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Abstract
The entropy water quality index (EWQI) is a simple method of comprehensively assessing water quality. This method has 
been widely used in groundwater quality assessment. However, the number of hydrochemical parameters selected for the 
evaluation can lead to inconsistent classification criteria. In this study, 12 parameters were selected, based on their impor-
tance in the groundwater quality, to redefine the classification criteria of EWQI. Therefore, the modified EWQI approach 
with updated classification criteria was applied to evaluate groundwater quality in the Zhouzhi Country of the Guanzhong 
Basin, China. The results show that considering heavy metals in the groundwater quality resulted in different EWQI clas-
sification criteria from those previously used in other studies due to the large difference in the national standard limits for 
heavy metals in different water quality categories. In addition, the improved EWQI showed that 1.41, 63.38, and 35.21% of 
the groundwater samples in the Zhouzhi County were of excellent, good and moderate groundwater quality, respectively. 
Compared with other classification criteria, the improved EWQI method considering more water hydrochemical parameters 
and heavy metal elements is more suitable and reliable for comprehensively evaluating groundwater quality.
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Introduction

In recent years, the rapid development of human society 
has caused some serious environmental problems, such as 
unplanned land use, energy shortage, and water pollution 
(Liu et al. 2020; Luque-Espinar and Chica-Olmo 2020). 
Groundwater contamination, which is defined as the dete-
rioration of water quality caused by anthropogenic activi-
ties, has threatened the survival and development of human 
beings (He et al. 2022; Li et al. 2014; Subba Rao et al., 
2022a, 2022b). Human health may be seriously affected by 

polluted groundwater as it serves as the primary source of 
drinking and irrigation water (Li and Wu 2019; Wang and 
Li 2022). Therefore, the prevention of groundwater pollution 
has become a high priority for sustainable water resources 
management (Hu et al. 2020; Zhang et al. 2022a). It is of 
great significance to carry out first the groundwater qual-
ity and pollution degree assessment, and then implement 
groundwater pollution control policies to reduce and miti-
gate groundwater pollution (Fida et al. 2022; Zhou et al. 
2022).

Researchers have used numerous methods to assess 
water pollution worldwide, and some of them include 
improved fuzzy comprehensive evaluation, fuzzy math-
ematics, multivariate statistical analysis; Nemerow index, 
set pair analysis, water quality identification index, and 
water quality index methods (Ali et al. 2021; Maurya et al. 
2021; Shankar and Sreevidya 2020; Tian et al. 2021; Tian 
and Wu 2019; Wang et al. 2014; Qiao et al. 2015; Su et al. 
2019; Zhang et al. 2020, 2021a, 2022b). The water quality 
index (WQI) method has been widely used to determine the 
overall groundwater quality and its suitability for drinking 
purposes worldwide (Fadel et al. 2021; Zotou et al. 2019; 
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Mthembu et al. 2022). Li et al. (2010) integrated entropy 
weights and conventional water quality index (WQI) and 
developed the entropy water quality index (EWQI), improv-
ing the reliability of the water quality assessment results. 
Since then, EWQI has been widely used for water quality 
assessment many scholars (Amiri et al. 2014; Ali et al. 2017; 
Islam et al. 2020). To comprehensively assess groundwater 
pollution, a large number of physicochemical and biologi-
cal parameters need to be considered, many of which have 
been included in the calculation of WQI (Singh et al. 2019). 
However, the existing EWQI classification criteria vary con-
siderably between studies. Indeed, several researchers have 
classified the EWQI into five classes, namely < 25, 25–50, 
50–100, 100–150, and > 150 (classification criteria one here-
after), corresponding to excellent, good, moderate, poor, and 
very poor groundwater quality, respectively (Kumar and 
Augustine 2022; Liu et al. 2022; Zhang et al. 2022c). While 
other researchers have classified EWQI into < 50, 50–100, 
100–150, 150–200, and > 200(classification criteria two 
hereafter), corresponding to excellent, good, moderate, poor, 
and very poor groundwater quality, respectively (Egbueri 
et al. 2020b; Masood et al. 2022; Nguyen et al. 2021; Zhang 
et al. 2021b). Moreover, a third water quality classification 
criterion has widely been adopted, namely < 50, 50–100, 
100–200, 200–300, and > 300(classification criteria three 
hereafter), corresponding to excellent, good, moderate, poor, 
and very poor groundwater quality, respectively (Egbueri 
et al. 2020a; Ismail and Ahmed 2021; Raheja et al. 2022). 
These different water quality classification criteria lead to 
confusing and varying groundwater quality assessment 
results (Singh et al. 2019; Wang et al. 2020; Panneerselvam 
et al. 2021). Therefore, using an appropriate EWQI classi-
fication is critical for ensuring the reliability of the ground-
water quality assessment results. Although heavy metals are 
harmful to human health, they are rarely considered in the 
groundwater quality assessment due to the low levels in the 
analyzed water samples (Ali et al. 2017). Therefore, includ-
ing heavy metal elements in the EWQI may result in more 
reliable groundwater quality results, and will be useful for 
the water quality management (Li et al. 2021).

Zhouzhi County is an important county in the Guan-
zhong Plain, China, and provides the major water supply 
for Xi’an. Assessment of groundwater quality of this area is 
of great importance for water safety and national economic 
development. Indeed, Qiao et al. (2020) and Zhang et al. 
(2019) revealed that groundwater is polluted in the entire 
Guanzhong Plain, showing high nitrate (NO3

−) and heavy 
metals concentration is exceeding Chinese groundwater 
quality thresholds. However, the groundwater quality status 
around Xi’an city has not been comprehensively assessed. 
Therefore, this study aims to: (1) to assess the hydrochemi-
cal characteristics of groundwater and evaluate its quality 
using the improved water quality classification criteria; (2) 

to compare the results obtained using the improved water 
quality classification criteria with those obtained using the 
original classification criteria. This study also generated the 
spatial distribution maps of the main water quality param-
eters. This study provides suggestions and a basis for local 
groundwater pollution prevention and control.

Study Area

Location and Geography

Zhouzhi County is located in the central part of the Shaanxi 
Province, China (107°39′-108°37′ E and 33°42′-34°14′ 
N) at 68 km from Xi’an City (Fig. 1). The study area is 
bounded to the west by Mei County, to the east by Huyi 
District (previous Hu County), to the south by the Qinling 
Mountains, and to the north by the Wei River, covering a 
total area of 2974 km2. Zhouzhi County provides important 
water supply source for Xi’an City. The study area has a 
temperate continental climate with an average annual tem-
perature of 13.3  °C (Zhang et al. 2019). The average annual 
precipitation and evaporation range from 530 to 700 mm 
and between 1000 and 1200 mm, respectively, with uneven 
seasonal distribution of precipitation. Indeed, about 45% of 
the precipitation amount occurs during the month of July 
and September period (Xu et al. 2019). The overall dry and 
wet seasons are distinct, with high winds and sandstorms in 
spring, intense rainfall events occurs in early summer, and 
limited rainfall occurs during the autumn, winter, and spring. 
The main rivers in the study area are the Wei River and Hei 
River. The Hei River is a first-class tributary of the Wei 
River, characterized by significant seasonal changes in flow. 
Whereas the highest flow of the mainstream is observed in 
autumn.

Geological and Hydrogeological Settings

The landform types in the study area are pre-mountain allu-
vial fans, loess plateau, and valley terraces from the Qinling 
Mountains to the Wei River, consisting mainly of Quater-
nary alluvium-lacustrine and loess accumulation (An et al. 
2020). The primary terraces are not widely distributed on 
the north bank of the Wei River, while secondary terraces 
are continuously developed. Nevertheless, primary and sec-
ondary terraces are developed in the Xi’an depression on 
the south bank of the Wei River, showing narrow terraces 
with shallow hydraulic gradients (Li et al. 2016a). In addi-
tion, the study area is characterized by the presence of two 
aquifer types, namely the Quaternary sand and gravel aquifer 
and the Neoproterozoic to Paleoproterozoic bedrock aqui-
fer with a thickness of about 800 m. The main lithological 
classes are loess, sand, and gravel layers. According to Kong 
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et al. (2019), the average hydraulic conductivity and the 
infiltration coefficient of the aquifer is 25.26 m/d and 0.25, 
respectively. The aquifer is mainly recharged by atmospheric 
precipitation infiltration and surface runoff, with decreas-
ing recharge rates along both sides of the Wei River, while 
groundwater discharge occurs mainly by artificial extraction, 
evaporation, and lateral runoff to the river (Ji et al. 2020). 
According to the investigation in 2021, groundwater level 
depth in the study area ranges generally between 8 and 45 m.

Material and Methods

Sample Collection and Analysis

In this study, 71 groundwater samples were collected 
in polyethylene bottles from well-distributed sampling 
points in and around Zhouzhi County in June 2021 in 
the monsoon season. Portable GPS devices were used to 
record the location of the sampling sites. The groundwater 
sampling was carried out after pumping groundwater for 
3 min and cleaning polyethylene bottles three times with 
the groundwater to be sampled. In addition, to preserve 

groundwater samples and ensure the reliability of ana-
lytical analyses, concentrated nitric acid was added to the 
groundwater samples intended for heavy metals analyses. 
Afterward, groundwater samples were stored and trans-
ported according to the Chinese drinking water standards 
(Ministry of Health of the People’s Republic of China and 
Standardization Administration of the People’s Republic 
of China 2006). On-site measurements of groundwater 
physicochemical parameters (such as temperature and pH) 
were conducted using a portable multi-parameter meter 
(SX723). Whereas fluorine (F−), chloride (Cl−), nitrite 
(NO2

−), sulfate (SO4
2−), nitrate (NO3

−), sodium (Na+), 
aluminum (Al), arsenic (As), zinc (Zn), total hardness 
(TH), total dissolved solids (TDS), potassium (K+), cal-
cium (Ca2+), magnesium (Mg2+), bicarbonate (HCO3

−), 
and carbonate (CO3

2−) were analyzed in the laboratory 
of Xi’an Center for Mineral Resources Survey. In addi-
tion, the charge balance error percentage (%CBE) of each 
groundwater sample was checked to ensure the reliable 
analytical results (Eq. 1). The acceptable standard limit 
%CBE is set at ± 5%, and in this study all water samples 
are within this limit, indicating acceptable quality of phys-
icochemical analyses for further study.

Fig. 1   Location map of the 
study area and distribution of 
sampling sites



828	 Y. Yang et al.

1 3

Correlation Analysis

The degree of correlation between different parameters in 
groundwater can be quantified by the Pearson correlation 
coefficient (r), which can be calculated as follows:

where, r is the correlation coefficient between two variables 
(x and y). x and y are the mean values of the variables. The 
value of r ranges between − 1 and 1. A correlation coeffi-
cient of 0 indicates that the two variables are not correlated 
(Wei et al. 2022).

Introduction to EWQI

EWQI is a comprehensive method for assessing groundwater 
quality. This method can be used to transform a large water 
quality dataset into comprehensive water quality scores by 
assigning objective weights to the hydrochemical parameters 
(Li et al. 2019; Qiao et al. 2020). Indeed, EWQI has been 
widely used by numerous researchers (Adimalla 2021; Mar-
ghade et al. 2021; Zhang et al. 2022c) due to its calculation 
simplicity and the ability to integrate multiple hydrochemi-
cal parameters. However, the EWQI classification criteria 
vary considerably between studies, resulting in discrepancies 
in the results of groundwater quality of the same aquifer. 
Moreover, differences in the input hydrochemical parameters 
may result in significant impacts on the EWQI classifica-
tion criteria. In this study, the main parameters influencing 
groundwater quality were selected to determine the clas-
sification criteria of EWQI. The calculation of EWQI was 
performed using two main processes (Fig. 2) according to Li 
et al. (2010) and Wu et al. (2015). The first process consists 
of calculating the rating scale (qj) of EWQI for the hydro-
chemical parameters of groundwater. qj of pH values was 
calculated based on the standard pH (SpH) range of 6.5–8.5. 
Whereas the second process consists of matrix normaliza-
tion using two different formulae, depending on the different 
parameters considered (Ali et al. 2017).

The EWQI classification criteria were redefined by con-
sidering the 12 parameters, namely F−, Cl−, NO2

−, SO4
2−, 

NO3
−, Na+, Al, As, Zn, pH, TH, and TDS, which were 

selected based on their pollution characteristics in ground-
water. All levels of water quality standard limit value of each 

(1)%CBE =

∑

Cations −
∑

Anions
∑

Cations +
∑

Anions
× 100

(2)r =

n
∑

i=1

(Xi − X)(Yi − Y)

�

n
∑

i=1

(Xi − X)2

�

n
∑

i=1

(Yi − Y)2

parameter were introduced in the EWQI formulae to obtain 
the new classification criteria. Based on the groundwater 
quality standard limits of the People’s Republic of China 
(General Administration of Quality Supervision, Inspection 
& Quarantine of China, and Standardization Administration 
of China 2017), all hydrochemical parameters and heavy 
metals can be classified into grades I–V (Table 1).

Results and Discussion

Hydrochemical Characteristics of Groundwater

Groundwater in the study area is mainly used for agriculture, 
industry and drinking purposes. Therefore, the groundwater 
pollution in the study area threatens seriously the health of 
local residents. The concentrations of Cu, Cr6+ and Ni in 
groundwater samples were lower than the detection limits, 
suggesting that their concentrations were well below the 
limits for grade I, which would not affect human health 
(Edokpayi et al. 2018). Therefore, these heavy metals are not 
discussed in the current study. In this study, 12 parameters 
were selected to evaluate the groundwater quality. These 
hydrochemical parameters were selected based on their sig-
nificant impacts on the groundwater pollution in the study 
area. Hydrochemical parameter concentrations below the 
detection limit were considered as half of the detection limit.

The Piper diagram consists of three different zones, in 
which the anion and cation proportions in water samples are 
plotted to determine their groundwater facies types, provid-
ing a better understanding of the evolution of groundwater 

Fig. 2   EWQI calculation process
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(Piper 1944; He and Li 2020; Su et al. 2020). As shown 
in Fig. 3, the groundwater sample points in the study area 
mainly fall in zone 4, indicating that the groundwater chemi-
cal type of groundwater is dominated by the HCO3

−Ca.Mg 
facies type. Whereas the anions and cations of groundwater 
samples were mainly distributed in zones E and A, indicat-
ing that the anions and cations in groundwater of the study 
area are dominated by HCO3

− + CO3
2− and Ca2+, respec-

tively. These results suggest that carbonate mineral weath-
ering (such as calcite and dolomite) is likely to be the main 
factor controlling groundwater chemistry in Zhouzhi County.

The Gibbs diagrams include two subplots divided into 
three parts, representing three evolutionary mechanisms of 
groundwater, namely precipitation dominance, rock domi-
nance and evaporation dominance. These diagrams have, 

indeed, been applied by many scholars to assess ground-
water evolution (Gibbs 1970; He et al. 2021). The results 
showed that all groundwater samples fall under the rock 
dominance zone, suggesting that the formation of ground-
water chemistry is dominated by water–rock interaction 
(Fig. 4). As shown in Fig. 4a, there are four groundwa-
ter samples falling in the middle left part of the diagram, 
indicating that these groundwater samples are affected 
by a combination of the three evolutionary mechanisms. 
Whereas the remaining groundwater samples suggested a 
dominance of rock weathering (e.g., carbonate minerals), 
which influence significantly the groundwater chemical 
characteristics in the study area. These results are consist-
ent with those obtained using the Piper diagram.

Table 1   Water quality 
classification standard limits 
and allowable limits

pH standard is divided into alkaline and acidic standards. The alkaline standard limits are 7.5, 8, 8.5, and 9, 
while the acidic standard limits are 7.5, 7, 6.5, and 5.5

Parameters pH F− Cl− NO2
− SO4

2− NO3
− Na+ TDS TH Al Zn As

I 6.5–8.5 1 50 0.01 50 2 100 300 150 0.01 0.05 0.001
II 6.5–8.5 1 150 0.1 150 5 150 500 300 0.05 0.5 0.001
III 6.5–8.5 1 250 1 250 20 200 1000 450 0.2 1 0.01
IV 5.5/9 2 350 4.8 350 30 400 2000 650 0.5 5 0.05
Allowable limits 6.5/8.5 1 250 1 250 20 200 1000 450 0.2 1 0.01

Fig. 3   Piper diagram show-
ing major water types of the 
groundwater samples
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Chemical Compositions of Groundwater

For a clear understanding of the hydrochemical charac-
teristics of groundwater. a statistical analysis of the main 
water quality parameters was carried out. As shown in 
Table  2, 30.99% of the groundwater samples showed 
NO3

− concentrations exceeding the permissible limit, 
indicating NO3

− pollution in the study area. Indeed, high 
NO3

− concentrations in drinking water are likely to cause 

methemoglobinemia in infants (Adimalla and Li 2018). 
The TDS is the sum of inorganic salts and small amounts 
of dissolved organic matter. The results showed that 
11.27% of the groundwater samples exceeded the permis-
sible limit of TDS (1000 mg/L). In fact, high TDS con-
centrations may affect significantly human health (Ravin-
dra et al. 2019; Tiwari et al. 2016). The TH range was 
169–750 mg/L, with a mean concentration of 374.80 mg/L. 

Fig. 4   Gibbs diagrams, a TDS 
versus Na/(Na + Ca), b TDS 
versus Cl/(Cl + HCO3)

Table 2   Statistics of 
physiochemical parameters 
of groundwater (Unit: mg/L, 
except pH)

 < indicates that the parameter concentration is below the detected limit

Parameters Max Min Mean SD CV (%) Allowable Limits Percentage exceed-
ing the standard 
(%)

pH 7.94 6.83 7.45 0.23 3.05 6.5–8.5 0
F− 0.70 0.04 0.19 0.14 69.93 1 0
Cl− 96.10 2.60 27.73 22.04 79.46 250 0
NO2

− 1.06 0.63 0.86 0.10 11.23 1 5.63
SO4

2− 250.00 5.59 79.56 61.79 77.67 250 0
NO3

− 89.65 0.01 19.77 19.54 98.84 20 30.99
TDS 1352.00 262.00 619.38 266.98 43.10 1000 11.27
TH 750.00 169.00 374.80 143.61 38.32 450 35.21
Al 0.80  < 0.0046 0.04 0.11 276.93 0.20 7.04
Zn 0.41  < 0.0027 0.02 0.05 298.66 1 0
As 0.01 0.001 0.003 0.001 47.37 0.01 0
Mg2+ 85.10 9.19 27.40 14.62 53.35 – 0
Ca2+ 220.00 30.40 112.23 43.70 38.94 – 0
Na+ 100.00 4.83 31.73 25.63 80.76 200 0
K+ 6.68 0.48 2.08 1.13 54.38 – 0
HCO3

− 498.00 125.00 282.85 89.96 31.81 – 0
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The results revealed 35.21% of the groundwater samples 
exceeding the permissible limit of TH (450 mg/L).

The results showed 5.63% of the groundwater sam-
ples exceeding the permissible limit of NO2

− (1 mg/L). 
The NO2

− concentrations ranged from 0.63 to 1.06 mg/L, 
with a mean value of 0.86 mg/L. In fact, high groundwa-
ter NO2

− concentrations pose a high health risk to adults 
and children (Su et al. 2018; Li et al. 2022). Whereas, Al 
concentrations ranged from 0.002 to 0.802 mg/L, showing 
7.04% of the groundwater samples exceeding the permis-
sible limit of Al. High Al concentrations may cause human 
health diseases, such as Alzheimer’s disease and dialysis 
encephalopathy in patients with chronic kidney disease (Hart 
et al. 2021). The As and Zn concentrations in groundwater 
were within the permissible limits, suggesting low impacts 
of As and Zn on the groundwater quality in the study area 
(Tiwari et al. 2017).

Correlation Analysis

The Pearson correlation coefficients between the chemical 
parameters of groundwater are reported in Table 3. Accord-
ing to the obtained results, TDS was significantly correlated 
with SO4

2−, K+, Ca2+, Na+, Mg2+, Cl− and HCO3
−, indicat-

ing that these ions are the main components of TDS. These 
ions were mainly originated from the strong weathering of 
the rocks in the study area (Wei et al. 2022). Na+ showed 
highly positive correlations with Cl− (r = 0.597), and was 
moderately positively correlated with SO4

2− (r = 0.468), 
which indicates that Na+ may come from the dissolution of 
some evaporites (e.g., halite and mirabilite) in the study area 
(He et al. 2019; Li et al. 2018). The above reactions can be 
expressed as formulas (3) and (4).

HCO3
− showed highly positive correlations with Ca2+ 

(r = 0.522) and Mg2+ (r = 0.810), SO4
2− showed highly posi-

tive correlations with Ca2+ (r = 0.683), and Ca2+ and Mg2+ 
are highly positively correlated (r = 0.637), indicating that 
they may have the same source, such as weathering and dis-
solution of gypsum (CaSO4·2H2O), dolomite [CaMg (CO3)2] 
and calcite (CaCO3) (Li et al. 2016b; Zhang et al. 2018). The 
above reactions can be expressed in formulas (5)-(7).

(3)NaCl → Na+ + Cl−

(4)Na2SO4 → 2Na+ + SO2−
4

(5)CaCO3 + H2O + CO2 → Ca2+ + 2HCO−
3

(6)
CaMg(CO3)2 + 2H2O + 2CO2 → Ca2+ +Mg2+ + 4HCO−

3

F− is highly correlated with Na+ (r = 0.598), because high 
Na+ groundwater usually promotes F− enrichment, and fluo-
rine in groundwater mainly comes from the dissolution of 
fluoride-bearing minerals (Ali et al. 2016, 2018; Liu et al. 
2019; Wu et al. 2020a; Subba Rao et al. 2021). Similarly, 
F− and As are positively correlated (r = 0.421), because in 
arid and semi-arid regions, alkaline and oxidizing as well 
as reducing conditions are favorable for the enrichment of 
As and F−, and this association is well documented (Guo 
et al. 2014; He et al. 2020; Kumar et al. 2020; Sathe et al. 
2021). Therefore, the weakly alkaline water environment and 
mineral dissolution in the study area may lead to the coex-
istence of As and F− (Li et al. 2021). As and F− are widely 
investigated elements in medical geological research (Li and 
Wu 2022). NO2

− is an intermediate product of nitrification 
and will be converted to NO3

− upon oxidation. NO2
− and 

NO3
− are negatively correlated (r = − 0.145), and it can be 

determined that there is a conversion between NO2
− and 

NO3
− (Wu et al. 2020b). As shown in Fig. 5, similar spatial 

distributions of NO3
− and TH were observed, indicating that 

they are homologous, which is consistent with the results of 
the correlation analysis (r = 0.593), and this phenomenon 
can be related to nitrification. The nitrification process favors 
the dissolution of carbonates in loess sediments, increasing 
in TH (Hussain et al. 2019).

Improvement in Water Quality Classification Criteria 
of EWQI

To determine the optimal water quality classification criteria, 
the allowable water quality limits prescribed in the national 
groundwater quality standards (Table 1) were composited 
as virtual water samples to calculate the virtual EWQI. The 
calculation showed that the highest weight values were for 
F− and Cl−, while the lowest weight values were for Zn and 
As. The EWQI values obtained in this study showed that the 
classification limits for grades I, II, III, and IV of the alka-
line groundwater ranged approximately within 0–26, 26–50, 
50–100, and 100–243, respectively, while those of the acidic 
groundwater were approximately 0–26, 26–50, 50–100, and 
100–258, respectively (Fig. 6). These obtained results also 
indicate that two factors influenced significatively the EWQI 
values, namely the weights of the hydrochemical parameters 
and the threshold limit of each hydrochemical parameter. In 
fact, compared to other parameters, NO2

− and heavy metals 
had relatively higher threshold limits for the IV and V levels 
than for the first three levels (Fig. 7).

The classification criteria calculated for the alkaline 
groundwater and acidic groundwater were slightly differ-
ent from the traditional classification criteria (classification 
criteria 1 to 3 in Table 4), because the EWQI values are 

(7)CaSO4 ⋅ 2H2O → Ca2+ + SO2−
4

+ 2H2O
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Fig. 5   Spatial distributions of physicochemical parameters

Fig. 6   Proportion of each 
parameter in the EWQI clas-
sification
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Fig. 7   Limits of each param-
eter in the groundwater quality 
standards

Table 4   Overall water quality classification criteria based on EWQI

Rank I II III IV V

Water quality Excellent quality Good quality Moderate quality Poor quality Very poor quality
Classification criteria 1  < 25 25–50 50–100 100–150  > 150
Classification criteria 2  < 50 50–100 100–150 150–200  > 200
Classification criteria 3  < 50 50–100 100–200 200–300  > 300
New classification criteria  < 25 25–50 50–100 100–200  > 200



835Groundwater Quality Assessment Using EWQI With Updated Water Quality Classification Criteria:…

1 3

typically higher when considering heavy metals in the calcu-
lation process. Compared with the traditional classification 
criteria, the classification values for each water quality level 
in the obtained criteria in this study are lower, which may be 
due to the consideration of more hydrochemical parameters 
and the addition of heavy metals. Based on the calculated 
EWQI values, the ranges of the grades I, II, and III ground-
water quality indices were set as 0–25, 25–50 and 50–100, 
respectively (Table 4). In addition, since the standard lim-
its of grades IV and V for heavy metals are many times 
higher than those of the first three grades, the EWQI values 
showed higher values for grades IV and V. In order to have 
more strict requirements for water quality, benefiting water 
quality protection, the EWQI of grade IV Values are set to 
100–200 for both alkaline groundwater and acidic ground-
water (Table 4). Therefore, the new classification criteria are 
more suitable for assessing the groundwater quality, com-
bining several hydrochemical parameters and heavy metal 
elements. In the study, the groundwater quality in Zhouzhi 
County was assessed using a total of 12 parameters to ensure 
a comprehensive assessment.

Groundwater Quality Assessment Using Improved 
EWQI

The entropy weights of hydrochemical parameters were cal-
culated in this study to determine EWQI classes (Table 5). 
The higher the entropy value, the greater the influence 
of water chemistry parameters on groundwater quality. 
According to the obtained results, NO2

− and pH showed 
the highest weights of 0.15 and 0.14, respectively, while 

Al and Zn revealed the lowest weight of 0.02. The EWQI 
results showed that 1.41, 63.38, and 35.21% were of excel-
lent, good, and medium groundwater quality, respectively, 
suggesting that groundwater in the study area is suitable for 
drinking (Sivasankar et al. 2013).

Kriging interpolation of EWQI values were applied to 
reveal the spatial distribution of groundwater quality in the 
study area (Fig. 8). The results showed deteriorated ground-
water quality in the Wei River Plain area compared to that 
in the Qinling Mountain Front. Areas closer to the Qin-
ling Mountain Front showed relatively better groundwater 
quality. In addition, excellent to good groundwater quality 
(grades I and II) were observed near the Hei River, which 
may be due to significant recharge from the infiltration of 
water from the Hei River. Whereas medium groundwater 
quality (grade III) was particularly observed near the urban 
area (Wugong, Yangling, Mei County, and Hu County), sug-
gesting that human activities are the main factors affecting 
the groundwater quality in the study area.

The improved EWQI classification results of this study 
were compared with those of the three water quality clas-
sification criteria mentioned in the introduction (Table 6). 
According to the comparison results, classification criteria 
1 and the improved classification criteria indicated similar 
groundwater quality results, showing similar numbers of 
groundwater samples in all groundwater classes. Whereas 
classification criteria 2 and 3 showed similar groundwater 
quality, the reason is that the first two levels of water quality 
EWQI value is the same. Overall, classification criteria 1 
and the improved classification criteria are slightly stricter 
than classification criteria 2 and 3. In addition, the improved 

Table 5   Entropy weight of each 
parameter

Parameters pH F− Cl− NO2
− SO4

2− NO3
− Na+ TDS TH Al Zn As

Weight 0.14 0.06 0.08 0.15 0.10 0.06 0.11 0.10 0.11 0.02 0.02 0.04

Fig. 8   Groundwater quality dis-
tribution map based on EWQI. 
Higher value indicates worse 
water quality
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EWQI takes heavy metal elements in the evaluation of 
groundwater quality, making it the most suitable method 
for comprehensively and accurately assessing groundwater 
quality.

Recommendations for Groundwater Quality 
Management

Although there were high groundwater NO3
− concentrations 

in some areas of Zhouzhi County, the EWQI results sug-
gested that groundwater in the study area was suitable for 
human drinking. Nevertheless, some necessary measures 
must be taken to improve the quality of groundwater and 
prevent further potential groundwater contamination in the 
study area.

First, since the study area is covered by a large amount 
of farmland, the government should support and encour-
age farmers to substitute industrial fertilizer with organic 
fertilizers and/or rationalize industrial fertilizer uses to 
prevent groundwater pollution. In addition, there are piles 
of livestock manure in the study area, which may lead to 
groundwater pollution through pollutant leaching. Effective 
management of manure piles is, therefore, required in the 
study area.

Second, the presence of intense industrial activities 
imposes a potential threat to the groundwater resource. 
Therefore, the government needs to strictly monitor the 
industrial wastewater effluents and ensure that industrial 
wastewater meets effluent discharge standards. Moreover, 
land development activities and drilling production around 
the water source area need to be reduced to prevent ground-
water pollution.

Third, the high numbers of private wells in the study area, 
the poor awareness of farmers about water quality safety, 
and the lack of unified government management and water 
quality monitoring have led to a lack of groundwater protec-
tion against pollution. Therefore, it is of great importance to 
ensure that private well owners and local groundwater man-
agement authorities are aware of water quality and potential 
contamination risks in the study area and ensure that regular 
maintenance of wells, regular water quality monitoring, and 
water treatment are carried out (Hynds et al. 2014).

Conclusions

In this study, the overall groundwater quality in Zhouzhi 
County was assessed using an improved EWQI. In addition, 
the EWQI classification criteria results were compared with 
those obtained using other classification criteria. The main 
conclusions are as follows:

(1) According to the obtained EWQI results, the standard 
limits of heavy metals for grade IV were higher than those 
for the first three grades, resulting in higher IV and V EWQI 
values. The updated groundwater quality classification cri-
teria are excellent quality water (EWQI < 25), good quality 
water (EWQI within 25–50), moderate quality water (EWQI 
within 50–100), poor quality water (EWQI within 100–200), 
and very poor quality water (EWQI > 200).

(2) NO3
− and TH were the dominant pollution parameters 

in the groundwater of the study area, followed by TDS, Al, 
and NO2

−. In addition, pH, F−, Cl−, Na+, SO4
2−, Zn, and As 

revealed mean and maximum concentration values within 
the permissible limit standards.

(3) According to the Kriging interpolation of EWQI, 
excellent groundwater quality is identified in areas near the 
Hei River where river water recharge takes place; however, 
in other areas, human activities are affecting the quality of 
groundwater.

(4) The improved EWQI results showed that 1.41, 63.38, 
and 35.21% of the groundwater samples were of excellent, 
good, and medium groundwater, respectively. Moreover, no 
groundwater sample showed poor and very poor ground-
water quality, suggesting that groundwater is suitable for 
drinking. Compared with other classification criteria, the 
improved EWQI is more suitable and comprehensive for 
assessing the groundwater quality.
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