ca·Mg 
type and HCO3-Na type. However, a single sample was dis-
tributed in Zone I and Zone II, respectively.

Establishment of the EWQImin Models

PCA was employed in this study to examine the relationships 
between geochemical variables by reducing the complexity 
of the parameters (Hu et al. 2013). The primary objective 
was to identify the key factors that influence groundwater 
chemistry. Table 2 displayed the results of the PCA analy-
sis, which yielded four principal components based on the 
Kaiser criteria (PCs whose eigenvalues are greater than 1 
will be retained), resulting in a cumulative contribution of 
80.38%. PC1, accounting for 32.08% of the total variance, 
exhibited significant loadings on Na+, Cl− and TDS. PC2, 
explaining 25.14% of the total variance, displayed a strong 

Table 2  Variance explained by the main components
Component Initial eigenvalues Extraction sums of squared loadings

Total Variance contribu-
tion (%)

Cumulative variance 
contribution (%)

Total Variance contribu-
tion (%)

Cumulative 
variance 
contribu-
tion (%)

PC1 3.85 32.08 32.08 3.85 32.08 32.08
PC2 3.02 25.14 57.22 3.02 25.14 57.22
PC3 1.74 14.46 71.68 1.74 14.46 71.68
PC4 1.05 8.70 80.38 1.05 8.70 80.38
PC5 0.79 6.58 86.96 / / /
PC6 0.58 4.83 91.79 / / /
PC7 0.45 3.71 95.50 / / /
PC8 0.20 1.69 97.18 / / /
PC9 0.16 1.30 98.48 / / /
PC10 0.13 1.04 99.52 / / /
PC11 0.05 0.45 99.97 / / /
PC12 0.01 0.03 100.00 / / /
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PE values, it was concluded that the M5 model exhibited 
superior performance compared to the other five EWQImin 
models. Additionally, the M5 model exhibited the closest 
correlation with the EWQI, as depicted in Fig.  5, further 
reinforcing its status as the superior model for evaluating 
groundwater quality in this study.

In summary, the main indicators selected for the 
EWQImin−PCA model were Na+, Cl−, TDS, TH, NO2

− and 
CODMn, while the TDS, Na+, NO3

−, TH, and F− were used 
as indicators for the EWQImin−MLR model. Based on the 
entire data set, Fig. 6 shows the relationships between the 
EWQI model and the EWQImin−PCA model, and between the 
EWQI model and the EWQImin−MLR model, respectively. As 
shown in Fig. 6a, there was a close correlation between the 
EWQImin−PCA model and the EWQI model, as evidenced 
by the R2 value of 0.92 (P < 0.001) and PE of 10.42%, 
respectively. Compared with the EWQImin−PCA model, the 
EWQImin−MLR model showed a higher correlation with the 
EWQI model, with higher a R2 value of 0.96 but a lower 
PE value of 4.75% (Fig.  6b). In addition, the 95% confi-
dence band of the EWQImin−PCA model was slightly wider 
compared to that of the EWQImin−MLR model. These results 

it was found that the M4 model had a slightly lower R2 
value and higher values of RMSE (6.253) and PE (7.612). In 
addition, the M5 model displayed greater R2 values (0.953, 
P < 0.001) than the M4 model, along with the lowest val-
ues of RMSE (4.948) and PE (5.823%) compared to the M4 
and M6 models. Furthermore, the M6 model exhibited the 
highest R2 value (0.962, P < 0.001), although the RMSE and 
PE values were only slightly larger than those of the M5 
model. Based on a thorough comparison of R2, RMSE, and 

Table 3  Key parameter selection of the EWQImin models from the multiple linear regression model based on the training data
Model Linear model R2 P
M1 -0.371∗ + 0.762∗lg(TDS + 1) 0.548 < 0.001
M2 -0.417∗ + 0.744∗lg(TDS + 1) + 4.199∗lg(Na++1) 0.802 < 0.001
M3 -0.298∗ + 0.629∗lg(TDS + 1) + 4.630∗lg(Na++1) + 0.084∗lg(NO3

−+1) 0.828 < 0.001
M4 -0.106∗ + 0.507∗lg(TDS + 1) + 4.019∗lg(Na++1) + 0.114∗lg(NO3

−+1) + 0.359∗lg(TH 
+ 1)

0.865 < 0.001

M5 -0.040∗ + 0.476∗lg(TDS + 1) + 3.450∗lg(Na++1) + 0.102∗lg(NO3
−+1) + 0.414∗lg(TH 

+ 1) + 0.218∗lg(F−+1)
0.878 < 0.001

M6 0.895∗ + 0.102∗lg(TDS + 1) + 0.058∗lg(Na++1) + 0.111∗lg(NO3
−+1) + 0.019∗lg(TH + 

1) + 0.075∗lg(F−+1) + 0.078∗lg(CODMn+1)
0.963 < 0.001

Note: P < 0.001

Table 4  Key parameter selection of the EWQImin models from the 
multiple linear regression based on the testing data
Parameter selection EWQImin

Models R2 RMSE PE (%) P
TDS, M1 0.535 10.988 12.121 < 0.001
TDS, Na+ M2 0.782 9.945 10.823 < 0.001
TDS, Na+, NO3

− M3 0.811 8.232 9.175 < 0.001
TDS, Na+, NO3

−, 
TH

M4 0.906 6.253 7.612 < 0.001

TDS, Na+, NO3
−, 

TH, F−
M5 0.953 4.948 5.823 < 0.001

TDS, Na+, NO3
−, 

TH, F−, CODMn

M6 0.962 5.811 6.879 < 0.001

Fig. 4  Selection of key param-
eters based on the PCA.
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approach. According to the EWQImin values, the classifi-
cation of groundwater can be categorized into five levels, 
varying from excellent groundwater to very poor ground-
water. In the present study, out of the total of 64 ground-
water samples, 28.13% were categorized as “good” and 
65.63% as “moderate” water quality status. Three samples 
were classified as “poor” quality and only one sample was 
categorized as “very poor” types, accounting for a total of 
6.25% of the whole samples, while none of the samples fell 
into the “excellent” category. The findings of this research 

indicated that the performance of the EWQImin−MLR model 
was better than that of the EWQImin−PCA model. Thus, 
considering these findings, it can be determined that the 
EWQImin−MLR model is more efficient and dependable in 
assessing the quality of groundwater in this study.

Water Quality Assessment Using the EWQImin Model

Table  5 summarizes the categorization of water qual-
ity in the Baojixia irrigation district using the EWQImin 

Fig. 6  Relationships between EWQI and EWQImin−PCA and EWQImin−MLR based on the testing data

 

Fig. 5  Comparison of EWQI and 
EWQImin values based on the 
training data
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which accounted for a minor portion of the entire region 
(Fig. 7b).

Discussion

Groundwater Quality and its Impacting Sources

The groundwater quality parameters in the Baojixia irriga-
tion district were generally consistent with the findings of 
the prior investigation carried out by Feng et al. (2020), with 
higher concentrations of TDS, TH, and Na+ in the ground-
water. However, in comparison to the results of Chen et al. 
(2021), it was observed that the groundwater samples in this 
study showed higher levels of NO3

−, which might be related 
to the agricultural fertilization practices employed in the 
irrigation areas. The findings of this research revealed that 
the water pollution was worse than before, emphasizing the 
urgent need for appropriate management measures to safe-
guard the quality of groundwater in the Baojixia irrigation 
district. The dominant cation and anion in the Guanzhong 
Basin, as identified by Gao et al. (2022), were Na+ and 
HCO3

−, respectively, which was consistent with the find-
ings of the current study. The Piper diagram, extensively 
employed to classify hydrochemical types of groundwater, 
demonstrates its significance as an effective tool for ana-
lyzing the variation and spatial distribution of ions within 
groundwater (Piper 1944; Liu et al. 2019; Xu et al. 2019). 
Feng et al. (2020) have analyzed the hydrochemical types in 

indicated that 93.75% of the groundwater samples within 
the Baojixia irrigation district were deemed appropriate 
for drinking. Moreover, there was notable disparity in the 
spatial arrangement of groundwater quality within the Bao-
jixia irrigation district, and the specific distribution of the 
EWQImin in the research region can be seen in Fig. 7. Gen-
erally, the EWQImin values in the western part of the Bao-
jixia irrigation district were significantly lower than those of 
the eastern part (Fig. 7a), indicating that groundwater in the 
central and western parts was more suitable for drinking. 
The distribution of good and moderate quality groundwater 
samples was widespread throughout the study area, with the 
good quality samples primarily located in the western part 
(including Baiji, Fengxiang, Qishan, and Fufeng). On the 
contrary, the moderate quality samples were concentrated 
in the eastern area of the Qishui River (including Yangling, 
Wugong, Qianxian, Lingquan, Xingping, and Xianyang). 
Nevertheless, the easternmost part of the study area con-
tained groundwater samples of poor and very poor quality, 

Table 5  EWQImin values and groundwater quality types of the samples
EWQI range Grade Groundwater 

type
Number of 
samples

% of 
Sam-
ples

<25 I Excellent 0 0
25–50 II Good 18 28.13
50–100 III Moderate 42 65.63
100–150 IV Poor 3 4.69
>150 V Very poor 1 1.56

Fig. 7  Spatial variation in groundwater quality in the Baojixia irrigation district based on the EWQImin.
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samples fell within the rock dominance zone, while only 
a few samples were concentrated in the evaporation domi-
nance zone. In addition, the Baojixia irrigation district 
exhibited elevated levels of Na+ in groundwater, while Cl− 
concentrations were comparatively lower. The water chem-
istry of all groundwater samples primarily stemmed from 
rock weathering, as depicted in Fig. 8. The results suggested 
that the geological aspect played a crucial role in shaping 
the chemical properties of groundwater within the Baojixia 
irrigation district. Feng et al. (2020) have reported similar 
findings in the study area on the western bank of the Qishui 
River.

The groundwater quality in the Baojixia irrigation district 
was mainly categorized as “good” or “moderate”, exhibit-
ing a general trend of increasing EWQImin values from west 
to east. Furthermore, taking into account the Qishui River 
as the boundary, the groundwater in the western area was 
predominantly classified as “good”, whereas the water qual-
ity in the eastern section was comparatively inferior to that 
in the western region. The western portion of the research 
region is located in the Piedmont alluvial fan and loess ter-
race region, which is known for its high hydraulic conduc-
tivity and steep gradient, facilitating the groundwater flow 

the Baojixia irrigation area and found that the HCO3-Ca·Mg 
type was mainly concentrated on the Loess Plateau due 
to the rapid flow of groundwater caused by topographic 
relief, resulting in mineral dissolution. On the contrary, the 
HCO3-Na type was predominantly distributed in low-lying 
areas and was associated with evaporation and partial cation 
exchange. HCO3-Ca·Mg and HCO3-Na types were the most 
common in the groundwater samples from the Baojixia irri-
gation district (Fig. 3), which was consistent with the find-
ings of previous studies (Feng et al. 2020).

Comprehending the origin of groundwater is crucial for 
the enduring and effective governance of water reserves 
(Scheiber et al. 2020). The Gibbs diagram serves as a valu-
able tool in analyzing the main influential factors in the 
development of water chemistry (Gibbs 1970). It showcases 
the connections between TDS and Na+/(Na++Ca2+), as 
well as the ratio of TDS and Cl−/(Cl−+HCO3

−). In general, 
the hydrochemical properties of groundwater are mainly 
affected by precipitation, evaporation, and the process of 
rock weathering (Sridharan and Nathan 2018; Wu et al. 
2018b). As depicted in Fig. 8, the majority of samples had 
Na+/(Na+ + Ca2+) and Cl−/(Cl−+HCO3

−) ratios below 0.6 in 
the Baojixia irrigation district. The majority of groundwater 

Fig. 8  Gibbs diagram showing the main controlling factors of the groundwater in the Baojixia irrigation district
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groundwater in cities near the Wei River also contained 
high levels of Na+, which may be due to the direction of the 
groundwater flow and the discharge of the Wei River. NO3

− 
was included as the third parameter in the linear regression 
model. High NO3

− concentration in drinking water may 
lead to methemoglobinemia in infants (Adimalla and Li 
2019). In this study, most samples fell within the standard 
limit of NO3

−, averaging 66.81 mg/L. Moreover, the valley 
terrace area (including Fufeng, Yangling, Wugong, Xing-
ping, and Xianyang) in the northern Wei River had higher 
NO3

− concentrations, while the loess plateau and alluvial 
plain in the southern part of the Baojixia irrigation district 
showed lower NO3

− concentrations (Fig.  9c), suggesting 
that the pollution in this study area cannot be ignored. The 
fourth parameter, TH, has a notable ability to explain EWQI 
and can be utilized to indicate the lithological properties of 
the strata. Typically, TH of the groundwater is categorized 
into five levels: very soft (0–75 mg/L), soft (75–150 mg/L), 
moderately hard (150–300  mg/L), hard (300–450  mg/L) 
and very hard (> 450  mg/L) (Rezaei and Hassani 2018). 
The study found that the mean TH of groundwater in the 
Baojixia irrigation district was 333.17 mg/L, suggesting that 
the majority of groundwater samples exhibited high water 
hardness levels. Therefore, water softening was recom-
mended before residential consumption. A significant rise 
was observed on the TH from the northern to the southern 
region, with a particular focus on the Wei River terrace such 
as Yangling, Wugong, and Xingping (Fig. 9d).

In this study, the EWQImin model selected F− as its fifth 
parameter. F− is a crucial component for maintaining human 
well-being in small amounts, but excessive levels can give 
rise to non-cancerous hazards, resulting in endemic fluoro-
sis and harm to soft tissues (Duan et al. 2018; Abba et al. 
2023). During this study, F− concentrations ranged from 
0.26 to 2.40  mg/L, with an average of 0.86  mg/L, which 
was close to the acceptable limit of 1 mg/L. The results sug-
gested that the drinking water quality in specific regions 
within the Baojixia irrigation district might not meet the 
required standards. Hence, it is imperative to conduct a thor-
ough evaluation of the potential risks to human health in this 
particular research zone. Chen et al. (2021) have discovered 
that the majority of groundwater samples containing less 
than 1.0 mg/L of F− were primarily located in the southern 
region of the Wei River and the western region of the Qishui 
River. These concentrations tended to increase as the direc-
tion of river water flow shifted from west to east, aligning 
with the spatial distribution of F− observed in this study. 
As depicted in Fig.  9e, higher concentrations of F− were 
observed in the eastern part of the study area, Notably. This 
is not only related to the dissolution of carbonates but also 
the mixing of irrigation water along the direction of ground-
water flow (Chen et al. 2021; Egbueri et al. 2023). Despite 

(Feng et al. 2020; Gao et al. 2022). As a result, the water 
quality in the western area of the Baojixia irrigation district 
is more appropriate for human consumption, thus making it 
a preferable choice for drinking water.

Key Parameters of the EWQImin Model

Based on the R2, RMSE, and PE values, the EWQImin−MLR 
model outperformed the EWQImin−PCA model, as indicated 
by the results in Sect. 3.3.2. Therefore, the EWQImin−MLR 
model is considered to be more appropriate and dependable 
for assessing the quality of groundwater in this study. Con-
sequently, the main emphasis of the discussion would be 
on determining the essential factors for the EWQImin−MLR 
model through the analysis of multiple linear regression. It 
is essential that they are representative of other environmen-
tal factors and contribute to an efficient evaluation of water 
quality (Pesce and Wunderlin 2000). The multiple linear 
regression analysis revealed that the EWQImin model, which 
includes TDS, Na+, NO3

−, TH, and F−, accounted for a con-
siderable amount of the observed variance in groundwater 
quality data from the Baojixia irrigation district (R2 = 0.953, 
P < 0.001). This demonstrates the exceptional effectiveness 
of the model in evaluating groundwater quality.

In the linear regression model, TDS was selected as 
the first parameter due to its significant contribution to 
explaining the variations in the EWQI model (R2 = 0.548, 
P < 0.001). TDS indicates the combined amount of inorganic 
salts and small quantities of dissolved organic substances, 
and elevated TDS levels can negatively impact human well-
being (Tiwari et al. 2016). The TDS concentration recorded 
in this investigation remained comfortably within the pre-
scribed threshold, averaging 640.23 mg/L. The analysis of 
spatial distribution showed a progressive rise in TDS levels 
from the western region to the eastern region of the sur-
veyed area. Baoji, Fengxiang, Qishan, and Fufeng exhibited 
lower concentrations (TDS < 580  mg/L), while Yangling, 
Qianxian, Wugong, Liquan, Xingping, and Xianyang dis-
played higher concentrations (580–1000  mg/L) of TDS. 
Furthermore, the cities in proximity to the Wei River exhib-
ited notably increased TDS levels, suggesting a high pres-
ence of inorganic salts in the groundwater of these urban 
areas (Fig. 9a).

Na+ presented the second largest explanatory param-
eter for the variations in the EWQI model, as illustrated 
in Fig.  9b. In the Baojixia irrigation district, Na+ primar-
ily exhibited a band-like distribution, with decreased levels 
in the western region of the study area and elevated lev-
els in the eastern part. According to Feng et al. (2020), an 
important rise in the concentration of Na+ has the potential 
to cause alterations in the type of water chemistry in the 
eastern section of the research area. Similar to the TDS, 
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observed (Table  4). Therefore, F− outperformed CODMn 
as a crucial factor in the EWQImin model suggested in this 
research. Furthermore, these five selected key parameters 
meet the criteria for convenient measurement since they 

the higher R2 values obtained from the linear regression 
model when selecting CODMn, the results indicated that the 
EWQImin model performed worse with CODMn compared to 
F−. This was evident from the higher RMSE and PE values 

Fig. 9  Spatial distribution of the key parameters selected using the EWQImin model
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to the values of R2, RMSE, and PE by using the same key 
parameters.

Conclusions

Groundwater plays a vital role as a resource for human 
consumption and agricultural irrigation. In this study, the 
groundwater quality in the Baojixia irrigation district has 
been evaluated using the EWQImin model, and key parame-
ters influencing the groundwater quality have been selected 
through the application of PCA and MLR, respectively. 
Based on the findings of this study, the following conclu-
sions are drawn:

(1)	 At the time of sampling, the mean values of pH and 
TH were 8.22 and 333.17 mg/L, respectively, suggest-
ing that the groundwater quality in the Baojixia irri-
gation district ranged from predominantly slightly to 
strongly alkaline, and could be classified as hard water. 
Na+ and HCO3

- were the dominant cation and anion 
in the groundwater, respectively. The hydrochemical 
facies were predominantly of the HCO3-Ca·Mg and 
HCO3-Na types, which were mainly controlled by rock 
weathering.

(2)	 Compared with the EWQImin-PCA model, the proposed 
model of EWQImin-MLR showed better performance for 
assessing the groundwater quality, consisting of five 
key parameters, including TDS, Na+, NO3

-, TH, and F-. 
These key parameters can be easily measured, indicat-
ing that the EWQImin-MLR model is an effective and low-
cost method for groundwater evaluation in the Baojixia 
irrigation district.

(3)	 Based on the EWQImin classification, the water quality 
in the Baojixia irrigation district was generally deemed 
to be “moderate” quality, with the eastern part of the 
study area exhibiting higher EWQImin values compared 
to the western part. In general, the eastern part of the 
study region had poorer water quality than the western 
part.

Overall, the results showed that the EWQImin model devel-
oped in this study was an appropriate and dependable 
method for evaluating the quality of groundwater in the 
Baojixia irrigation district. Furthermore, the results can 
be used as a reference for future studies on the selection 
of key parameters of the EWQImin model for water quality 
evaluation.
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can be easily accessed through either automated or manual 
monitoring techniques. This aspect proves advantageous in 
evaluating the quality of groundwater in the Baojixia irriga-
tion district.

Previous studies conducted in the Guanzhong Basin 
have provided valuable insights into the selection of these 
five parameters for the development of the EWQImin model 
(Wang et al. 2022, 2023b, 2024; Xu et al. 2023a, b; Xie et al. 
2023; Nsabimana et al. 2023; Zhang et al. 2022). Ren et al. 
(2021) analyzed the groundwater quality in the central part 
of the Guanzhong Basin using the PCA method and identi-
fied Na+, TDS, TH, NO3

−
, and F− as the key parameters. 

In addition, Feng et al. (2020) have found that Na+ was the 
most critical factor affecting groundwater in the Baojiaxia 
Irrigation. These results were consistent with the results of 
the current study, indicating that the five selected param-
eters had significant impacts on the quality of groundwater 
in the Baojixia irrigation district.

Future Prospects

Several studies have been carried out on the assessment 
of groundwater quality using the EWQI model (Wu et al. 
2015; Li et al. 2019; Ukah et al. 2020; Yang et al. 2023). 
Nevertheless, there is a lack of research that specifically 
addresses the utilization of the EWQImin model for assess-
ing the quality of groundwater. The main highlights of this 
study were the development of the EWQImin model as the 
basis for comparing the principal component analysis and 
multiple linear regression methods using key parameters 
based on this model, and the selection of the best model 
for evaluating groundwater quality in the Baojixia irriga-
tion district. The results indicated that the EWQImin model 
has the ability to fully elucidate the general attributes of 
groundwater quality and efficiently assess groundwater 
quality at a comparatively low cost, given the circumstances 
of controlled operation and a consistent water environment. 
Therefore, the creation of this model may offer new insights 
and outlook for assessing groundwater quality. However, 
there were still some limitations to this study as well. The 
water quality parameters in this study were analyzed con-
cerning the standards in China. Some specific parameters 
were not tested in this study, which may limit the further 
understanding of water quality. In addition, it is worth not-
ing that the performance of the EWQImin model in this study 
was proposed by considering the weights of the parameters 
in the evaluation, while the performance of this model with-
out considering the weights of the same key parameters was 
not clear. Therefore, it’s necessary to conduct a comprehen-
sive comparison between the performance of the EWQImin 
model with and without weights in future studies according 
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