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Abstract
Scarce information exists about the link between mixed heavy metals and metabolic syndrome (MetS) and its components, as 
well as its molecular mechanism. Thus, we identified the associations of serum cadmium, lead, and mercury with MetS and 
its components using linear regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), 
and Bayesian kernel machine regression (BKMR). Of the 5581 subjects included, 30.8% had MetS. In the logistic regression 
model, serum mercury was associated with MetS and its components, and significant trends were observed for these heavy 
metal quantiles (p < 0.001). Serum mercury levels were also linked with MetS and its components in the WQS and qgcomp 
models. In BKMR analysis, the overall effect of the mixture was significantly associated with MetS and its components. 
Serum mercury showed positive trends and was observed as the most important factor associated with MetS, along with 
elevated waist circumference and elevated blood pressure. In in-silico toxicogenomic data mining, we found several pathways 
(insulin resistance, IL6 signaling pathway, and adipogenesis), regulation of lipid localization, and metabolic syndrome X as 
key molecular mechanisms that may be affected by heavy metals and involved in the development of MetS. We identified 
hsa-miR-124-3p as the highest interaction and expression implicated in the MetS process. We also used miRNAsong to 
create and test a miRNA sponge sequence for these miRNAs, which may be promising for being used in MetS therapy. In 
particular, the cutoff levels for exposure levels related to MetS and its components were also reported.
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Introduction

Rapid social and economic growth, as well as lifestyle 
changes, have resulted in a dramatic increase in adult meta-
bolic syndrome (MetS) prevalence in South Korea, and this 
trend is expected to continue (Duc et al. 2021a, b, c; Nguyen 
and Kim 2021). MetS is a significant public health issue that 
contributes to the risk of cardiovascular diseases, diabetes, 
non-alcoholic fatty liver disease, cancer, gout, sleep apnea 
syndrome, dementia, polycystic ovary syndrome, and other 

clinical consequences (Beck-Nielsen 2013). Genetics, an 
imbalance of energy expenditure and consumption, high-
calorie food intake, lack of physical fitness, a sedentary life-
style, stress, and health issues are all known to have a role 
in MetS development. However, emerging evidence sug-
gests that these characteristics are insufficient to adequately 
explain the MetS problem (Lopomo et al. 2016; Park et al. 
2017; Nguyen and Kim 2021; Nguyen et al. 2021a, b, c, d). 
Environmental factors, in addition to these, are a risk factor 
for MetS (Valera et al. 2012; Angeli et al. 2013; Poursafa 
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et al. 2014; Arbi et al. 2017). Therefore, risk factors as well 
as MetS should be controlled to reduce the societal disease 
burden and to improve quality of life.

Humans can be easily exposed to heavy metals through 
the air, food, water, or industrial environments, especially in 
the industrialization and urbanization eras, because heavy 
metals are long-lasting environmental contaminants (Pour-
safa et al. 2014; Ali et al. 2019; Nguyen et al. 2021a, b, c, 
d). The most harmful heavy metals researched are mercury 
(Hg), cadmium (Cd), and lead (Pb) (Duc et al. 2021a, b, c; 
Nguyen et al. 2021a, b, c, d). The most common sources of 
cd exposure are cigarette smoking and contaminated food 
(Satarug et al. 2017). Cosmetics, fossil fuels, air, polluted 
waste, and food, particularly contaminated fish and seafood, 
are all potential sources of Hg exposure (Wolkin et al. 2012; 
Garí et al. 2013; Çamur et al. 2016). Pb exposure was caused 
by industrial operations, fuel, cigarette smoke, contaminated 
food, soil, water, and air, and residential Pb-based paints 
(Aelion et al. 2012; Hrubá et al. 2012). Thus, humans can 
be exposed to a variety of heavy metals at the same time 
because of interactions between co-administered heavy met-
als (Duc et al. 2021a, b, c; Nguyen et al. 2021a, b, c, d).

Cd, Hg, and Pb have long been recorded as environ-
mental risk factors for multi-organ dysfunction. Converg-
ing evidence finds that Cd can play an important role in 
the pathogenesis of MetS in the general adult population 
(Tinkov et al. 2017; Duc et al. 2021a, b, c; Nguyen and Kim 
2021; Nguyen et al. 2021a, b, c, d). Several studies have also 
found that Pb and Hg exposure is linked to MetS in children 
and non-pregnant adults (Valera et al. 2012; Zhang et al. 
2012; Rothenberg et al. 2015). Despite the fact that numer-
ous researchers have attempted to investigate the effects of 
Cd, Hg, and Pb on MetS, these studies on MetS have largely 
focused on just one heavy metal. Somewhat surprisingly, 
the effects of mixing these heavy metals have not been suf-
ficiently investigated. Until now, when studying chemical 
exposure, most scientists have used a combination of effects 
and different methods to arrive at more reliable conclusions 
(Duc et al. 2021a, b, c; Nguyen et al. 2021a, b, c, d). A 
recent literature review reported the role of Cd, Pb, and Hg 
on MetS and also recommended evaluating the interaction 
between these heavy metals and MetS to gain a better under-
standing of the mixed harmful effects of these heavy metals 
on MetS (Xu et al. 2021).

As a result, it is critical that we comprehend the conse-
quences of interactions between heavy metals found in the 
environment and MetS, especially in terms of genes, path-
ways, and miRNA interaction. We hypothesized that interac-
tions between heavy metals like Cd, Hg, and Pb are inextri-
cably linked to MetS in adults, so we conducted this study 
to determine the effects of interactions between serum Cd, 
Hg, and Pb levels on MetS in Korean adults aged ≥ 18 years. 
Through the Comparative Toxicogenomics Database data 

mining analysis (CTD), MicroRNA ENrichment TURned 
NETwork (MIENTURNET), we explored the genes (gene 
interactions, networks, molecular functions, biological pro-
cesses, cellular components, pathways, and diseases) and 
miRNAs (gene and miRNA interaction, network, pathways, 
and diseases) associated with mixed heavy metals and the 
development of MetS. Furthermore, we created and tested 
in-silico miRNA sponge sequences for miRNA-induced 
MetS using the microRNA sponge generator and tester 
(miRNAsong).

Materials and Methods

Study Population

The heavy metal dataset from the Korean National Health 
and Nutrition Examination Survey (KNHANES) IV (2009), 
KNHANES V (2010–2012), KNHANES VI (2013), and 
KNHANES VII (2016–2017) were used to investigate the 
link between a mixture of serum Hg, Pb, and Cd levels and 
MetS in Korean individuals aged ≥ 18 years (Duc et al. 
2021a, b, c; Ministry-of-Health-and-Welfare 2021). These 
investigations are representative yearly assessments of the 
civilian, non-institutionalized Korean general population’s 
serum heavy metal concentrations, health, and nutritional 
status. The KNHANES included a total of 10,533 (2009), 
8958 (2010), 8518 (2011), 8058 (2012), 8018 (2013), 8150 
(2016), and 8127 (2017) individuals. We removed 13,281 
subjects under the age of 18; 32,013 records lacking serum 
Cd, Hg, and Pb; 5124 records lacking urine cotinine; and 
the other 9944 records missing covariates from the 60,362 
participants who took part in the survey between 2009 and 
2013 (Fig. 1). As a result, a total of 5581 participants were 
considered for data analysis. The KNHANES website (http://​
knhan​es.​cdc.​go.​kr/) included a thorough explanation of the 
plan, standardized protocol, and survey license (Nguyen 
et al. 2021a, b, c, d).

Serum Cd, Hg, and Pb Determinations

Cd, Hg, and Pb analyses have been previously described 
(Duc et al. 2021a, b, c; Nguyen and Kim 2021; Nguyen et al. 
2021a, b, c, d). Briefly, serum Cd, Hg, and Pb levels were 
analyzed by the NEODIN Medical Institute, which is accred-
ited by the Ministry of Health and Welfare of Korea. These 
tests met the criteria of the Korean Occupational Safety and 
Health Administration program, the German External Qual-
ity Assessment Scheme, and the U.S. CDC. Serum Cd and 
Pb levels were calculated by graphite furnace atomic absorp-
tion spectrometry (model AAnalyst 600; PerkinElmer, 
Turku, Finland) using Zeeman background correction. The 
serum total Hg levels were measured by a direct-mercury 

http://knhanes.cdc.go.kr/
http://knhanes.cdc.go.kr/
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analyzer (model DMA-80 Analyzer; Bergamo, Italy) and 
gold amalgam (KCDC). For internal quality assurance and 
control, commercial standards (Lyphochek Whole Blood 
Metals, Bio-Rad, CA, USA) were employed as reference 
materials. The limits of detection (LODs) for Pb, Hg, and 
Cd were 0.223 µg/dL, 0.05 µg/L, 0.087 µg/L, respectively.

Covariates

Laboratory measurements, as well as demographic and 
socioeconomic variables (e.g., urine cotinine, HDL-C, age, 
education level, etc.), have been described in detail else-
where (Duc et al. 2021a, b, c; Yun et al. 2021). Potential 
covariates were first recorded in the literature, or subjec-
tive previous knowledge plus variables with p values of less 
than 0.25 in univariate analysis, and then added into the 
entire model. Continuous variables were energy consump-
tion (Kcal) and ln2-transformed creatinine levels. Other 
covariates were classified as follows: sex (males, females), 
age group (18–29, 30–39, 40–49, 50–59, 60–69, ≥ 70), 
residential areas (urban, rural), occupation (blue-collar, 
white-collar, and unemployed), educational level (≤ middle 
school, high school, ≥ college), BMI group (> 18.5, 18.5–25, 
25–30, ≥ 30), monthly household income (< 2000, ≥ 2000 

and < 4000, ≥ 4000 and < 6000, ≥ 6000), family history of 
hyperlipidemia, diabetes or cardiovascular diseases (yes, 
no), drinking status (often, occasionally, never or rarely), 
smoking (non/ex-smoker, current smoker), and physical 
activity (not regular, regular).

Outcomes

Elevated waist circumference, elevated triglycerides, 
decreased HDL-C, elevated blood pressure, and elevated 
serum fasting glucose were used to define MetS, according 
to the American Heart Association/National Heart, Lung, 
and Blood Institute’s clinical diagnostic criteria. MetS was 
classified as having three or more of the five risk factors 
listed below. (1) Elevated waist circumference (WC ≥ 80 cm 
for women, and ≥ 90 cm for men), (2) elevated triglycerides 
(TG ≥ 150  mg/dL or receiving medication to reduce 
triglycerides), (3) decreased high-density lipoprotein 
cholesterol (HDL-C < 50 mg/dL in women or the receipt 
of medication for increasing HDL-C), (4) elevated blood 
pressure (systolic blood pressure ≥ 130  mmHg and/
or ≥ 85  mmHg diastolic blood pressure, a history of 
hypertension or receipt of antihypertensive drug treatment), 
(5) elevated fasting glucose (≥ 100 mg/dL or receipt of drug 

Fig. 1   The flowchart describes 
the selection of the study 
population. BMI body mass 
index, FH family history, CVD 
cardiovascular disease
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Table 1   Demographic 
distribution of participants by 
metabolic syndrome (n = 5581), 
KNHANES, Korean, 2009–
2013 and 2016–2017

Variables Without MetS MetS p Value
n = 3864 n = 1717

Age (year)a 44.19 ± 15.15 56.22 ± 13.26  < 0.001
Age group (%)
 18–29 775 (20.1) 57 (3.2)  < 0.001
 30–39 879 (22.7) 156 (9.1)
 40–49 820 (21.2) 300 (17.5)
 50–59 714 (18.5) 436 (25.4)
 60–69 452 (11.7) 503 (29.3)

  ≥ 70 224 (5.8) 265 (15.5)
Sex (%)
 Males 1698 (43.9) 821 (47.8) 0.007
 Females 2166 (56.1) 896 (52.2)

Marital status (%)
 Married 2972 (76.9) 1607 (93.6)  < 0.001
 Living alone 892 (23.1) 110 (6.4)

Residential areas (%)
 Urban 3198 (82.8) 1322 (77.0)  < 0.001
 Rural 666 (17.2) 395 (23.0)

Occupation (%)
 Blue-collar 1615 (41.8) 514 (29.9)  < 0.001
 White-collar 895 (23.2) 513 (29.9)
 Unemployed 1354 (35.0) 690 (40.2)

Education level (%)
  ≤ Middle school 804 (20.8) 791 (46.0)  < 0.001
 High school 1430 (37.0) 501 (29.2)

  ≥ College 1630 (42.2) 425 (24.8)
Monthly household income (%)b

  < 2000 807 (20.9) 636 (37.0)  < 0.001
  ≥ 2000 and < 4000 1220 (31.6) 504 (29.4)
  ≥ 4000 and < 6000 931 (24.1) 303 (17.6)
  ≥ 6000 906 (23.4) 274 (16.0)
Smoking status (%)
 Non/ex-smoker 3074 (79.6) 1351 (78.7) 0.459
 Current smoker 790 (20.5) 366 (21.3)

Drinking status (%)
 Never or rarely 818 (21.2) 522 (30.4)  < 0.001
 Occasionally 2200 (56.9) 761 (44.3)
 Often 846 (21.9) 434 (25.3)

Physical activity (%)
 Not regular 2769 (71.7) 1306 (76.1) 0.001
 Regular 1095 (28.3) 411 (23.9)

Family history of CVDs (%)
 No 2314 (59.9) 884 (51.5)  < 0.001
 Yes 1550 (40.1) 833 (48.5)

Family history of diabetes (%)
 No 3133 (81.1) 1292 (75.3)  < 0.001
 Yes 731 (18.9) 425 (24.7)

Family history of hyperlipidemia (%)
 No 3589 (92.9) 1592 (92.7) 0.827
 Yes 275 (7.1) 125 (7.3)

Cardiometabolic factor risks
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treatment for elevated fasting glucose) (Duc et al. 2021a, b, 
c; Nguyen and Kim 2021).

Statistical Analysis

The analysis was carried out using STATA (version 16.0; 
StataCorp, Texas, USA) and R (version 4.1.0). Frequencies 
and proportions were utilized for categorical variables, while 
means and standard deviations, or median and interquartile 
range, were used for continuous variables. To compare 

differences in continuous and categorical variables, the 
Student’s t test or Wilcoxon rank-sum test, as well as χ2 tests, 
were utilized.

Heavy levels were ln2 transformed due to their right-
skewed distribution. Heavy levels were described using 
the geometric mean (GM) and a 95% confidence interval. 
In order to determine their relationships with MetS and its 
components, the logistic regression model used the median 
of heavy level quartiles as categorical and continuous vari-
ables. We also looked at the Pearson correlation coefficients 

BMI body mass index, CVDs cardiovascular disease, BP blood pressure, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipoprotein cholesterol, hs-CRP high-sensitivity C-reactive protein
a Mean ± SD, bthousand won, ctwo-sample t test with unequal variances, dmedian (IQR) and p value using 
Wilcoxon rank-sum test

Table 1   (continued) Variables Without MetS MetS p Value
n = 3864 n = 1717

BMI (Kg/m2) 22.82 ± 3.09 26.19 ± 3.26  < 0.001
Waist circumference (cm) 78.36 ± 8.92 89.51 ± 8.25  < 0.001
Total cholesterol (mg/dL)c 189.36 ± 34.80 194.60 ± 41.00  < 0.001
LDL-C (mg/dL)c 112.59 ± 31.20 117.03 ± 35.81 0.001
Triglyceride (mg/dL)d 89 (41–214) 174 (68–435) 0.001
HDL-C (mg/dL) 53.85 ± 12.39 43.43 ± 10.45  < 0.001
HbA1c (%)c 5.50 ± 0.61 6.18 ± 1.11  < 0.001
Fasting glucose (mg/dL)c 93.07 ± 15.52 112.53 ± 32.55  < 0.001
hs-CRP (mg/L)d 0.50 (0.20–3.70) 0.84 (0.30–5.24)  < 0.001
Systolic BP (mmHg)c 113.75 ± 14.50 128.33 ± 16.36  < 0.001
Diastolic BP (mmHg)c 74.23 ± 9.34 80.42 ± 10.90  < 0.001
ALT (IU/L)c 21.12 ± 18.74 26.35 ± 14.93  < 0.001
AST (IU/L)c 19.23 ± 14.78 28.98 ± 22.00  < 0.001
Energy intake (kcal)c 2068.92 ± 907.95 1987.99 ± 861.51 0.001
Urine cotinine (ng/mL)c 310.25 ± 715.68 283.83 ± 644.24 0.172

Table 2   Distribution of heavy metal levels (n = 5581) by metabolic syndrome and gender, KNHANES, Korean, 2009–2013 and 2016–2017

Cd cadmium, Hg mercury, Pb lead
* p1 value, p2 value: compare difference for heavy metals within males and females, respectively. p3 value: compare difference for heavy metals 
between males and female. p value using Wilcoxon rank-sum test

Variables Males Females p3 Value

n = 4295 n = 2931

Mean SD Geometric mean 95%CI p1 Value Mean SD Geometric mean 95%CI p2 Value

Cd (µg/L)
 Without MetS 0.95 0.55 0.81 (0.79 to 0.83)  < 0.001 1.14 0.66 0.98 (0.96 to 1.00)  < 0.001  < 0.001
 MetS 1.08 0.58 0.94 (0.91 to 0.98) 1.47 0.69 1.32 (1.28 to 1.36)

Hg (µg/L)
 Without MetS 4.90 3.78 3.99 (3.87 to 4.11)  < 0.001 3.35 2.19 2.86 (2.80 to 2.93)  < 0.001  < 0.001
 MetS 5.70 4.43 4.61 (4.41 to 4.81) 3.81 2.71 3.17 (3.05 to 3.30)

Pb (µg/dL)
 Without MetS 2.38 1.09 2.18 (2.14 to 2.22)  < 0.001 1.74 0.74 1.60 (1.58 to 1.63)  < 0.001  < 0.001
 MetS 2.59 1.68 2.34 (2.28 to 2.41) 1.99 0.85 1.84 (1.79 to 1.89)
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between the three heavy metals’ ln2-transformed values and 
cardiometabolic risk factors.

The impacts of mixing these heavy metals were studied 
using generalized linear regression, weighted quantile sum 
(WQS) regression, quantile g-computation (qgcomp), and 
Bayesian kernel machine regression (BKMR) models.

Logistic and Linear Regression Models

First, we compared the second, third, and fourth quartiles 
of a heavy metal’s levels to the first quartile of a heavy 
metal’s levels to analyze the link between each heavy metal 
and MetS and its components using multivariate logistic 
regression. Second, we examined linear regression with 
each heavy metal’s ln2-transformed levels as continuous 
variables and MetS as a continuous outcome variable. Third, 

Fig. 2   Pairwise Pearson correlations among ln2-transformed levels 
of heavy metals and cardiometabolic risk factors in the population 
(n = 5581), KNHANES, Korean, 2009–2017. BMI body mass index; 
Chol cholesterol; DBP diastolic blood pressure; EN energy intake; 
Glu serum glucose; HDL-C high-density lipoprotein cholesterol; 

HbA1c hemoglobin A1c; TG triglycerides; SBP systolic blood 
pressure; WC waist circumference; ln2CO ln2-transformed levels 
of urine cotinine; ln2Cd, ln2Hg, ln2Pb ln2-transformed levels of 
cadmium, mercury, and lead
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Table 3   Association between single of heavy metal, metabolic syndrome, and its components (n = 5581), KNHANES, Korean, 2009–2013 and 
2016–2017

(A) According to heavy metals treated as categorical variables

Variables Q1 Q2 Q3 Q4 p Value trend

OR (95%CI) p Value OR (95%CI) p Value OR (95%CI) p Value

MetS as a categorical variable
 Cd (µg/L) Ref 1.16 (0.93 to 1.46) 0.191 1.25 (1.01 to 1.56) 0.045 1.45 (1.15 to 1.84) 0.002  < 0.001
 Pb (µg/dL) Ref 0.88 (0.71 to 1.09) 0.243 1.05 (0.85 to 1.30) 0.638 1.03 (0.82 to 1.28) 0.812  < 0.001
 Hg (µg/L) Ref 1.09 (0.88 to 1.33) 0.432 1.21 (0.99 to 1.49) 0.058 1.36 (1.11 to 1.67) 0.003  < 0.001

Elevated WC
 Cd (µg/L) Ref 1.16 (0.92 to 1.47) 0.196 1.31 (1.03 to 1.66) 0.029 1.36 (1.05 to 1.75) 0.018  < 0.001
 Pb (µg/dL) Ref 0.95 (0.76 to 1.18) 0.628 0.97 (0.77 to 1.22) 0.802 0.89 (0.70 to 1.13) 0.335 0.215
 Hg (µg/L) Ref 0.99 (0.80 to 1.22) 0.901 1.19 (0.95 to 1.47) 0.124 1.20 (0.96 to 1.50) 0.117  < 0.001

Elevated triglycerides
 Cd (µg/L) Ref 1.20 (0.99 to 1.44) 0.061 1.27 (1.04 to 1.55) 0.017 1.34 (1.09 to 1.65) 0.005  < 0.001
 Pb (µg/dL) Ref 1.25 (1.04 to 1.50) 0.018 1.23 (1.02 to 1.48) 0.029 1.31 (1.07 to 1.59) 0.007  < 0.001
 Hg (µg/L) Ref 1.02 (0.86 to 1.22) 0.804 1.17 (0.98 to 1.39) 0.090 1.16 (0.97 to 1.40) 0.102  < 0.001

Reduced HDL-C
 Cd (µg/L) Ref 1.13 (0.95 to 1.35) 0.163 0.97 (0.81 to 1.17) 0.785 1.05 (0.86 to 1.28) 0.622  < 0.001
 Pb (µg/dL) Ref 0.97 (0.82 to 1.15) 0.753 1.03 (0.86 to 1.22) 0.773 0.92 (0.76 to 1.10) 0.363 0.795
 Hg (µg/L) Ref 0.93 (0.79 to 1.09) 0.355 0.95 (0.80 to 1.12) 0.519 0.80 (0.68 to 0.96) 0.014 0.001

Elevated blood pressure
 Cd (µg/L) Ref 0.95 (0.78 to 1.16) 0.640 1.04 (0.84 to 1.28) 0.724 1.48 (1.19 to 1.83)  < 0.001  < 0.001
 Pb (µg/dL) Ref 1.03 (0.85 to 1.26) 0.730 1.08 (0.89 to 1.31) 0.451 1.40 (1.14 to 1.72) 0.001  < 0.001
 Hg (µg/L) Ref 1.08 (0.89 to 1.31) 0.420 1.24 (1.02 to 1.49) 0.027 1.49 (1.23 to 1.80)  < 0.001  < 0.001

Elevated fasting glucose
 Cd (µg/L) Ref 1.22 (1.01 to 1.49) 0.046 1.06 (0.86 to 1.31) 0.569 1.01 (0.81 to 1.26) 0.927  < 0.001
 Pb (µg/dL) Ref 0.88 (0.72 to 1.06) 0.182 0.77 (0.64 to 0.94) 0.010 0.83 (0.67 to 1.01) 0.068  < 0.001
 Hg (µg/L) Ref 1.23 (1.02 to 1.49) 0.030 1.28 (1.06 to 1.55) 0.009 1.46 (1.21 to 1.77)  < 0.001  < 0.001

MetS as a continuous variable
β (95%CI) p Value β (95%CI) p Value β (95%CI) p Value

 Cd (µg/L) Ref 0.07 (− 0.02 to 0.15) 0.139 0.03 (– 0.06 to 0.12) 0.505 0.12 (0.02 to 0.22) 0.018  < 0.001
 Pb (µg/dL) Ref − 0.01 (− 0.09 to 0.80) 0.917 − 0.01 (− 0.10 to 0.07) 0.756 0.03 (− 0.07 to 1.12) 0.569  < 0.001
 Hg (µg/L) Ref 0.02 (− 0.06 to 0.11) 0.608 0.10 (0.01 to 0.18) 0.026 0.12 (0.03 to 0.21) 0.006  < 0.001

(B) According to heavy metals treated as continuous variables

Variables Mets and its components

MetS Elevated WC Elevated TG Reduced HDL-C Elevated blood 
pressure

Elevated fasting 
glucose

MetS as a continuous 
variable

OR 
(95%CI)

p Value OR 
(95%CI)

p 
Value

OR 
(95%CI)

p Value OR 
(95%CI)

p Value OR 
(95%CI)

p Value OR 
(95%CI)

p Value β (95%CI) p Value

Single heavy metal
Cd (µg/L) 1.16 

(1.04 
to 
1.28)

0.007 1.18 
(1.05 
to 
1.32)

0.004 1.11 
(1.01 
to 
1.21)

0.020 0.98 
(0.90 
to 
1.07)

0.718 1.24 
(1.13 
to 
1.36)

 < 0.001 1.00 
(0.91 
to 
1.10)

0.990 0.05 (0.01 
to 0.09)

0.031

Pb (µg/dL) 1.00 
(0.89 
to 
1.13)

0.960 0.93 
(0.81 
to 
1.06)

0.275 1.12 
(1.01 
to 
1.25)

0.046 0.94 
(0.85 
to 
1.05)

0.265 1.26 
(1.12 
to 
1.41)

 < 0.001 0.90 
(0.80 
to 
1.01)

0.086 0.01 
(− 0.05 
to 0.06)

0.832

Hg (µg/L) 1.12 
(1.04 
to 
1.22)

0.004 1.13 
(1.03 
to 
1.23)

0.009 1.06 
(0.99 
to 
1.14)

0.105 0.91 
(0.85 
to 
0.98)

0.008 1.18 
(1.10 
to 
1.27)

 < 0.001 1.15 
(1.07 
to 
1.24)

 < 0.001 0.06 (0.02 
to 0.09)

0.002

Two heavy metals
Hg + Cd 0.93 

(0.84 
to 
1.03)

0.148 0.99 
(0.89 
to 
1.09)

0.781 0.90 
(0.83 
to 
0.98)

0.020 0.95 
(0.88 
to 
1.03)

0.210 0.93 
(0.84 
to 
1.01)

0.095 0.95 
(0.86 
to 
1.03)

0.216 − 0.03 
(− 0.06 
to 0.01)

0.206
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we explored the interaction between these heavy metals and 
MetS and its components.

Secondary Analysis

We used three approaches to further evaluate the effects of 
heavy metal mixtures on MetS and its components, includ-
ing WQS, qgcomp, and BKMR (Duc et al. 2021a, b, c; 
Nguyen et al. 2022).

Weighted Quantile Sum (WQS) Regression Model

This method has been described in detail elsewhere (Duc 
et al. 2021a, b, c; Nguyen et al. 2021a, b, c, d). In brief, the 
study population was randomly divided into a training data-
set (40%, n = 2232) and a validation dataset (60%, n = 3349) 
as part of the approach. Using the training dataset, bootstrap-
ping was used to determine empirical weights for each heavy 
metal in the combination. In the present study, heavy metals 
with estimated weights greater than 0.333 (1/3) were judged 
to have a substantial impact on the WQS score. We created 
and analyzed both a positive and negative WQS score since 
the WQS approach implies that all mixture components 
act in the same directionality on MetS and its components 
(Nguyen et al. 2022). The analysis was carried out using the 
R package gWQS.

Quantile G‑Computation (qgcomp)

This approach’s aim and process have been provided 
elsewhere (Duc et al. 2021a, b, c; Nguyen et al. 2021a, b, 
c, d). In brief, the qgcomp.noboot function was used to 
estimate exposure effects, which divides all heavy metals 
into quintiles, assigns a positive or negative weight to each 
heavy metal, and fits a linear model for continuous outcomes 
using Bayesian variable penalization. Heavy metals with 
estimated weights greater than 0.05 were considered to 
have a substantial impact on the qgcomp score in the 
current investigation. In addition, qgcomp.boot was utilized 
to test the total exposure effect’s linearity (Duc Nguyen 
et al. 2022a, b). The plot was made using g-computation 
and bootstrap variance with B up to 200 to depict the joint 
intervention levels of heavy metal exposure to MetS and 
its components. The analysis was performed using the R 
package qgcomp.

Bayesian Kernel Machine Regression (BKMR) Model

The objective and process of this approach have been 
described elsewhere (Duc et al. 2021a, b, c; Nguyen et al. 
2021a, b, c, d). In brief, we used the following equation in 
the BKMR model:

The exposure–response function h in Eq. (1) compensates 
for non-linearity and/or interaction between the various 
heavy metal components in the mixture, whereas Z = Z1, 

(1)Yi = h (Pbi, Hgi, Cdi) + �qZi + ei.

Table 3   (continued)

(B) According to heavy metals treated as continuous variables

Variables Mets and its components

MetS Elevated WC Elevated TG Reduced HDL-C Elevated blood 
pressure

Elevated fasting 
glucose

MetS as a continuous 
variable

OR 
(95%CI)

p Value OR 
(95%CI)

p 
Value

OR 
(95%CI)

p Value OR 
(95%CI)

p Value OR 
(95%CI)

p Value OR 
(95%CI)

p Value β (95%CI) p Value

Pb + Cd 1.04 
(0.91 
to 
1.19)

0.529 0.97 
(0.85 
to 
1.12)

0.711 0.93 
(0.83 
to 
1.05)

0.240 0.92 
(0.83 
to 
1.03)

0.135 1.12 
(0.99 
to 
1.26)

0.082 0.99 
(0.88 
to 
1.12)

0.905 0.01 
(− 0.04 
to 0.07)

0.667

Hg + Pb 1.03 
(0.91 
to 
1.15)

0.654 1.04 
(0.92 
to 
1.18)

0.490 1.02 
(0.92 
to 
1.14)

0.643 0.94 
(0.85 
to 
1.04)

0.231 0.97 
(0.86 
to 
1.08)

0.563 1.07 
(0.96 
to 
1.19)

0.201 0.03 
(− 0.02 
to 0.08)

0.273

Three heavy metals
Cd + Pb + Hg 0.86 

(0.76 
to 
0.97)

0.017 1.00 
(0.87 
to 
1.15)

0.945 0.87 
(0.78 
to 
0.97)

0.014 0.92 
(0.83 
to 
1.03)

0.138 0.94 
(0.84 
to 
1.06)

0.331 0.90 
(0.80 
to 
1.01)

0.071 − 0.07 
(− 0.12 
to 
− 0.02)

0.010

Model: adjusted for sex, age group, BMI group, occupation, family history of hyperlipidemia, family history of CVD, family history of diabetes, 
physical activity, drinking status, residential areas, smoking, educational level, monthly household income, energy intake, ln2-cotinine
Cd cadmium, Hg mercury, Pb lead, WC waist circumference, TG triglycerides, HDL-C high-density lipoprotein cholesterol, Q quartile
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Z2,…, Zq accounts for q possible confounders. All heavy 
metals were ln2-transformed and normalized in this 
research, and a Gaussian kernel function was applied with a 
component-wise variable approach. The posterior inclusion 
probabilities (PIPs) for each heavy metal were calculated, 
and estimates of the exposure–outcome function were 
derived after fitting the final model with the Markov Chain 
Monte Carlo (MCMC) sampler for 10,000 iterations. To 
evaluate whether a heavy metal is relevant, a PIP threshold 
of 0.5 is frequently utilized. We compared the results when 
all heavy metals were set to their 25th, 30th, 35th, 40th, 
45th, 55th, 60th, 65th, 70th, or 75th percentiles to when 
they were all set to their 50th percentile to assess the overall 
effect of heavy metal mixtures on MetS and its components. 

Second, by plotting the exposure–outcome function of a 
single heavy metal while fixing the second metal at the 25th, 
50th, and 75th percentiles and setting all other heavy metals 
to their median values, potential interactions between each 
pair of heavy metals were explored pairwise. In addition, 
we visualized the bivariate exposure–response function 
with a third exposure fixed at different quantiles to look for 
potential 3-way interactions. The bkmr R package was used 
to do the analysis.

Threshold Estimation

We used threshold regression to calculate the cutoff 
thresholds for exposure levels that are relevant to MetS and 

Table 4   Association between WQS regression index for heavy metals, MetS, and its components (n = 5581), KNHANES, Korean, 2009–2013 
and 2016–2017

β: The overall mixture effect from WQS regression. OR estimates represent the odds ratios of metabolic syndrome when the WQS index was 
increased by one quartile. Model 1: Adjusted for: sex, age group, occupation, BMI group, family history of hyperlipidemia, family history of 
CVD, family history of diabetes, physical activity, drinking status, residential areas, smoking, educational level, monthly household income, and 
energy intake. Model 2: additionally adjusted for ln2-cotinine
WC waist circumference, OR odds ratio, CI confidence interval

(A) Adjustment for MetS

Variables MetS

OR (95%CI) p Value

Model 1 1.63 (1.18–2.25) 0.003
Model 2 1.66 (1.19–2.32) 0.003

(B) Adjustment for components of MetS

Categorical variables

Variables OR (95%CI) p Value

Elevated WC
 Model 1 1.63 (1.20–2.21) 0.002
 Model 2 1.62 (1.19–2.20) 0.002

Elevated triglycerides
 Model 1 1.13 (0.79–1.62) 0.515
 Model 2 1.08 (0.76–1.55) 0.663

Reduced HDL-C
 Model 1 0.92 (0.58–1.45) 0.712
 Model 2 0.84 (0.54–1.32) 0.146

Elevated blood pressure
 Model 1 1.95 (1.26–3.04) 0.003
 Model 2 2.03 (1.29–3.19) 0.002

Elevated fasting glucose
 Model 1 1.32 (1.01–1.72) 0.041
 Model 2 1.31 (1.02–1.73) 0.039

MetS as a continuous variable
Variables β (95%CI) p Value
 Model 1 0.122 (0.069–0.175)  < 0.001
 Model 2 0.121 (0.069–0.173)  < 0.001
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its components in order to estimate the threshold for heavy 
metals affecting MetS and its components (Duc Nguyen 
et al. 2022a, b).

Detecting Common Genes for Heavy Metal Exposure 
and Metabolic Syndrome

In the current study, the link between MetS and heavy metals 
was recognized by investigative heavy metal–gene/protein 
interactions attained from the CTD (http://​CTD.​mdibl.​org). 
The analysis reported in the present study was used from 
the data downloaded in November 2021. We then found 
the genes linked to heavy metals and MetS development. 
A network of overlapping genes induced by the three heavy 
metals, along with four related genes linked with MetS, were 

analzyed using GeneMANIA (http://​geneM​ANIA.​org/​plug-​
in/). The ToppGeneSuite portal (https://​toppg​ene.​cchmc.​org 
and its ToppFun function (https://​toppg​ene.​cchmc.​org/​enric​
hment.​jsp) were used to link biological processes, pathways, 
and diseases associated with MetS to the genes induced by 
the heavy metal mixture (Duc Nguyen et al. 2022a, b).

Prediction of Transcription Factors, miRNA, miRNA–Target 
Interactions, Networks, Pathways, Diseases, and Sponge

To identify the transcription factors that regulated the 
MetS-related genes, ChIP-X Enrichment Analysis version 
3 (CHEA3) was used (https://​maaya​nlab.​cloud/​chea3/) 
(Nguyen and Kim 2022a, b, c, d). Cytoscape version 3.9.1 
was used to visualize the integrated regulatory network, 

Fig. 3   WQS model regression index weights for MetS (A), 
elevated WC (B), elevated triglycerides (C), reduced HDL-C (D), 
elevated blood pressure (E), elevated fasting glucose (F), and MetS 
components (G). Models were adjusted for sex, age group, BMI 
group, occupation, family history of hyperlipidemia, family history 

of CVD, family history of diabetes, physical activity, drinking status, 
residential areas, smoking, educational level, monthly household 
income, energy intake, and ln2-cotinine. ln2Cd, ln2Hg, ln2Pb among 
ln2-transformed levels of cadmium, mercury, and lead

http://CTD.mdibl.org
http://geneMANIA.org/plug-in/
http://geneMANIA.org/plug-in/
https://toppgene.cchmc.org
https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
https://maayanlab.cloud/chea3/
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which encompasses the top 10 transcription factors. The 
miRNA–target interaction networks were generated and 
investigated using MIENTURNET (Licursi et al. 2019). To 
obtain possible miRNA data, we submitted lists of genes 
connected to MetS development to MIENTURNET. We 
used miRTarBase to create miRNA networks based on 
experimentally validated and/or computationally predicted 
genes from heavy metal exposure and MetS development 
(Duc Nguyen et al. 2022a, b). Using bioinformatics and 
evolutionary genomics software, a Venn diagram was created 
to illustrate the expression of heavy metal-induced miRNA 
(https://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/) 
(Nguyen and Kim 2022a, b, c, d). The MIENTURNET 
web tool was used to query the WikiPathways and disease 
ontology databases for the functional enrichment analysis 
(Licursi et  al. 2019). p values were adjusted using the 
Benjamini–Hochberg approach, and a threshold of 0.05 
was used to identify functional annotations that were 

significantly enriched over the whole gene list in the input 
list. We used a web-based application, miRNA sponge 
generator, and tester (miRNAsong, http://​www.​med.​muni.​
cz/​histo​logy/​miRNA​song), to develop and test miRNA 
sponge sequences specific to target miRNAs induced by 
examined heavy metals (Nguyen and Kim 2022a, b, c, d).

Results

Characteristics of the Study Population

The present study included 1717 participants aged ≥ 18 years 
who had MetS and 3864 without MetS. Participants with 
MetS were more likely to be elderly, females, married, city 
dwellers, less educated, unemployed, from low-income 
families, heavy drinkers, physically inactive, and have 
a family history of CVDs and diabetes. Participants with 

Fig. 3   (continued)

https://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.med.muni.cz/histology/miRNAsong
http://www.med.muni.cz/histology/miRNAsong
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MetS had higher BMI, WC, lipid profiles (total cholesterol, 
LDL-C, triglyceride), fasting glucose, HbA1c, hs-CRP, 
blood pressure (systolic and diastolic blood pressure), liver 
function biomarkers (AST and ALT), and urine cotinine. 
Table 1 shows demographic information stratified by the 
presence or absence of MetS.

Characteristics of Heavy Metal Exposure

Table 2 shows the mean and geometric mean levels stratified 
by the presence or absence of MetS in both males and 
females of three heavy metals. Serum levels of Cd, Hg, and 
Pb were more likely to be higher in males or females with 
MetS compared with those without MetS. Males with MetS 
had higher serum Hg and Pb levels than females with MetS. 
In contrast, females with MetS had higher serum Cd levels 

than males with MetS. There was a significant difference in 
serum heavy metals between males and females.

Figure 2 provided the Pearson correlation coefficients (r) 
among serum heavy metals and cardiometabolic risk factors 
(p value < 0.001, r ranging from – 0.36 to 0.86). There was 
a strong correlation between fasting glucose and HbA1c 
(r = 0.83), BMI and WC (r = 0.86), and diastolic blood 
pressure and systolic blood pressure (r = 0.63). The other 
correlations were relatively moderate or weak. For example, 
the correlation between ln2-transformed serum Pb and Cd 
(r = 0.09) and ln2-transformed serum Hg and Pb (r = 0.28).

Table 5   Association between qgcomp index for heavy metals, metabolic syndrome, and its components (n = 5581), KNHANES, Korean, 2009–
2013 and 2016–2017

β: The overall mixture effect from quantile g-computation. Model 1: adjusted for: sex, age group, occupation, BMI group, family history of 
hyperlipidemia, family history of CVD, family history of diabetes, physical activity, drinking status, residential areas, smoking, educational 
level, monthly household income, and energy intake. Model 2: additionally adjusted for ln2-cotinine
WC waist circumference, OR odds ratio, CI confidence interval

(A) Adjustment for MetS

Variables MetS

OR (95%CI) p Value

Model 1 1.33 (1.07–1.67) 0.011
Model 2 1.35 (1.08–1.69) 0.001

(B) Adjustment for component of MetS

Categorical variables

Variables OR (95%CI) p Value

Elevated WC
 Model 1 1.36 (1.12–1.67) 0.003
 Model 2 1.38 (1.12–1.70) 0.002

Elevated triglycerides
 Model 1 1.39 (1.13–1.72) 0.002
 Model 2 1.38 (1.11–1.70) 0.003

Reduced HDL-C
 Model 1 1.01 (0.82–1.23) 0.956
 Model 2 0.95 (0.77–1.11) 0.649

Elevated blood pressure
 Model 1 1.91 (1.52–2.38)  < 0.001
 Model 2 1.98 (1.57–2.48)  < 0.001

Elevated fasting glucose
 Model 1 0.91 (0.72–1.14) 0.409
 Model 2 0.91 (0.73–1.15) 0.477

MetS as a continuous variable
Variables β (95%CI) p Value
 Model 1 0.13 (0.03–0.23) 0.009
 Model 2 0.10 (0.04–0.15)  < 0.001
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The Link Between Serum Heavy Metal Levels and Metabolic 
Syndrome and Its Components was Assessed Using 
a Multivariate Logistic and Linear Regression Model

Tables 3A, B show the results of the single heavy metals and 
their interactions using the multivariate logistic and linear 
regression models. First, we identify the association between 
a single heavy metal and both MetS and its components 
when considering heavy metals as categorical variables.

In the multivariable logistic regression analysis, serum 
Cd showed significant associations with MetS and its com-
ponents (elevated WC, elevated triglycerides, and elevated 
blood pressure) in the upper two quartiles, a significant 
trend (p values for trend < 0.001). There were significant 
links between serum Hg and both MetS and its compo-
nents (reduced HDL-C, elevated blood pressure, and ele-
vated fasting glucose), with a significant trend (p values for 

trend < 0.001). Unsurprisingly, in the multivariable linear 
regression models, serum Cd and Hg were found to be linked 
with MetS treated as a continuous variable. Furthermore, we 
found significant links between serum Pb and both elevated 
triglycerides and elevated blood pressure, a significant trend 
(p values for trend < 0.001).

Next, we assessed the link between heavy metals and 
both MetS and its components when treating heavy metals 
as continuous variables. In the multivariable linear regres-
sion models, serum Cd was found to be related to MetS, ele-
vated WC, elevated triglycerides, and elevated blood pres-
sure. Serum Hg was found to be linked with MetS, elevated 
WC, reduced HDL-C, elevated blood pressure, and elevated 
fasting glucose, while there were significant associations 
between serum Pb, elevated triglycerides, and elevated blood 
pressure. As expected, serum Cd and Hg were also found to 
be related to MetS treated as a continuous variable. These 

Fig. 4   Gqcomp model regression index weights and Joint effect 
(95% CI) of the mixture on for MetS (A), elevated WC (B), elevated 
triglycerides (C), reduced HDL-C (D), elevated blood pressure (E), 
elevated fasting glucose (F), and MetS components (G). Models 
were adjusted for Models were adjusted for sex, age group, BMI 

group, occupation, family history of hyperlipidemia, family history 
of CVD, family history of diabetes, physical activity, drinking status, 
residential areas, smoking, educational level, monthly household 
income, energy intake, and ln2-cotinine. ln2Cd, ln2Hg, ln2Pb ln2-
transformed levels of cadmium, mercury, and lead
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findings were also consistent with the results from the logis-
tic regression model.

On the other hand, we assessed the interaction of heavy 
metals on MetS. After adjusting for potential confounders, 
we found an interaction between serum Cd and Hg levels on 
elevated triglycerides. Furthermore, there was an interaction 
between serum Cd, Hg, and Pb levels on MetS (including 
when MetS was treated as categorical and continuous vari-
ables) and elevated triglycerides (Table 3B).

The Link Between Heavy Metals and Metabolic Syndrome 
and Its Components were Assessed Using the WQS Model

In the current study, the WQS indices were linked with MetS 
and its components (elevated WC, elevated blood pressure, 
and elevated fasting glucose (Table 4A, B). In the fully 
adjusted models, the WQS indexes were significantly linked 
with MetS (OR 1.66, 95% CI 1.19–2.32), elevated WC (OR 
1.62, 95% CI 1.19–2.20), elevated blood pressure (OR 2.03, 
95% CI 1.29–2.19), and fasting glucose (OR 1.31, 95% CI 
1.02–1.73). Table S1A-B and Fig. 3A–F show the projected 

weights of serum heavy metals for each WQS index. Serum 
Hg was the highest weight in almost all models, except for 
the reduced HDL-C model. Following that, serum Cd was 
given a medium weight, and serum Pb was given the lightest.

To investigate further the effects of mixture exposure-
induced MetS changes, we treated MetS as a continuous 
outcome and fitted a WQS model to measure the effects of 
mixed three heavy metals on MetS. After adjusting for pos-
sible covariates, a quartile increase in the WQS index was 
related to a 0.12 unit increase in MetS (95% CI 0.07–0.17). 
Table S1B and Fig. 3G provide the weights of heavy met-
als. Serum Pb was quantified as the lightest weight, and 
serum Hg was the most weighted. We also evaluated weights 
derived from bootstrap models with negative mixture effects 
for MetS and its components, but no significant association 
was found (data not shown).

Fig. 4   (continued)
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The Link Between Heavy Metals and Metabolic Syndrome 
and Its Components was Assessed Using the qgcomp Model

Like the WQS model, the qgcomp indices were linked 
with MetS and its components (elevated WC, elevated 
triglycerides, and elevated blood pressure). In the entirely 
adjusted models (Table  5A, B), a quartile increase in 
the qgcomp index was significantly linked with MetS 

(OR = 1.35, 95% CI 1.06–1.69), elevated WC (OR = 1.38, 
95% CI 1.12–1.70), elevated triglycerides (OR = 1.38, 95% 
CI 1.11–1.70), and elevated blood pressure (OR: 1.98, 
95% CI 1.57–2.48). Table S2A and B and Fig. 4A–F show 
the projected weights of heavy metals for each qgcomp 
index and the joint effect of mixed three heavy metals 
on MetS. Serum Hg was the highest positive weight in 
almost all models, including MetS, elevated WC, elevated 

Fig. 4   (continued)
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triglycerides, elevated blood pressure, and elevated fasting 
glucose. Following that, serum Cd was given a moderate 
positive weight, whereas serum Pb was given the lowest.

We considered MetS as a continuous outcome and fit-
ted a qgcomp model to assess the effects of mixed three 
heavy metals on MetS (Table 5B). Expectedly, after adjust-
ing for all covariates, a quartile increase in the qgcomp 
index was linked with a 0.10-unit increase in MetS (95% 
CI 0.04–0.15). Table S2B and Fig. 4G show the weights of 
each heavy metal and the joint effect of three heavy metals 
on MetS. Serum Hg was found to be the most positively 
weighted (weighted at 0.768).

The Link Between Heavy Metals and Metabolic Syndrome 
and Its Components Using the BKMR Model

We employed the BKMR method to identify the impacts 
of mixed three heavy metals further, taking into considera-
tion the constraints of linearity and interactions in the prior 
methods. The PIPs derived from the BKMR model for three 
heavy metals are summarized in Table S3. As a variable 
significance metric, PIPs were used as a higher value (closer 
to 1), indicating more relevance. In the current investigation, 
serum Hg PIPs were shown to be higher than other heavy 
metals in all models except for the HDL-C model.

The overall links between the mixed three heavy metals, 
MetS, and its components are described in Fig. 5A–G. MetS 
(including categorical and continuous variables), elevated 

Fig. 5   Cumulative effect (95% CI) of the heavy metal exposure on 
MetS (A), elevated WC (B), elevated triglycerides (C), reduced 
HDL-C (D), elevated blood pressure (E), elevated fasting glucose 
(F), and MetS components (G) when all the heavy metals at 
particular percentiles were compared to all the heavy metals at 
their 50th percentile. The results were analyzed by the BKMR 

model, adjusted for sex, age group, BMI group, occupation, family 
history of hyperlipidemia, family history of CVD, family history of 
diabetes, physical activity, drinking status, residential areas, smoking, 
educational level, monthly household income, energy intake, and ln2-
cotinine. ln2Cd, ln2Hg, ln2Pb ln2-transformed levels of cadmium, 
mercury, and lead
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WC, elevated triglycerides, and elevated blood pressure 
increased significantly when mixed heavy metals were at 
or above the 60th percentile versus the 50th percentile, 
implying substantial, positive links with MetS and its 
components. Despite the fact that there were no statistically 
significant differences between the elevated fasting glucose 
and reduced HDL-C models, there was an increased 
tendency.

On the other hand, we explored the univariate 
(individually heavy metal) exposure–response functions 
of exposure to heavy metal on MetS and its components 
(Fig. 6A–D). When three heavy metals were at their median 
levels, serum Cd, Hg, and Pb showed increasing links with 
MetS and its components at the highest levels. We found that 
three heavy metals had a positive association with MetS and 
its components.

We also examined how heavy metal genres interact with 
others. We estimated the exposure–response function of a 

unique heavy metal (serum Cd) for the second heavy metal 
fixed at its tenth, fifty-fifth, and ninetieth percentages, 
respectively. Furthermore, we predicted probable 3-way 
interactions by displaying the bivariate exposure–response 
function with a third exposure fixed at different quantiles 
(Fig. 7A–G). According to our findings, three investigated 
heavy metals (serum Cd, Hg, and Pb) all have the potential 
to interact. At different quantiles of another heavy metal, 
the slopes of one heavy metal’s exposure–response function 
were elevated or declined, showing interactions. The scale 
shows the level of interaction in 3-way interaction models, 
with higher values suggesting greater interaction.

Genes, miRNAs, Pathways, and Biological Process

Through the CTD data mining analysis, we explored the 
genes associated with each heavy metal and the development 
of MetS (Table 6). For each metal, gene sets were selected 

Fig. 5   (continued)
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directly from the “disease” CTD data-tabs. Following that, 
the MyVenn CTD tool was used to identify shared genes 
in the mixed heavy metals. We observed Cd, Hg, and Pb 
altered 13, 09, and 4 genes involved in MetS development. 
Mixed heavy metals interacted with four genes (CRP, 
IL6, PON1, TRIB3) and were found to be associated 
with MetS. Physical interactions (77.6% of interactions) 
and co-expression (8.0%) were discovered to be the most 
common interactions among MetS-related genes, while 
predicted (5.3%), co-localization (3.6%), genetic interactions 
(2.8%), pathway (1.8%), and shared protein domains were 
found to be less common (Fig. 8). Further steps of our study 
were targeted at identifying the molecular functions, cellular 
components, molecular pathways, biological processes, and 
diseases associated with the genes altered by mixed heavy 

metals in order to investigate the biological importance of 
the examined genes. Genes associated to mixed heavy metals 
and MetS can be classified into four molecular pathways: 
the IL6 signaling pathway, IL6-mediated signaling 
events, insulin resistance, and adipogenesis. Our gene 
ontology analysis highlighted the most essential biological 
processes influenced by mixed heavy metals and linked 
to the development of MetS. The most critical processes 
contributing to MetS were classified as regulation of lipid 
localization, negative regulation of lipid storage, acute-
phase response, lipoprotein particle binding, protein-lipid 
complex binding, and high-density lipoprotein particle. 
The most common diseases associated with mixed heavy 
metals were metabolic syndrome X, carotid atherosclerosis, 
hyperhomocysteinemia, and acute coronary syndrome.

Fig. 6   Univariate exposure–response function (95% CI) between 
heavy metal exposure and MetS (A), elevated WC (B), elevated 
triglycerides (C), reduced HDL-C (D), elevated blood pressure (E), 
elevated fasting glucose (F), and MetS components (G) while fixing 
the levels of other heavy metal at median values. The results were 
analyzed by the BKMR model adjusted for sex, age group, BMI 

group, occupation, family history of hyperlipidemia, family history 
of CVD, family history of diabetes, physical activity, drinking status, 
residential areas, smoking, educational level, monthly household 
income, energy intake, and ln2-cotinine. ln2Cd, ln2Hg, ln2Pb ln2-
transformed levels of cadmium, mercury, and lead
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In terms of miRNAs, we used MIENTURNET’s 
network analysis to assess the relationships between target 
genes and miRNAs. The most significant genes related 
to mixed heavy metals-induced MetS development (e.g., 
IL6, TRIB3, and PON1) were target genes specifically 
linked with miRNAs. We found that 91 miRNAs matched 
03 genes (IL6, TRIB3, and PON1) related to MetS 
development caused by mixed heavy metals. hsa-miR-
124-3p were the miRNAs with the highest expression and 
interaction, respectively. A network of the miRNA–target 
interactions was constructed from the 19 selected miRNAs 
that were linked with three genes induced by mixed heavy 
metals. Furthermore, the functional enrichment analysis 
of the Wiki pathways and disease ontology in which their 
targets were linked was provided. Among the most enriched 
pathways in which the targets of these 19 miRNAs were 
involved, we found insulin pathway, transcription factor 
regulation in adipogenesis, adipogenesis, and cytokines 

and inf lammatory response in the KEGG pathway 
enrichment analysis, and the Disease Ontology database 
observed atherosclerosis, arteriosclerotic cardiovascular 
disease, and arteriosclerosis, which were related to MetS 
(Fig. 9A–F). On the other hand, we observed that several 
transcription factors (SNAI1, CEBPG, NR1H4, DDIT3, 
CREB3L3, and MLXIPL) regulated MetS-related genes 
(CRP, IL6, PON1, and TRIB3) (Fig. 9G).

A Venn diagram analysis revealed that the heavy metals 
investigated induced miRNA expression. Three miRNAs 
were observed in a mixture of three heavy metals, includ-
ing hsa-miR-124-3p, hsa-miR-1273 g-3p, and hsa-miR-
335-5p (Fig. 9H and Table S4). As previously stated, the 
miRNA with the highest expression and interaction was 
hsa-miR-124-3p, so we used miRNAsong to create and test 
a miRNA sponge sequence for this miRNA (Fig. 9I). The 
sponge sequence contained two multiple miRNA-binding 
sites; a bulge at approximately nucleotide position 22–28; 

Fig. 6   (continued)
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and an AUGG spacer sequence between specific multi-
ple miRNA-binding sites. The generated sequence binds 
miRNA with a free energy of duplex of – 89.4 kcal/mol in 
in-silico tests for off-targets (settings: – 25 kcal/mol cut-
off and canonical 6-mer seed). Furthermore, 34 miRNAs 
can interact with this sponge in Homo sapiens at a cutoff 
of – 25 kcal/mol and the seed region features: 6-mer seed 
(2–7) (Table S5).

Discussion

The effects of heavy metal mixtures on MetS and its com-
ponents in Korean adults aged ≥ 18 years were investigated 
using four distinct statistical models. On the one hand, gen-
eralized linear regression demonstrated that serum Hg was 
the strongest predictor of MetS and its components (elevated 
WC, reduced HDL-C, elevated blood pressure, and elevated 
fasting glucose). Serum Cd, Hg, and Pb levels were found 

Fig. 7   Bi-variate exposure–response functions of three heavy metal 
mixtures in MetS (A), elevated WC (B), elevated triglycerides (C), 
reduced HDL-C (D), elevated blood pressure (E), elevated fasting 
glucose (F), and MetS components (G), when bivariate intake–
response functions for each of the exposure1 heavy metals when 
exposure2 heavy metals were at their 10%, 50%, and 90% levels, and 
other nutrients were fixed at their median levels. The results were 
examined by the BKMR model, Models were adjusted for sex, age 

group, BMI group, occupation, family history of hyperlipidemia, 
family history of CVD, family history of diabetes, physical activity, 
drinking status, residential areas, smoking, educational level, monthly 
household income, energy intake, and ln2-cotinine. “est” can be 
understood as the association between nutrient intakes, MetS and 
MetS components. ln2Cd, ln2Hg, ln2Pb ln2-transformed levels of 
cadmium, mercury, and lead



794	 H. D. Nguyen et al.

1 3

to interact with MetS and elevated triglycerides. On the 
other hand, MetS and its components were also shown to 
be affected by mixed heavy metals, especially serum Hg, in 
the WQS and qgcomp models. In the BKMR model, the uni-
variate exposure–response function demonstrated a positive 
association between MetS and its components and serum 
levels of three investigated heavy metals. Furthermore, MetS 
and its components were shown to be significantly linked to 
overall mixed exposure. There was no statistically signifi-
cant link between overall mixed exposure and elevated tri-
glycerides, reduced HDL-C, and higher fasting glucose, but 
there was a growing trend. Different statistical approaches 
reported the mixed effects of heavy metals on MetS and its 
components in a comparable way. Our findings suggest that 
long-term exposure to heavy metals, particularly Hg, may 
play a key role in the development of MetS.

In the current work, we used an in-silico toxicogenomic 
data mining approach to explore the key molecular pathways 

and biological processes of MetS associated with heavy 
metals and their mixes, as well as their relationship to the 
development of MetS. The IL6 signaling pathway, IL6-medi-
ated signaling events, insulin pathway, transcription factor 
regulation in adipogenesis, adipogenesis and cytokines, and 
the inflammatory response pathway have all been identified 
as key pathways that may be affected by heavy metals and 
involved in the development of MetS.

We identified multiple genes and miRNAs with high 
expression and interaction induced by the heavy metals 
investigated, including CRP, IL6, PON1, and hsa-miR-
124-3p, all of which are implicated in the MetS process. We 
also used miRNAsong to create and test a miRNA sponge 
sequence for these miRNAs. Because miRNA sponges have 
the characteristic of inhibiting all seed family members, and 
when more miRNA-binding sites are added, which can be 
used to suppress a full miRNA cluster, they may be promis-
ing for being used in MetS therapy.

Fig. 7   (continued)
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Due to the potential negative effects of heavy metals 
on human health, exposure to heavy metals has become a 
global public health hazard in recent decades (WHO 2017). 
Remarkably, human exposure to heavy metals has increased 
as a result of worldwide urbanization and industrialization 
(Wang et al. 2018a, b; Duc et al. 2021a, b, c). In our analy-
sis, males had considerably greater Hg and Pb levels than 
females in our analysis, but not Cd. These findings concur 
with the previous studies (You et al. 2011; Cho et al. 2014; 
Eom et al. 2014; Kim et al. 2014; Duc et al. 2021a, b, c). 
It has been known that Hg and Pb levels have been shown 
to be strongly linked with smoking status and alcohol con-
sumption (Duc et al. 2021a, b, c; Nguyen and Kim 2021). It 
suggests there were significant gender variations in alcohol 
use and smoking status.

In the present study, we observed that a mixture of heavy 
metals, particularly serum Hg, was linked to the risk of MetS 

in Korean adults. A recent study found that a combination 
of heavy metals such as Cd, Hg, and Pb may contribute to 
the risk of obesity, hypertension, and diabetes development 
(Wang et al. 2018). Heavy metals are known causative fac-
tors in a variety of diseases, including CVDs, and numerous 
mechanisms have been proposed to explain their association 
with MetS (Duc et al. 2021a, b, c; Nguyen and Kim 2021). 
First, heavy metals (Cd, Hg, and Pb) can cause inflammatory 
cytokines and the production of antithrombotic substances 
as well as destroy blood clots (Angeli et al. 2013; Arbi et al. 
2017). Second, they also increase the levels of reactive nitro-
gen and oxygen species, causing oxidative stress, which can 
damage DNA and oxidize protein thiol groups (Jomova and 
Valko 2011). Third, Cd, Hg, and Pb can have an effect on 
lipid metabolism, especially total cholesterol and LDL-C 
(Nguyen et al. 2021a, b, c, d). More specifically, Hg, Cd, 
and Pb have been shown to play a role in the development 

Fig. 7   (continued)
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of MetS by causing adipose tissue endocrine dysfunction, as 
well as glucose metabolism and lipid dysregulation (Iavicoli 
et al. 2009; Chang et al. 2011; Regnier and Sargis 2014). 
Cd, Hg, and Pb can induce damage to vascular endothelial 
cells and worsen hypertension by catalyzing the production 
of antithrombotic and inflammatory mediators (Yamamoto 
et al. 1993; Angeli et al. 2013; Nguyen et al. 2021a, b, c, 
d). Hg can affect nitric oxide bioavailability, activation of 
antioxidant defenses, and endothelial function (Houston 
2011). Hg has been linked to an increase in serum oxidized 
LDL, lipid peroxidation, and LDL oxidation. These activi-
ties make LDL metabolism harder, resulting in its aggrega-
tion (Nguyen et al. 2021a, b, c, d ). As a result, Hg has been 
shown to increase the progression of carotid atherosclerosis 
(Salonen et al. 2000; Arbi et al. 2017). Through the oxidative 
stress cascade, Hg can also impact the function and survival 
of islet b-cells (Chen et al. 2009), whereas, Cd can deplete 
glutathione and protein-bound sulfhydryl groups, increas-
ing the production of reactive oxygen species like superox-
ide ions, hydrogen peroxide, and hydroxyl radicals. These 
ROS are known to increase urinary lipid metabolite excre-
tion and lipid peroxidation. On the other hand, Pb-mediated 
hypercholesterolemia has been linked to the inhibition of 
cholesterol synthesis enzymes (e.g., 3-hydroxyl-3-meth-
ylglutaryl-CoA reductase, farnesyl diphosphate synthase, 
squalene synthase) and catabolic enzymes (e.g., 7 alpha-
hydroxylase) (Nguyen, et al. 2021a, b, c, d). Pb may also 
increase the hepatic gene expression of lanosterol 14-dem-
ethylase (CYP51), a cytochrome P450 isoform, resulting in 

an increase in cellular and total cholesterol levels (Kojima 
et al. 2002). These effects are known to play an important 
role in the pathology of MetS development.

To our knowledge, only a small amount of research has 
looked at the link between mixed chemical exposure and 
MetS and its components, and there is only a small amount 
of evidence that describes cutoff values for clinically sig-
nificant exposure levels. When compared to prior studies of 
adults in Canada, Germany, and the United States, Korean 
adults showed higher chemical exposures (including Cd, Hg, 
and Pb) (Becker et al. 2002; Canada 2010; Zhang et al. 2019; 
Duc et al. 2021a, b, c; Nguyen and Kim 2021; Nguyen et al. 
2021a, b, c, d). The disparities in studied heavy metal expo-
sure levels could be explained by significant heterogeneity 
across the reported study samples, such as diet, residential 
location (urban, rural, or industrial), and the primary source 
of exposure (drinking water and food, etc.). Furthermore, 
cross-study comparisons are difficult due to a lack of crite-
ria for acceptable exposure levels based on serum or urine 
chemical levels. Lanphear et al. observed that even at blood 
Pb levels of less than 10 µg/dL, it can cause cognitive defi-
cits in children and adolescents in the United States (Lan-
phear et al. 2000). The effects of heavy metals on human 
health are undeniable. Thus, it is necessary to estimate the 
cutoff thresholds for exposure levels that are clinically rel-
evant. In the current study, we estimated the cutoff thresh-
olds for exposure levels that are relevant to MetS and its 
components (Table 7).

Fig. 7   (continued)
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Our in-silico investigation has found that CRP, 
IL6, PON1, and TRIB3 were common genes for MetS 
development induced by a mixture of three heavy metals. 
The IL6 signaling pathway and IL6-mediated signaling 
events, insulin resistance, and adipogenesis are four 
biochemical pathways that are linked to combined heavy 
metals and MetS. The most important biological processes 
impacted by combined heavy metals and connected to the 
development of MetS were “control of lipid localization,” 

“negative regulation of lipid storage,” and “acute-phase 
response,” “lipoprotein particle binding,” “protein-
lipid complex binding,” and “high-density lipoprotein 
particle.” Furthermore, metabolic syndrome “X,” “carotid 
atherosclerosis,” “hyperhomocysteinemia,” and acute 
coronary syndrome were among the most common 
disorders related to heavy metals combined. Several studies 
supported our findings of the link between these genes and 
MetS development (Choi et al. 2004; Nishida et al. 2007; 

Table 6   Genes associated with the metabolic syndrome and related to the studied heavy metals and their mixture [CTD Database (http://​CTD.​
mdibl.​org) and MyVenn CTD tool (http://​ctdba​se.​org/​tools/​myVenn.​go)] 

Molecular functions, cellular components, biological processes, pathways, and diseases associated with metabolic syndrome and related to the 
genes induced by the studied heavy metal mixture [ToppGeneSuite portal (https://​toppg​ene.​cchmc.​org), and its ToppFun function (https://​toppg​
ene.​cchmc.​org/​enric​hment.​jsp)]
Cd cadmium, Hg mercury, Pb lead, IL6 interleukin 6, PON1 paraoxonase 1, CRP C-reactive protein

(A) Genes associated with the metabolic syndrome and related to the studied heavy metals and their mixture

Heavy metals Genes related to metabolic syndrome

Number Name

Cd 13 Genes CCL2, CRP, IL18, IL6, INS, LBP, NEIL1, NOS3, NR1I3, 
PON1, SHBG, SIRT1, TRIB3

Hg 9 Genes CCL2, CRP, IL6, LEP, NOS3, NR1I2, PON1, SIRT1, TRIB3
Pb 4 Genes CRP, IL6, PON1, TRIB3
Cd + Hg + Pb 4 Genes CRP, IL6, PON1, TRIB3

(B) Molecular functions, cellular components, biological processes, pathways, and diseases associated with metabolic syndrome and related to 
the genes induced by the studied heavy metal mixture

ID Name p Value Genes from input Genes in 
annota-
tion

Molecular functions
GO:0071813 Lipoprotein particle binding 3.001E-5 CRP, PON1 45
GO:0071814 Protein–lipid complex binding 3.001E-5 CRP, PON1 45
GO:0005138 Interleukin–6 receptor binding 1.409E-3 IL6 7
Cellular components
O:0005896 Interleukin–6 receptor complex 5.808E−4 IL6 3
GO:0034364 High-density lipoprotein particle 6.182E−3 PON1 32
GO:1990777 Lipoprotein particle 7.915E−3 PON1 41
Biological processes
GO:1905952 Regulation of lipid localization 5.545E−6 CRP, IL6, PON1 227
GO:0010888 Negative regulation of lipid storage 6.776E−6 CRP, IL6 22
GO:0006953 Acute-phase response 3.733E−5 CRP, IL6 51
Pathway
M39656 IL–6 signaling pathway 5.813E−5 CRP, IL6 43
137932 IL6-mediated signaling events 5.813E−5 CRP, IL6 43
1272486 Insulin resistance 3.637E−4 IL6, TRIB3 107
M39505 Adipogenesis 5.448E−4 IL6, TRIB3 131
Diseases
C0524620 Metabolic syndrome X 1.021E−12 CRP, IL6, PON1, TRIB3 21
C0577631 Carotid atherosclerosis 1.396E−8 CRP, IL6, PON1, TRIB3 212
C0598608 Hyperhomocysteinemia 1.774E−8 CRP, IL6, PON1, TRIB3 225
C0948089 Acute coronary syndrome 1.801E−8 CRP, IL6, PON1 3

http://CTD.mdibl.org
http://CTD.mdibl.org
http://ctdbase.org/tools/myVenn.go
https://toppgene.cchmc.org
https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
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Martín-Cordero et al. 2011; Todendi et al. 2015; Nguyen 
et al. 2021a, b, c, d). For example, a cross-sectional study 
showed a significant link between IL6 and CRP gene 
polymorphisms and metabolic disorders in children and 
adolescents (Todendi et al. 2015). PON1 levels and activity 
are significantly lower in people with cardiovascular and 
hepatic disorders, as well as diabetes and obesity (Meneses 
et al. 2019). A case–control study of Chinese adults aged 

30–77 years observed that in those with metabolic syndrome, 
a decrease in serum obestatin caused by the TRIB3 Q84R 
polymorphism exacerbates carotid atherosclerosis (Cui et al. 
2012).

In terms of miRNAs, the most significant genes related 
to mixed heavy metals-induced MetS development (e.g., 
IL6, TRIB3, and PON1) were target genes specifically 
linked with miRNAs. We found several pathways (insulin 

Table 7   Estimated cutoff thresholds for heavy metal levels that are relevant to MetS and MetS components, (n = 5581), KNHANES, Korean, 
2009–2013&2016–2017

Cd cadmium, Hg mercury, Pb lead, TG triglycerides, WC waist circumference, HDL-C high-density lipoprotein cholesterol
a Adjusted for: sex, age group, occupation, BMI group, family history of hyperlipidemia, family history of CVD, family history of diabetes, phys-
ical activity, drinking status, residential areas, smoking, educational level, monthly household income, energy intake, and ln2-cotinine

Thresholda

Variables Median (IQR) Min–Max MetS MetS as a 
continuous 
variable

Elevated WC Elevated TG Reduced HDL-C Elevated 
blood pres-
sure

Elevated 
fasting 
glucose

Cd (µg/L) 0.348–2.324 0.100–6.522 1.334 1.294 1.260 0.724 0.552 1.695 1.217
Hg (µg/L) 1.321–9.896 0.290–43.100 4.893 4.887 5.960 4.147 3.238 6.721 4.311
Pb (µg/dL) 0.928–3.838 0.199–24.578 2.022 2.024 1.994 2.186 2.022 2.156 1.729

Fig. 8   Generated network of overlapping genes induced by 
mixed heavy metals (Pb, Hg, and Cd), along with four metabolic 
syndrome-related genes. GeneMANIA (http://​geneM​ANIA.​org/​
plug-​in/) was used to create the network. Physical interactions (two 
genes are connected if they are observed to interact in a protein–
protein interaction research); Co-expression (two genes are related 
if the levels of their expression are similar across situations in gene 

expression research); Colocalization (proteins observed in a similar 
location or genes expressed in the similar tissue); Genetic Interactions 
(two genes are functionally related if the effects of perturbing one 
gene were observed to be altered by perturbations to another gene); 
Pathway (two genes are connected if they contribute to the similar 
reaction within a pathway); Shared protein domains (protein domain 
data)

http://geneMANIA.org/plug-in/
http://geneMANIA.org/plug-in/
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pathway, transcription factor regulation in adipogenesis, 
adipogenesis, and cytokines and inflammatory response), 
and diseases (“atherosclerosis,” “arteriosclerotic cardiovas-
cular disease,” and “arteriosclerosis”), which were related to 
MetS. We also observed hsa-miR-124-3p were the miRNAs 
with the highest expression and interaction related to MetS 
development. These findings were supported by previous 
studies. For instance, an in vitro study reported that miR-
124 can repress genes linked with triglyceride and fatty acid 
breakdown as well as promote the accumulation of triglyc-
erides in hepatoma cells (Shaw et al. 2018). Other in vitro 
also found miR1243p expression levels were considerably 

higher than in the control groups in the hindlimb ischemia 
model’s ischemic tissue and hypoxic human umbilical vein 
endothelial cells, implying miR‑124‑3p was a crucial regula-
tor of angiogenesis in peripheral arterial disease (Shi et al. 
2020). In a cross-sectional study of 12 Chinese type 2 dia-
betes patients aged ≤ 65 years, it was observed that hsa-miR-
124-3p expression levels were downregulated, suggesting 
that this miRNA can contribute to the pathology of diabetes 
(Zhu et al. 2017). Three of the most common approaches 
for miRNA loss-of-function research are genetic knock-
outs, antisense oligonucleotide inhibitors, and sponges. 
The “sponge” method for inducing continuous miRNA 

Fig. 9   miRNA–target interaction network for miRNAs derived from 
the list of genes linked with metabolic syndrome induced by the 
mixture of three heavy metals (CTD Database (http://​CTD.​mdibl.​
org). The bar plot represents each gene resulting in the enrichment 
along with the number of its miRNA (A–C). An analysis of network 
and Wiki pathway enrichment shows that the network provides the 
miRNA–target interactions retrieved from MIENTURNET (D). 
Orange dots represent miRNA targets, blue dots represent target 
genes. The main enrichment results for the targets of the miRNAs 
appearing in the network are shown as dot plots, with the Y-axis 
reporting the annotation categories [i.e., Wiki pathways (E) and 
disease ontology (F)] and the X-axis reporting the miRNAs, with 
the number of recognized targets (i.e., targets with at least one 

annotation) in round brackets. The colored dots represent adjusted p 
values, and the size of the dots represents gene ratios (i.e., the number 
of miRNA targets observed annotated in each category over the 
total number of recognized targets indicated in round brackets). The 
transcription factor-gene regulatory networks related to metabolic 
syndrome induced by mixed heavy metals were assessed using 
CHEA3. The transcription factor is denoted in bright blue, whereas 
the gene target is presented in pink (G). Venn diagram and prediction 
of miRNA Sponges. Venn diagram for the differentially expressed 
miRNAs induced by studied heavy metals prediction of miRNA 
Sponges (H). Results of generating and testing a miRNA sponge 
sequence for one selected miRNA using miRNAsong (I). FDR false 
discovery rate

http://CTD.mdibl.org
http://CTD.mdibl.org
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loss of function in cell lines and transgenic animals was 
first described. Thus, we constructed and in-silico analyzed 
a miRNA sponge sequence for this miRNA that was the 
most frequent miRNA with high expression and interaction 
with studied heavy metals, as well as connected to MetS 
development, utilizing miRNAsong. On the other hand, we 
also observed six transcription factors (SNAI1, CEBPG, 
NR1H4, DDIT3, CREB3L3, and MLXIPL) that regulated 
four genes related to MetS induced by mixed heavy met-
als. These transcription factors were found to be related to 
MetS and its components in the previous studies (Pan et al. 
2009; Yang et al. 2012; Delgado-Lista et al. 2013; Heni et al. 
2013; McCann et al. 2021; Yong et al. 2021). These find-
ings could be useful in future studies looking at the effects 
of heavy metals, miRNAs, transcription factors, and MetS 
development.

To our knowledge, this is the first large-scale investi-
gation in Korea to report the combined effects of heavy 
metals on MetS and its components in individuals aged 
18 years or older. Secondary analyses using three inno-
vative mixture modeling approaches (WQS, qpcomp, 
and BKMR) found that our findings were mainly robust. 
This study, however, has several limitations. First, the 

cross-sectional approach was unable to determine whether 
heavy metals and MetS are causally linked. Second, heavy 
metal exposure was determined by taking a single serum 
sample. Third, MetS is a chronic condition. The assess-
ments may not have adequately reflected chronic exposure 
circumstances because serum samples of heavy metals 
were used to determine heavy metal exposure levels. 
Fourth, although three common heavy metals were con-
sidered in this study, other chemicals (e.g., perfluorooc-
tanoic acid) were not assessed.

Fifth, the miRNA sponges created in this study may 
not be suitable for a variety of models in practice, so these 
results should be viewed primarily as a precursor to more 
in-depth in-vitro and in-vivo laboratory testing.

Conclusion

MetS, and its components, were significantly associated 
with the combined effect of three heavy metals. Along 
with elevated waist circumference and blood pressure, 
serum Hg showed positive trends and was identified as 
the most important factor associated with MetS. In-silico 

Fig. 9   (continued)
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toxicogenomic data mining revealed that mixed heavy 
metals interacted with four genes (CRP, IL6, PON1, 
and TRIB3) and were associated with MetS. Physical 
interactions were found to be the most common (77.6% 
of interactions) among MetS-related genes. Several 
pathways (for example, insulin pathway, transcription 
factor regulation in adipogenesis, adipogenesis, and 
cytokines and inflammatory response), regulation of lipid 
localization, and metabolic syndrome X were identified as 

key molecular mechanisms that may be affected by heavy 
metals and involved in the development of MetS. SNAI1, 
CEBPG, NR1H4, DDIT3, CREB3L3, and MLXIPL 
were key transcription factors related to pathogenesis 
of MetS induced by mixed heavy metals. The highest 
interaction and expression implicated in the MetS process 
was identified as hsa-miR-124-3p. In particular, the 
cutoff levels for exposure levels related to MetS and its 
components were also described.

Fig. 9   (continued)
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