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Abstract
Type 2 diabetes mellitus (T2DM), one of the most common chronic metabolic diseases, involves a complex interaction 
among genetic, epigenetic, and environmental risk factors. The incidence and prevalence of T2DM are rapidly increasing 
globally. In recent years, increasing body of evidences from both human and animal studies have displayed an association 
between exposure to early unfavorable life factors such as endocrine-disrupting chemicals (EDCs) and the prevalence of 
T2DM in later life. The exogenous EDCs can lead to disadvantageous metabolic consequences because they interfere with 
the synthesis, secretion, transport, binding, action, and metabolism of endogenous hormones. EDCs also have long-term 
adverse effects on newborns, children, and adolescents by causing increased susceptibility to T2DM in adults. This review 
summarizes the most recent advances in this field, including diabetes-related EDCs (bisphenol A, phthalates, chlordane 
compounds, parabens, pesticides, and other diabetes-related EDCs), EDC exposure and gestational diabetes mellitus, prenatal 
and perinatal EDC exposures and T2DM, adult EDC exposure and T2DM, transgenerational effects of EDCs on T2DM as 
well as the possible diabetogenic mechanisms.
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Introduction

Type 2 diabetes mellitus (T2DM), a common chronic meta-
bolic disease, has become a major public health problem. 
Chronic hyperglycemia due to impaired insulin secretion 
from pancreatic β-cells, hyperglucagonemia because of com-
pensatory glucagon secretion from pancreatic α-cells, insu-
lin resistance in peripheral target tissues, and hyperlipidemia 
are its main characteristics (Chamberlain et al. 2016; Chat-
terjee et al. 2017). Despite a lot of incredible advancements 
in biomedical sciences, diabetes mellitus is still an incurable 
life-long disease. Over the past 30 years, the prevalence of 
diabetes has rapidly increased in all age and gender clusters, 
in both rural and urban regions, or in developing and devel-
oped nations across the globe (Meo et al. 2021). It has been 
estimated that the global diabetes prevalence in 2019, 2030, 
and 2045 is 9.3% (463 million people), 10.2% (578 million), 
and 10.9% (700 million), respectively. It is higher in urban 
than in rural areas (10.8% vs. 7.2%), or in high-income than 
in low-income countries (10.4% vs. 4.0%). Unfortunately, 
half of the T2DM patients (50.1%) do not know that they are 
suffering from the disorder. In addition, it is also estimated 
that the global prevalence of impaired glucose tolerance 
(IGT) is 7.5% (374 million) in 2019, 8.0% (454 million) in 
2030, and 8.6% (548 million) in 2045 (Saeedi et al. 2019). 
Furthermore, diabetes and its microvascular and macrovas-
cular complications have become a heavy economic bur-
den on the patients, their families, the health system, and 
the country. The estimated global diagnosis and treatment 
costs on diabetes are USD 760 billion in 2019, and they are 
expected to increase to a projected USD 825 billion in 2030 
and USD 845 billion in 2045 (Williams et al. 2020). It has 
been found that cardiovascular risk is 2–4 times increased in 
adults with diabetes compared with those without diabetes, 
and the risk increases with worsening glycemic control. Dia-
betes caused 4.2 million deaths in year 2019, 11,666 people 
per day, and 8.10 people per minute (Meo et al. 2021). It is 
also connected with 75% increase in mortality rate in adults 
(Dal Canto et al. 2019). Chronic and serious hyperglycemia 

can result in the development of both microvascular and 
macrovascular complications. These complications include 
retinopathy, neuropathy, nephropathy, and an increased 
incidence of atherosclerotic diseases such as coronary heart 
disease and ischemic stroke (Harding et al. 2019; Forbes 
and Cooper 2013). Therefore, T2DM involves and impairs 
multiple physiological functions of various cells, tissues, 
organs, and systems of the body, with wide ranging serious 
health problems (Wu et al. 2018). The etiology of T2DM is 
not well known. Several identified risk factors include age, 
sedentary lifestyle, physical inactivity, calorie dense diets, 
obesity, and a broad array of both common and rare genetic 
variants (Scheen 2003; Barzilai et al. 1999; Flannick et al. 
2019). In addition, an increasing body of evidence impli-
cates that environmental chemicals are associated with the 
increasing epidemic of T2DM. Currently, diabetes ranks top 
on the international health agenda due to it being a main 
global issue that significantly damages human health and 
worldwide economies (Wang et al. 2018b). A number of 
countries across the world have developed strategies to inter-
pose regarding behavioral risk factors such as encouraging 
healthy lifestyle, quit smoking, low-fat diet, fast food culture, 
and physical activity, to decrease the high prevalence of dia-
betes. However, these intervention efforts pay less role of 
occupational-related environmental pollution (Mohammad 
et al. 2018).

Endocrine-disrupting chemicals (EDCs) are natural or 
man-made chemicals. Because their structure is similar to 
steroid hormones, they can interact with the receptors of 
estrogen, androgen, and progesterone, interfere with any 
aspect of the role of endogenous hormones, including the 
biosynthesis, metabolism, transport, elimination, or receptor 
binding of endogenous hormones, thereby increase the risk 
of endocrine and metabolic diseases in humans and animals 
(Rutkowska et al. 2015; Gore 2016; Kiyama and Wada-Kiy-
ama 2015; Silver et al. 2011; Alonso-Magdalena et al. 2011). 
An endocrine disruptor can be defined as “an exogenous 
chemical, or mixture of chemicals, that can interfere with 
any aspect of hormone action” (Zoeller et al. 2012). Several 
unique features of EDCs may distinguish them from other 
common chemicals. EDCs also include various lipophilic 
compounds, which mainly accumulate in lipid-containing 
tissues, such as adipose tissue, bind to lipids and move in 
the body (Yang et al. 2017). EDC can bind to endocrine 
receptors to activate, block, or change the synthesis and deg-
radation of natural hormones. These actions occur through a 
variety of mechanisms, resulting in “false” lack or abnormal 
hormone signals, thereby increasing or inhibiting normal 
endocrine function (Zoeller et al. 2012). Data from eco-
logical investigations, animal experimental models, clinical 
observations, and epidemiological surveys in humans agree 
to consider EDC as a significant risk factor for wildlife and 
human health (Heindel et al. 2015b). The large amount of 
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xenobiotics used in daily life and released into the environ-
ment through human activities may destroy the endocrine 
system of wild animals and humans at ecologically relevant 
concentrations. Currently, the EDC list includes hundreds 
of compounds, and it is still increasing. In one examina-
tion by the US Food and Drug Administration, more than 
1800 chemicals that disrupt at least one of three endocrine 
pathways (estrogen, androgen, and thyroid) were identified 
(Ding et al. 2010). As reported by the European Union, out 
of a total of 564 chemicals recommended by various organi-
zations as suspected EDCs in published papers or reports, 
147 are considered likely to persist in the environment or be 
produced in large quantities (Kunysz et al. 2021). Among 
them, the biggest health problem is related to plasticizers 
[phthalates and bisphenol A (BPA) and its derivative bisphe-
nol S (BPS)] and pesticides: dichlorodiphenyltrichloroethane 
(DDT), chlorpyrifos, methoxychlor, fungicides (vinclozo-
lin), herbicides, polychlorinated biphenyls, brominated flame 
retardants, perfluoroalkyl and polyfluoroalkyl substances, 
industrial chemicals including alkylphenols, metals and 
dioxins, air pollutants such as polycyclic aromatic hydrocar-
bons (Street et al. 2018). In addition, new chemicals and/or 
compounds constantly enter the market every year, the vast 
majority of them are developed with poor or inappropriate 
toxicological testing for the detection of potential endocrine 
disruption. Therefore, a reliable estimate of the number of 
EDCs is practically impossible (Kunysz et al. 2021; Kassotis 
et al. 2020). Currently, an increasing body of evidence sug-
gests that the increased prevalence of non-communicable 
diseases is related to EDC exposures; these diseases include 
endometriosis, infertility, premature puberty, susceptibil-
ity to infections, autoimmune diseases, neurodegenerative 
diseases, attention-deficit hyperactivity disorder (ADHD)/
learning disabilities, asthma, heart disease, obesity, diabetes, 
and cancers (Kunysz et al. 2021). In May 2014, a seminar 
held in Parma produced The Parma Consensus Statement, 
proposing the hypothesis of metabolic disrupting chemicals, 
assumes that many endocrine disruptors can promote dys-
lipidemia, abnormal glucose metabolism, fatty liver, obesity, 
and diabetes in humans and animals (Kunysz et al. 2021). 
Overall, these metabolic changes may play an important role 
in the global epidemics of obesity, T2DM, and metabolic 
syndrome (MetS).

There are strong evidences obtained from experimental 
studies indicating the potential action of several environmen-
tal chemicals to induce endocrine disruption at environmen-
tally relevant exposure levels. Indeed, like the endogenous 
hormones, EDCs can produce big effects on development 
at very low dose levels of exposure (parts per billion and 
parts per trillion) because prenatal and early postnatal are 
the most vulnerable periods of life. Both gene suppression 
and gene activation have been observed in prenatal and early 
postnatal exposure (Vom Saal 2016). Some human birth 

cohort studies and animal experimental observations have 
shown that exposure to EDCs during the critical periods of 
fetal development can alter the growth and metabolism of 
the fetus, and subsequently promote metabolic disorders in 
adulthood (Chamorro-García and Blumberg 2014; Veiga-
Lopez et al. 2018; Desai et al. 2015). In particular, a lot of 
previous studies have shown that these EDCs are associated 
with an increased risk of obesity, T2DM and MetS (Desai 
et al. 2015; Anderson et al. 2017; Neel and Sargis 2011; 
Marraudino et al. 2019). Therefore, this paper aims to review 
the current progress in the association between exposure 
to EDCs and T2DM. The identification of the association 
between EDC exposures and T2DM in different populations 
may provide new insights of diabetes pathogenesis and new 
targets of early prevention.

Diabetes‑Related EDCs

EDCs contain a heterogeneous set of synthetic and natural 
compounds, most of which have phenolic groups in their 
structure, giving them an affinity for steroid hormone recep-
tors such as estrogen, progesterone, and androgens. EDCs 
have agonistic or antagonistic effects on nuclear receptors, 
which are their main targets (Skinner 2011). These chemi-
cal compounds can enter the human body through ingestion, 
inhalation, and skin absorption (Rudel and Perovich 2009). 
They penetrate into soil and groundwater, and enter the food 
chain by accumulating in fish, animals, and plants. Some 
consumer products such as household chemicals, cosmetics, 
fragrance products, lotions, antibacterial soaps, and fabrics 
rich in flame retardants may be packaged in containers that 
can leach EDCs. Food processing may accumulate traces of 
EDCs leached from manufacturing and storage materials. 
EDCs such as lead in furniture, flame retardants, and poly-
chlorinated biphenyls can pollute household dust. Some lipo-
philic EDC can remain in the human body for many years, 
and is secreted from fat cells, and then binds to the appro-
priate receptor to change the hormone response. Continu-
ous daily exposure to EDC mixtures, whose concentrations 
are even lower than the human body’s established tolerance 
threshold for individual substances, will also significantly 
increase the risk of women and men suffering from hormonal 
and metabolic disorders such as diabetes (Sargis and Sim-
mons 2019). In addition, the development of modern civi-
lization and the increasing demand for new chemicals have 
increased our exposure to EDCs. The widespread produc-
tion and common use of these chemical substances in daily 
life leads people to constant exposure to harmful substances 
in the environment, including furniture, paint, floors, elec-
tronic equipment, and toys. Additional daily contact occurs 
through the release of these substances from commonly used 
items such as food packaging, bottled beverages, cosmetics, 
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receipts, clothes, food, contact lenses, and dental seals 
(Żwierełło et al. 2020; Beszterda and Frański 2018). Certain 
EDCs may be even more common in newborns and children 
than in adults because they are associated with greater con-
sumption of specific foods and water. In addition, infancy and 
adolescence have higher ventilation rates, intestinal absorp-
tion, surface area-to-volume ratios, and hand-to-mouth activ-
ity than adults (Selevan et al. 2000). Breastfeeding is also 
associated with more infants’ exposure to EDCs (Grandjean 
and Jensen 2004). Generally speaking, both organochlorines 
and organophosphorus are the most widely studied insecti-
cides related to obesity and/or T2DM in humans and rodents 
(Xiao et al. 2017). The principal diabetes-related EDCs are 
listed in Table 1.

Bisphenol A

Bisphenol A (BPA), a ubiquitous EDC, is the major com-
ponent of polycarbonate plastics. It is one of the first 
compounds identified as endocrine disruptor, which can 
disrupt the endocrine system and produce effects very simi-
lar to MetS (Pérez-Bermejo et al. 2021). It is used in the 

manufacture of epoxy resins, food can linings, recycled 
paper, carbon-free cash register receipts, compact discs 
(CD) and digital video CD coatings, electronic equip-
ments, and toys (Chailurkit et al. 2017; Rubin 2011). The 
BPA in these products can react with chlorinated tap water 
to form chlorinated BPA derivatives (Andra et al. 2015). 
Humans are constantly exposed to small quantities of BPA 
via many routes (Farrugia et al. 2021). Regardless of age 
or gender, BPA can enter the human body through breath-
ing, digestion, and transdermal routes, and pass from mother 
to offspring through the placenta or breast milk (Lee et al. 
2018). Although it is a non-persistent EDC with a short 
half-life, more than 90% of individuals can detect it in the 
urine (Song et al. 2016). Pharmacokinetic investigations in 
humans have shown that after a single exposure through 
ingestion, BPA will be rapidly combined in the liver and 
excreted through bile and urine, with a half-life of about 
5.3 h (Völkel et al. 2002). BPA is a xenoestrogen. Its struc-
ture is similar to endogenous 17β-estradiol. It can bind to 
and exert effects through extranuclear estrogen receptors 
(ERα and ERβ) at environmentally relevant doses (Alonso-
Magdalena et al. 2008; Soriano et al. 2012), and then change 

Table 1   List of principal diabetes-related endocrine-disrupting chemicals (EDCs)

Abbr abbreviation; PPARs peroxisome proliferator-activated receptors; RXR retinoid X receptor; RXRα retinoid X receptor α
√ (the strength of the evidence), one article in animal or human; √√, one paper in animal and human or more than one paper in either animal 
or human; √√√, more than one thesis in both animal and human, or multiple treatises in animal studies

EDC Abbreviation T2DM Site of action/others

Bisphenol A BPA √√√ Steroid receptors (xenoestrogen), PPARs, RXR
di-2-ethylhexyl phthalate DEHP √√√ Promotes expression of adipogenic genes
Tributyltin TBT √√√ PPARγ and RXRα activator
Polychlorinated biphenyls PCBs √√√ Aryl hydrocarbon receptor
Hexachlorobenzene HCB √√√ Plasma HCB concentration was positively associated with incident T2DM
Bisphenol S BPS √√√ The activator of PPARγ, it can upregulate lipoprotein lipase and CAAT/enhancer-

binding proteins β expression
Dichlorodiphenyltrichloroethane DDT √√ Steroid receptors
dichlorodiphenyldichloroethylene DDE √√ The main metabolite of the insecticide DDT
2,3,7,8-Tetrachlorodibenzo-p-dioxin TCDD √√ Aryl hydrocarbon receptor
Benzo(a) pyrene BaP √√
perfluoroalkyl substances PFAS √√
dibutyl phthalate DBP √√ Similar steroid receptors, PPARs, RXR; disrupting the PI3K expression and AKT 

phosphorylation
Polybrominated biphenyl ethers PBDEs √ PBDE congener 153 (PBDE-153) was positively associated with increased risk of 

gestational diabetes mellitus
Perfluorooctanoate PFOA √ Positive associations with gestational diabetes mellitus with a family history of 

T2DM
Perfluorooctane sulfonate PFOS √ Higher serum PFOS levels may be a biomarker of exposure and susceptibility to 

develop T1DM
Atrazine √ A triazine herbicide; C8H14ClN5 or 2-chloro-4-ethylamino-6-isopro-

pylamino-1,3,5-triazine
Tolylfluanid TF √
Phthalates PAEs √ Steroid receptors (antiandrogen), PPARs and RXR
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various aspects of β-cell metabolism by regulating estrogen 
receptor signaling pathway (Alonso-Magdalena et al. 2006; 
Nadal et al. 2009). The expression of ERs in the body is 
very extensive, and many tissues have high expression of 
ERs, including breast, ovary, prostate, testis, liver, pancreas, 
brain, bone marrow, and adipose tissue (Lee et al. 2012). 
In vitro, BPA can act as an ER antagonist at concentrations 
below 10 nM, or as an ER agonist at concentrations above 
10 nM in a cell-type-specific manner (Li et al. 2012; Acco-
ncia et al. 2015). Additionally, BPA also acts through G 
protein-coupled receptor 30 (GPR30; also called 7-trans-
membrane G protein-coupled receptor) that mediates rapid 
non-genomic signal transduction of estrogen (Dong et al. 
2011; Prossnitz et al. 2008). BPA has a relatively high affin-
ity for GPR30. The combination between BPA and GPR30 
can induce a rapid activation of the MAPK/ERK signaling 
pathways (Völkel et al. 2002; Thomas and Dong 2006). It 
has also been shown to inhibit the release of adiponectin 
and promote angiogenesis on the endothelium (Andersson 
and Brittebo 2012; Hugo et al. 2008). Adiponectin has insu-
lin sensitivity, anti-atherosclerosis, and anti-inflammatory 
properties. Hypoadiponectinemia is associated with insulin 
resistance and T2DM (Okamoto et al. 2002; Matsuda et al. 
2002; Yamauchi et al. 2001; Kaser et al. 2008). BPA also 
increases the expression of a variety of pro-inflammatory 
adipocytokines through GPR30, including interleukin 6 (IL-
6) and monocyte chemotactic protein 1 (MCP1) (Cimmino 
et al. 2019). It has been shown that different concentrations 
of BPA in vivo and in vitro can disrupt glucose homeostasis 
and pancreatic β-cell function by altering gene expression 
and mitochondrial morphology. As a risk factor for obesity 
and diabetes, it has recently obtained attention in the scien-
tific community. In addition, BPA is also associated closely 
with the development of insulin resistance, and long-term 
adverse metabolic effects following fetal and perinatal expo-
sures (Farrugia et al. 2021). A number of cross-sectional 
studies (Silver et al. 2011; Lang et al. 2008; Soundararajan 
et al. 2019; Melzer et al. 2010; Shankar and Teppala 2011; 
Haq et al. 2020; Beydoun et al. 2014; Wang et al. 2012), 
case–control researches (Ahmadkhaniha et al. 2014; Duan 
et al. 2018; Stahlhut et al. 2018; Li et al. 2018; Murphy et al. 
2019), prospective investigations (Sun et al. 2014; Rancière 
et al. 2019), and meta-analyses (Song et al. 2016; Rancière 
et al. 2019; Hwang et al. 2018) have showed that there is a 
significant association between BPA and the development 
of insulin resistance, impaired glucose homeostasis, and 
T2DM in different ethnic groups or populations. Higher 
BPA concentrations in serum or urinary samples were posi-
tively correlated with an increased risk of prediabetes and 
T2DM (Sabanayagam et al. 2013). The incidence of T2DM 
in the participants was higher in the highest quartile of BPA 
levels than in the lower quartiles. A recent meta-analysis 
consisting of 16 studies, 41,320 subjects showed that BPA 

concentrations measured in urine (OR 1.20, 95% CI 1.09, 
1.31) or serum (OR 1.28, 95% CI 1.14, 1.44) were posi-
tively associated with the risk of T2DM (Hwang et al. 2018). 
However, no association between BPA exposure and T2DM 
risk was noted in many population-based epidemiological 
surveys (Chailurkit et al. 2017; Andra et al. 2015; Lakind 
et al. 2014; Ning et al. 2011; Kim et al. 2013; Casey and 
Neidell 2013; Piecha et al. 2016; Watkins et al. 2016; Wang 
et al. 2019a; Shu et al. 2018; Bi et al. 2016). In summary, 
the extensive body of evidence outlined above has provided 
insight into the multiple mechanisms by which BPA regu-
lates physiological pathways associated with the develop-
ment of T2DM. BPA acts on multiple tissues involved in 
regulating glucose homeostasis. It can positively or nega-
tively regulate pancreatic insulin release and secretion, and 
alter β-cell gene expression, electrical activity, and β-cell 
survival. This is a consequence of dysregulated β-cell gene 
expression. BPA exposure for 24 h results in a downregula-
tion of the pancreatic glucose transporter (SLC2A2) and glu-
cokinase (GCK, it catalyzes the phosphorylation of glucose 
to glucose-6-phosphate), and consequently reduced insulin 
secretion. The decreased expression of GCK and SLC2A2 
is the result of downregulation of key β-cell genes, including 
insulin promoter factor 1 (PDX1), and hepatocyte nuclear 
factor 1A (HNF1A). The synaptosome-associated protein of 
25 kDa (SNAP25) expression is also decreased in response 
to BPA (Farrugia et al. 2021). This affects adipocytokine 
function, modulates hepatic and muscle insulin sensitivity, 
stimulates de novo lipogenesis, and acts on central nervous 
system pathways that regulate feeding and systemic metabo-
lism (Farrugia et al. 2021).

Phthalates

Phthalates are the diesters of 1,2-benzendicarboxylic acid. 
They can classify into low and high molecular weights. Low-
molecular-weight phthalates are mainly used in personal 
care products and cosmetics, but they are also widely used 
in pesticides and food packaging plastics. High-molecular-
weight phthalates include several compounds that are mainly 
used to make plastics more flexible and durable, therefore as 
a plasticizer in polyvinyl chloride materials. Among them, 
the most commonly used additive is di-2-ethylhexyl phtha-
late (DEHP) (Wang et al. 2019b). As we all know, phtha-
lates may migrate, leach, or evaporate into indoor air and 
atmosphere, foods, and other goods, etc., and then become 
a source for human uptake because they are not covalently 
bound to the plastic (Shu et al. 2019). Phthalates have been 
detected in a variety of industrial and consumer products. 
Many daily products such as clothing, toys, packaging mate-
rials, wallpaper, paints, floors, roof paints, adhesive coat-
ings, sealants, and cables contain phthalates (Shu et al. 2019; 
Afshari et al. 2004). They can enter human body through 
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inhalation, ingestion, or skin absorption. In addition, phtha-
lates can cross the placenta and cause fetal exposure (Buck-
ley et al. 2016; Rudel et al. 2011). The association between 
DEHP exposure and pancreatic β-cell dysfunction in both 
sexes has been observed in several experimental investiga-
tions (Rajesh et al. 2014b; Campioli et al. 2014). Most of the 
human epidemiological surveys related to insulin resistance, 
obesity, and diabetes are from the National Health and Nutri-
tion Examination Survey (NHANES) in the USA. In a previ-
ous cross-sectional study, James-Todd et al. (2012) showed 
that several urinary phthalate metabolite concentrations such 
as monobenzyl phthalate (MBzP), mono-(3-carboxypropyl) 
phthalate (MCPP), mono-isobutyl phthalate (MiBP), mono-
n-butyl phthalate (MnBP), and three di-(2-ethylhexyl) phtha-
late metabolites were associated with the prevalence of dia-
betes among women. Women with higher levels of phthalate 
metabolites were more likely to develop diabetes than those 
with the lowest levels of phthalate metabolites after adjust-
ing for potential confounding factors. Women in the highest 
quartile of MBzP and MiBP are almost twice the odds of 
diabetes [OR 1.96 (95% CI 1.11, 3.47) and OR 1.95 (95% CI 
0.99, 3.85), respectively] compared with those in the lowest 
quartile. MnBP and the three bis (2-ethylhexyl) phthalates 
were positive correlation, while MCPP seemed to have a 
threshold effect. In a previous cross-sectional study, Lind 
et al. (2012) also found that several phthalate metabolites 
such as monoethyl phthalate, monomethyl phthalate, and 
MiBP, but not mono(2-ethylhexyl) phthalate were associ-
ated with an increased prevalence of T2DM in the elderly. 
These phthalate metabolites may also be the markers of insu-
lin secretion and resistance. The exact mechanism of action 
of phthalates and their metabolites is not fully understood, 
but they may increase the risk of T2DM by activating per-
oxisome proliferator-activated receptors (Casals-Casas and 
Desvergne 2011; Sarath Josh et al. 2014). These receptors 
are the main regulators of lipid and glucose homeostasis 
(Evans et al. 2004), by impairing the development and pro-
gression of pancreatic β-cells.

Chlordane Compounds

Chlordane compounds (CHLs) are the components of 
industrial chlordane listed in the Stockholm Convention on 
Persistent Organic Pollutants (Patterson et al. 2009). The 
main ingredients are heptachlor (5%), trans-nonachlor (5%), 
cis-chlordane (11%), and trans-chlordane (13%). In addi-
tion, more than 30 chemicals with less content were also 
identified (Mattina et al. 1999). Chlordane is a synthetic 
organochlorine pesticide that has been used in agriculture 
for decades, but it is also used for pest control (Fisher 1999). 
In humans, exposure mainly occurs through food intake, 
but it also occurs through inhalation or skin contact (Singh 
et al. 2019). In the past few decades, as people have become 

more aware of the role of the environment in health, envi-
ronmental chemical exposure has caused great concern. 
Although CHLs were discontinued globally in 1997, due to 
their ability to accumulate in the environment and migrate 
long distances from where they were released, chlordane-
related compounds still exist in soil, air, and water (Mat-
tina et al. 2002; Wang et al. 2015; Jantunen and Bidleman 
1998). Although the exposure levels of CHLs are expected 
to decrease over time due to the reduction in its use, its 
harmful consequences may still be felt for a long time. As 
a category of EDCs, CHLs may disrupt the biosynthesis, 
metabolism, or action of endogenous hormones resulting in 
an unbalanced hormonal function. An increasing scientific 
evidence shows that CHLs are the risk factors for the patho-
genesis and development of obesity and T2DM (Evangelou 
et al. 2016; Tang-Péronard et al. 2011).

A number of previous studies have showed that there are 
associations between oxychlordane (Everett et al. 2010; Son 
et al. 2010; Park et al. 2010; Lee et al. 2006, 2007a, 2007b, 
2010; Airaksinen et al. 2011; Cox et al. 2007; Rylander et al. 
2015; Grice et al. 2017; Eden et al. 2016; Zong et al. 2016), 
trans-nonachlor (Everett et al. 2010; Son et al. 2010; Park 
et al. 2010; Lee et al. 2006, 2007a, 2007b, 2010; Airaksinen 
et al. 2011; Cox et al. 2007; Rylander et al. 2015; Grice 
et al. 2017; Eden et al. 2016; Zong et al. 2016; Lind et al. 
2011; Han et al. 2020), heptachlor (Tang-Péronard et al. 
2011; Everett and Matheson 2010; Son et al. 2010; Patel 
et al. 2010; Starling et al. 2014), chlordane (Starling et al. 
2014), and diabetes in different populations. More recently, 
a meta-analysis of 31 eligible studies showed that the odds 
of having diabetes among adults were significantly increased 
with increasing levels of chlordanes. The estimates were sta-
tistically significant for heptachlor epoxide [OR 1.88 (95% 
CI 1.42–2.49)], oxychlordane [OR 1.96 (95% CI 1.19–3.23)], 
and trans-nonachlor [OR 2.43 (95% CI 1.64–3.62)] (Mendes 
et al. 2021).

Parabens

Parabens are alkyl esters of p-hydroxybenzoic acid. They 
are used as antibacterial preservatives in a range of con-
sumer products such as cosmetics, pharmaceuticals, and 
foods (Liao et al. 2013). They are another group of EDCs 
(Błędzka et al. 2014; Boberg et al. 2010). They are esters of 
p-hydroxybenzoic acid with alkyl substituents ranging from 
methyl to butyl or benzyl groups in chemistry. The most 
commonly used parabens are benzylparaben (BeP), butyl-
paraben (BuP), ethylparaben (EtP), methylparaben (MeP) 
as well as propylparaben (PrP). Parabens can be absorbed 
through ingestion, inhalation, and skin. Due to daily use 
of products containing parabens, they may accumulate in 
the body. In a previous study from China, 13 categories of 
food samples (n = 282) from nine cities could detect six 
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paraben contents. These samples included eggs, fish and 
seafood, meat, bean products, dairy products, cereals and 
their products, vegetables, fruits, beverages, cookies, cook-
ing oils, condiments, and others. Almost all food samples 
could detect at least one of the analyzed parabens, the detec-
tion rate was 99%. The total contents of six parabens ranged 
from below limit of quantification to 2530 ng/g fresh weight, 
with a mean value of 39.3 ng/g. MeP, EtP, and PrP were 
the major paraben analogs in the samples, accounted for 
59%, 24%, and 10% of total paraben contents, respectively 
(Liao et al. 2013). The cytotoxic mechanism of parabens 
may be related to mitochondrial failure, which depends on 
the induction of membrane permeability transitions, accom-
panied by mitochondrial depolarization and the decoupling 
of cellular adenosine triphosphate (ATP) through oxidative 
phosphorylation (Soni et al. 2002). Some epidemiological 
surveys point that paraben exposures are associated with 
T2DM. In a previous case–control study (Li et al. 2018), 
urinary concentration of parabens in 101 individuals from 
Jeddah, Saudi Arabia was measured to examine the asso-
ciation between parabens and T2DM. After adjusting for 
potential confounding factors, urinary MeP, EtP, and PrP 
levels were higher in T2DM cases than in control group. 
Compared with the first quartile, individuals whose urinary 
concentrations of MeP, EtP, and PrP were in the fourth quar-
tile showed over a sixfold increase in the odds of having 
T2DM. In the sub-sample of Granada EPIC-Spain cohort 
(n = 670), Salamanca-Fernández et al. (2020) analyzed the 
potential associations between non-persistent environmental 
pollutants and T2DM risk. Serum concentrations of MeP, 
EtP, PrP, and BuP were quantitatively analyzed. The median 
follow-up time was 23 years. A total of 182 patients (27%) 
in the sub-cohort were diagnosed as T2DM. MeP is the most 
frequently detected non-persistent environmental pollutants, 
88.42% of the samples exceeded the detection limit, and 
the detection rate of BuP was the lowest (19.21%). Those 
individuals within the fourth PP quartile (0.53–9.24 ng/ml) 
had a statistically significant increase in the risk of T2DM 
(HR 1.668, P = 0.012). Kim et al. (2020) examined whether 
exposure to parabens was associated with obesity, MetS, 
or its components among Canadians. MeP, EtP, PrP, and 
BuP concentrations were measured in the urine. There 
was a positive association between paraben exposures and 
MetS in men. A tenfold increase in PrP content was associ-
ated with a 40% (95% CI 3–90) higher prevalence of MetS 
among men, whereas EtP was associated with a 63% (95% 
CI 2–86) lower prevalence among women. Recently, Lee 
et al. (2021) also showed that the risk of T2DM was sig-
nificantly higher in the highest quartiles of MeP and EtP 
than in the lowest quartiles following covariate-adjusted 
standardization [OR (95% CI) 1.68 (1.08–2.60) and 2.74 
(1.77–4.24), respectively]. These findings suggest that sev-
eral parabens were potential risk factors for T2DM. Liu et al. 

(2019a) investigated whether exposure to MeP, EtP, PrP, 
BuP, and BeP in early pregnancy is related to gestational 
diabetes mellitus (GDM). Compared with the lowest quar-
tile, urinary EtP concentration was associated with GDM 
after adjustment for potential confounders. The risk ratio 
(RR) was 1.12 (95% CI 0.63–2.01) for the second quartile, 
RR was 1.11 (95% CI 0.64–1.93) for the third quartile, and 
RR was 1.70 (95% CI 1.02–2.82) for the highest quartile. 
In different studies from diverse populations, however, the 
association between parabens and T2DM is inconsistent. Li 
et al. (2019) reported that the detection rates of MeP, EtP, 
PrP, BuP, and benzyl-substituted para-hydroxybenzoic acid 
ester (BzP) in the urinary samples were 97.70%, 71.26%, 
96.55%, 15.80%, and 2.73%, respectively. But no significant 
association was found between parabens and GDM among 
the overall population. Bellavia et al. (2019) also found that 
1st trimester BuP and PrP urinary concentrations were asso-
ciated with glucose levels in a pregnancy cohort of women 
at high risk of GDM after adjusting for potential confound-
ers. Among a nationally representative sample of US adults, 
however, Ward et al. (2020) showed that the higher urinary 
concentrations of PrP, BuP, EtP, and MeP were associated 
with lower odds of diabetes. The adjusted ORs (95% CI) 
of diabetes comparing the 75th to 25th percentiles of each 
paraben were 0.71 (0.61–0.83) for PrP, 0.66 (0.54–0.80) for 
BuP, 0.60 (0.51–0.71) for EtP, and 0.79 (0.68–0.91) for MeP.

Pesticides

Pesticides have brought many benefits to humans in the 
fields of agriculture, industry, and health, but their toxicities 
to both humans and animals have always been a worrying 
issue. Most of the disorders induced by pesticides are related 
to organophosphorus, organochlorines, phenoxyacetic acids, 
and triazine compounds. According to the toxicities, pesti-
cides can be divided into different categories such as pul-
monary, neurological, reproductive, developmental, and 
metabolic toxicity and carcinogenicity. Although acute poi-
soning is common for certain types of pesticides such as 
organophosphorus, the association between long-term and 
sublethal pesticide exposure and some persistent disease 
epidemics will become a global concern (Mostafalou and 
Abdollahi 2017). There are many ways for humans to be 
exposed to pesticides, including occupational, environmen-
tal, residential, parental, maternal, and paternal. To date, the 
evidences of association between pesticide exposures and 
T2DM are still ambiguous. Positive associations have been 
reported between polychlorinated dibenzodioxins, dibenzo-
furans, polychlorinated biphenyls, dichlorodiphenyldichlo-
roethylene (DDE), oxychlordane, trans-nonachlor, hexachlo-
robenzene (HCB), hexachlorocyclohexane exposures, and 
the risk of T2DM (Jaacks and Staimez 2015; Czajka et al. 
2019; Lind and Lind 2018). In a small-sample exploratory 
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study, Son et al. (2010) investigated the associations between 
β-hexachlorocyclohexane (β-HCH), HCB, heptachlor epox-
ide, p,pʹ-DDE, p,pʹ-dichlorodiphenyldichloroethane (DDD), 
p,pʹ-DDT, o,pʹ-DDT, oxychlordane, trans-nonachlor, and 
mirex and the risk of T2DM in Koreans. Although the abso-
lute concentrations of organochlorine pesticides were not 
higher than those of other populations, the low-dose back-
ground exposures of heptachlor epoxide, oxychlordane, p,pʹ-
DDT, and p,pʹ-DDT were closely related to the prevalence 
of T2DM in Koreans, indicating that Asians may be more 
sensitive to the toxic effects of organochlorine pesticides 
than other races. In a recent cross-sectional study, Park et al. 
(2019) used data from the Korean Farmer Cohort Study 
(n = 2559), and studied the association between pesticide 
exposure and the prevalence of diabetes in Korean rural 
populations. At baseline, the prevalence of diabetes was 
9.30%. After adjusting for covariates, pesticide exposure was 
associated with diabetes risk. Stratified analysis according 
to body mass index (BMI) showed that all variables related 
to pesticide exposure were associated with the prevalence 
of diabetes in the overweight or obese individuals, whereas 
no significant correlation was observed in normal body 
weight, indicating that pesticide exposure was associated 
with the prevalence of diabetes in Koreans, especially in the 
overweight or obese individuals. In a population-based case 
(T2DM, n = 866)-controlled (healthy controls, n = 1021) 
study conducted in Thailand, Juntarawijit and Juntarawijit 
(2018) showed that the prevalence of diabetes was posi-
tively associated with exposure to fungicides, herbicides, 
insecticides, molluscicides, and rodenticides (OR 1.35; 95% 
CI 1.04–1.76) after adjusting for age, gender, BMI, alcohol 
consumption, cigarette smoking, occupation, and family his-
tory of diabetes. Among 35 individual brand-named pesti-
cides investigated, endosulfan (OR 1.40; 95% CI 1.01–1.95), 
mevinphos (OR 2.22; 95% CI 1.17–4.19), carbaryl/Sevin 
(OR 1.50; 95% CI 1.02–2.19), and benlate (OR 2.08; 95% 
CI 1.03–4.20) were found statistically significant ORs. The 
impact of long-term exposure to environmental persistent 
organic pollutants on the risk of MetS has been evaluated by 
Mustieles et al. (2017). The study also was combined with a 
cross-sectional and 10-year longitudinal follow-up design. 
After adjusting for confounding factors, β-HCH and HCB 
were independently associated with increased risk of meta-
bolic impairment (OR 1.17, 95% CI 1.01–1.36 and 1.17, 95% 
CI 0.99–1.38, respectively), indicating that past exposure to 
β-HCH and HCB has always been associated with the risk 
of metabolic disorders. In a systematic review and meta-
analysis of 22 observational studies, Evangelou et al. (2016) 
showed that there was an association between exposure to 
organochlorine pesticides and T2DM. Exposure to any type 
of pesticides and T2DM have a total OR of 1.58 (95% CI 
1.32–1.90, P = 1.21 × 10–6) between the highest tertile and 
the lowest tertile, with large heterogeneity (I2 = 66.8%). 

In particular, studies evaluating T2DM (n = 13 studies) 
showed a similar summary effect when comparing the top 
and bottom tertiles of exposure: 1.61 (95% CI 1.37–1.88), 
P = 3.51 × 10–9), there is no heterogeneity (I2 = 0%). Accord-
ing to the analysis of pesticide types, chlordane, heptachlor, 
HCB, pp-DDD, pp-DDE, and trans-nonachlor increase the 
risk of T2DM. In a low-exposed population dominated by 
subsistence farmers in Nepal, however, Hansen et al. (2020) 
did not find the association between pesticide exposure and 
T2DM. Lower odds of T2DM (adjusted OR 0.68, 95% CI 
0.52–0.90) were found among persons reporting any pes-
ticide exposure compared to those reporting no pesticide 
exposure. In addition, the exposure–response relationship 
was not found between pesticide exposure and T2DM. In 
summary, these cross-sectional studies may have potential 
limitations, because few studies involve selection bias and 
confounding factors, and most effect estimates have very 
wide confidence intervals. In fact, it is difficult to study the 
direct effects of different pesticides on animals or humans 
(He et al. 2020).

Other Diabetes‑Related EDCs

In addition, other types of insecticides have also been asso-
ciated with the development of obesity and/or T2DM in 
animals or humans (Mesnage et al. 2018; Wei et al. 2019). 
These insecticides include carbamates, neonicotinoids, pyre-
throids, and 2,3,7,8-tetrachlorodiphenyl-p-dioxin (TCDD). 
In particular, both pyrethroids and neonicotinoids have been 
known as the risk factors for obesity and T2DM, respec-
tively, involved in enhancing adipogenesis and/or altered 
glucose responsiveness (Shen et al. 2017). TCDD belongs 
to the dioxin family of environmental poisons. It is intro-
duced into the environment as a by-product of industrial 
processes (such as incineration and burning of fossil fuels), 
but it can also come from natural processes, such as volcanic 
eruptions and forest fires. In humans and animals, inges-
tion of food contaminated with TCDD is the main source of 
dioxin exposure. Once TCDD enters the body, it is chemi-
cally stable and is not easily metabolized in most species. 
In humans, TCDD has a half-life of 8 years and is highly 
resistant to either biological or chemical degradation (Sorg 
et al. 2009). Therefore, dioxin has significant environmen-
tal persistence and bioaccumulation. Among occupationally 
exposed populations in New Zealand, TCDD was associated 
with an increased risk of diabetes and a series of subclini-
cal reactions in multiple systems. Diabetes was more com-
mon in people who worked with TCDD exposure (OR 4.0, 
95% CI 1.0–15.4) and people with serum TCDD ≥ 10 pg/g 
(OR 3.1, 95% CI 0.9–10.7). Non-fasting blood glucose lev-
els > 6.6 mmol/l were more common among those work-
ing with TCDD exposure (OR 3.6, 95% CI 1.0–12.9) ('t 
Mannetje et al. 2018). Perfluoroalkyl and polyfluoroalkyl 
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substances (PFASs) are synthetic fluorinated compounds. 
They are used in the manufacture of industrial and consumer 
products such as antifouling and non-stick coatings for furni-
ture, food packaging, pesticides, and firefighting foams (Lau 
et al. 2007). Due to stable carbon–fluorine bonds (Olsen 
et al. 2007), PFASs can persist in the environment and body 
for 2–5 years or more. In humans, exposure to PFASs is 
common through dietary intake of contaminated food or 
drinking water. Certain PFASs can cross the placenta. Many 
experiments have shown that PFASs can alter estrogen and 
androgen receptor function, activate peroxisome proliferator-
activated receptors (PPARs), and disrupt thyroid hormone 
homeostasis, all of which have known regulatory roles in 
metabolic function (Aris et al. 2018). Several cohort and 
case–control studies have also obtained compelling evi-
dences about exposure to perfluorinated and polyfluoroalkyl 
substances (PFAS) during pregnancy, including short-chain 
alternatives, which will lead to GDM and IGT in pregnant 
women from China (Liu et al. 2019b; Wang et al. 2018a, 
2018c), USA (Zhang et al. 2015; Rahman et al. 2019), Can-
ada (Shapiro et al. 2016), Denmark (Jensen et al. 2018), or 
Spain (Matilla-Santander et al. 2017).

EDC Exposure and Gestational Diabetes 
Mellitus

GDM is defined as glucose intolerance that is first diag-
nosed in pregnancy (American Diabetes Association 2011). 
It is one of the most common pregnancy complications and 
has an important impact on the health of mother and child. 
GDM only represents a relatively high blood glucose level 
at a certain point in the life of young women because its 
definition does not require any return to normal blood glu-
cose levels after delivery. The overall incidence of GDM 
was approximately 15% of pregnancies (Coustan et al. 2010) 
or 10%. The incidence was higher in Asian (17%) and His-
panic (11%) than in non-Hispanic white (7%) and black 
(7%) females (Xiang et al. 2011). Maternal hyperglycemia 
will increase the transfer of transplacental glucose to the 
fetal circulation, leading to excessive stimulation of the fetal 
pancreas. Physiologically, insulin does not pass through the 
placenta, and the fetus begins to produce its own insulin 
around 9 weeks of age. Fetal hyperinsulinemia can aggra-
vate fetal metabolism and excessive growth of muscle tis-
sue including myocardium, adipose tissue, and liver, and 
increase the demand for oxygen, especially in the final stages 
of pregnancy. Therefore, fetuses with GDM in pregnancy are 
more likely to suffer from intrauterine hypoxia and perinatal 
injury due to excessive birth weight. Exposure of pregnant 
women to EDCs may be a reason for the increased incidence 
of GDM. Increasing evidence from cohort and case–control 
studies indicates that EDC has a potential role in inducing 

GDM. In a previous study, Li et al. (2019) showed that mod-
erately higher levels of PrP and total estrogenic activity of 
parabens were significantly associated with an increasing 
GDM prevalence among the overweight/obese pregnant 
women, suggesting that they were a subgroup more prone to 
GDM. Moreover, a study conducted by Shaffer et al. (2019) 
found that T1T3avg monoethyl phthalate was significantly 
associated with increased odds of developing GDM. In addi-
tion, phthalate metabolites were also found to be related to 
glucose intolerance, with possible stronger associations in 
certain racial/ethnic subgroups such as Asians. In a recent 
cross-sectional study, Hou et al. (2021) demonstrated that 
2-tert-octylphenol (2-t-OP) exposure was associated with 
higher risk of GDM, whereas nonylphenol (NP) exposure 
was associated with lower risk of GDM. But no statistically 
significant association was observed between phthalates or 
BPA with IGT or GDM (Shapiro et al. 2015). Both bisphe-
nols and parabens have also been identified as EDCs that 
might cause GDM, but the evidence for this association is 
sparse.

The increasing incidence of GDM almost coincides with 
the widespread use of EDCs. The extensive production and 
widespread use of these EDCs in daily life lead people to 
constant exposure to harmful chemicals in the environment. 
Although its pathogenesis of GDM is not very clear, EDCs, 
i.e., BPA may change the function of pancreatic β-cells and 
energy homeostasis of the body, eventually increase the risk 
of GDM. BPA disturbs the function of pancreatic β-cells, 
which leads to a failure of compensatory mechanisms and 
the development of hyperglycemia (Alonso-Magdalena et al. 
2011; Gore et al. 2015; Mimoto et al. 2017). More impor-
tantly, EDC exposure during pregnancy may cause epige-
netic changes, which may also be manifested and passed on 
to offspring many years later. Several model system studies 
have shown that external environmental EDC exposure can 
induce epigenetic mutations during gametogenesis, embryo-
genesis, and fetal development (Uzumcu et al. 2012; Tiffon 
2018). Wei et al. (2017) revealed that BPA treatment resulted 
in impaired glucose tolerance and a compensatory increase 
of pancreatic islets insulin secretion and duodenal home-
obox 1 (Pdx1) expression in mice. Inhibition of Pdx1 can 
reduce glucose-stimulated insulin secretion and ATP produc-
tion in the pancreatic islets of BPA-exposed mice. miR-338 
regulates Pdx1 and thus contributed to BPA-induced insulin 
secretion dysfunction from compensatory to decompensated. 
Short-term BPA exposure downregulates miR-338 by acti-
vating Gpr30, while long-term BPA exposure upregulates 
miR-338 by inhibiting the glucagon-like peptide 1 receptor 
(Glp1r). These results indicate that BPA regulates Gpr30/
Glp1r to mediate the expression of miR-338, and its role is 
to control Pdx1-dependent insulin secretion. Therefore, the 
Gpr30/Glp1r-miR-338-Pdx1 axis may be a new mechanism 
of BPA-induced pancreatic insulin secretion dysfunction. It 
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is not clear whether BPA and phthalate exposure may alter 
the serum levels of miRNAs associated with GDM risk. 
In a recent study, Martínez-Ibarra et al. (2019) found that 
serum levels of miR-9-5p, miR-29a-3p, and miR-330-3p 
were higher in GDM patients than in non-diabetic subjects. 
Phthalates and BPA were detected in 97–100% and 40% of 
urine samples, respectively.

Although GDM usually resolves after childbirth, it may 
have many long-term health consequences, such as increased 
risk for T2DM and cardiovascular disease in the mother, 
as well as future metabolic and cardiovascular complica-
tions such as increased adiposity or even obesity, IGT, high 
blood pressure, hyperlipidemia and non-alcoholic fatty liver 
disease in the offspring, and premature delivery (female) 
(Lowe et al. 2018, 2019a; Liang et al. 2020; Davis et al. 
2013; Miranda et al. 2019). The offspring of mothers with 
GDM may also increase the risk of long-term sequelae. 
Several epidemiological surveys have found higher rates 
of metabolic complications in youths who were exposed to 
maternal GDM (Holder et al. 2014; Dabelea et al. 2008; 
Blotsky et al. 2019). These long-term metabolic compli-
cations among offsprings who exposed to maternal GDM 
include insulin resistance, IGT, and T2DM. An increased 
risk of IGT in the offspring of mothers with mild, untreated 
hyperglycemia has been observed in the several previous 
studies (Tam et al. 2017; Lowe et al. 2019b; Scholtens et al. 
2019). The study conducted by Holder et al. (2014) showed 
that the development of IGT or T2DM was higher in GDM 
exposed group than in GDM non-exposed group (31.1% vs. 
8.6%, P < 0.001). GDM exposure was the most significant 
predictor of developing IGT or T2DM (OR 5.75, 95% CI 
2.19–15.07, P < 0.001). In addition, the GDM exposed group 
displayed a reduction in β-cell function at both baseline and 
follow-up and in insulin sensitivity at follow-up compared 
with the GDM non-exposed group. Intrauterine exposure 
to maternal diabetes and obesity has been strongly associ-
ated with T2DM in African-American, Hispanic, and non-
Hispanic white youths. After adjusting for offspring age, sex, 
and race/ethnicity, exposure to maternal diabetes (OR 5.7, 
95% CI 2.4–13.4) and obesity (OR 2.8, 95% CI 1.5–5.2) 
were independently associated with T2DM (Dabelea et al. 
2008). Blotsky et al. (2019) also found that incident diabetes 
in offspring during childhood and adolescence was associ-
ated with GDM. Incidence of pediatric diabetes was higher 
in offspring born to mothers with GDM (OR 4.52, 95% CI 
4.47–4.57) than in mothers without GDM (OR 2.4, 95% CI 
2.37–2.46). Among the women with mild GDM who were 
randomized to receive treatment or routine care, the fast-
ing blood glucose level of their offsprings was significantly 
reduced (Landon et al. 2015), but childhood obesity or meta-
bolic dysfunction did not decrease in their offsprings. Fur-
ther evidence shows that exposure to hyperglycemia below 
the diagnostic criteria of GDM in utero increases the risk 

of glucose metabolism disorders in the future, which may 
be the result of adverse intrauterine fetal programming of 
the pancreas (Scholtens et al. 2019). However, there are 
also several studies failed to find the association between 
GDM exposure and insulin resistance or other glycemic out-
comes in offspring (Gingras et al. 2018; Tam et al. 2010). 
Blood pressure levels, plasma lipid profiles, and the rate of 
abnormal glucose tolerance were similar in adolescent off-
spring of mothers with GDM and in control subjects (Tam 
et al. 2010). In addition, in the some intervention studies of 
metformin (± insulin) or insulin treatment of mild GDM, 
monitoring of offsprings' BMI, adiposity, and glucose toler-
ance do not demonstrate that GDM treatment significantly 
reduces adverse childhood metabolic outcomes (Rowan et al. 
2018; Ijäs et al. 2015; Tertti et al. 2015).

Prenatal and Perinatal EDC Exposure 
and T2DM

Human studies have rightly given substantial attention to 
associations of prenatal exposure to EDCs with T2DM. Dur-
ing the critical periods of development, the susceptibility to 
hormone disorders caused by EDC exposure is particularly 
high. These critical periods of development include the pre-
natal, perinatal period, infancy, childhood, and adolescence. 
A hostile intrauterine environment associated with poor 
maternal life style may be a risk factor of offspring T2DM. 
Kern et al. (2002) examined the effects of TCDD on adipo-
cytes. The addition of TCDD into cultural adipocytes can 
increase tumor necrosis factor (TNF) secretion and decrease 
glucose transport and lipoprotein lipase (LPL) activity. Since 
TCDD is concentrated in adipose tissue, this study provides 
a possible physiological mechanism for epidemiological 
studies linking dioxins and diabetes. Experimental study 
has shown that mice exposure to dioxins, insecticides, or 
BPA in the womb increases the risk of developing T2DM 
(Alonso-Magdalena et al. 2011). Animal studies have also 
shown that some EDCs can directly affect pancreatic cells, 
adipocytes, and hepatocytes, and induce insulin resist-
ance and hyperinsulinemia. These actions may be related 
to changes in adiponectin and leptin levels. Animal stud-
ies also indicate that some EDCs directly affect cells in the 
pancreas, adipocytes, and liver, and induce insulin resistance 
and hyperinsulinemia. These can also be associated with 
modified levels of adiponectin and leptin. In an adult mice 
model, Marmugi et al. (2014) have observed the effect of 
BPA exposure for several months on the hepatic and plasma 
metabolic markers. The results showed that BPA exposure 
has a specific impact on glycemia, glucose tolerance as well 
as cholesterolemia. RT-qPCR on liver mRNA from the same 
animal shows an overexpression of key genes involved in 
cholesterol biosynthesis, namely Mvd, Lss Hmgcr, and Sqle. 
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This is consistent with the hypercholesterolemia in BPA-
treated animals. BPA can also induce the expression increase 
of the sterol regulatory element-binding protein 2 which 
is a master regulator of hepatic cholesterol biosynthesis. 
Elevated blood glucose, IGT, jeopardized insulin, reduced 
glucose-stimulated insulin secretion, and decreased pancre-
atic insulin contents have been observed in DEHP-exposed 
mice offspring at postnatal day 60. The offspring of mice 
exposed to BPA during pregnancy also displayed metabolic 
disturbances. Decreased insulin sensitivity and increased 
GSIS were detected within 6 months of life. Notably, men 
were more adversely affected than women, and lower doses 
of BPA were more adversely affected than higher doses. 
Because estrogen in the physiological range protects against 
diabetes, female offspring may be less affected than males 
(Farrugia et al. 2021). In the islets of the DEHP-exposed 
group, the overall DNA methylation levels were increased, 
while the expression levels of genes involved in the develop-
ment and function of pancreatic β-cells were down-regulated 
(Rajesh et al. 2015). The peroxisome proliferator-activated 
receptors are crucially involved in energy homeostasis and 
glucose metabolism. The activity of them can be influenced 
by EDCs. EDCs can also disrupt hormonal regulation by 
mimicking or blocking normal endocrine functions, which 
can result in metabolic disorders (Heindel et al. 2015a). 
The current worldwide increase in metabolic disorders is 
associated with a substantial increase in the production and 
exposure of chemicals in our environment (Neel and Sargis 
2011). Epidemiological surveys and animal models have 
shown that the perinatal environment plays a key role in 
adult metabolic health (Desai et al. 2015). It has been shown 
that BPA exposure in perinatal rats can result in hypergly-
cemia, which can lead to insulin resistance in adult male 
rats (Song et al. 2014). Similarly, BPA exposure during 
pregnancy was linked to hyperglycemia, hyperinsulinemia, 
and insulin resistance in F1 adult offspring (Marta García-
Arevalo et al. 2014). EDC exposure of the fetus is also pos-
sible, and perhaps more likely to cause epigenetic changes, 
which may be manifested by themselves and passed on to 
offspring many years later. This triggered a vicious inter-
generational cycle of metabolic diseases affecting human 
health (Bianco-Miotto et al. 2017; Ho et al. 2017; Lee et al. 
2019; de Aguiar Greca et al. 2020). Importantly, the meta-
bolic changes triggered by BPA in pregnant mice seemed 
to resolve after delivery but reappeared later in life. This 
implies that fetal BPA exposure during gestation has long-
term irreversible effects on the risk of metabolic disorders 
in later adulthood (Farrugia et  al. 2021). EDCs induce 
genome alterations in pregnancy or early life and enchain in 
a decreased expression of pancreatic/duodenal homeobox 1 
transcription factor gene (PDX1) associated with an increase 
in T2DM (Rotondo and Chiarelli 2020), suggesting that in 

utero exposure to impaired nutrition is a risk for obesity and 
diabetes progression in adulthood.

Adult ECD Exposure and T2DM

The effects of EDCs on adult organisms or on developing 
organisms are different. In adult organisms, a high dose of 
EDCs is required to produce an effect, and the effect disap-
pears when the contact is stopped. In contrast, in developing 
organisms, exposure to EDCs tends to have long-term effects 
(Kunysz et al. 2021). It is well known that fetal exposure 
such as residential exposure of air pollutant concentrations 
of particulate matter 2.5 μm and nitrogen dioxide (NO2) 
results in more harmful effects than adult exposure, one 
possible reason is the lack of adequate defense and detoxi-
fication mechanisms before delivery (Bianco-Miotto et al. 
2017). In addition, the levels of cytochrome P450 enzymes 
which can metabolize environmental drugs and chemicals 
were lower in the developing fetus than in adults (Cresteil 
1998; Hakkola et al. 1998). EDCs can enter the body in sev-
eral ways. These pathways include digestive tract intake, res-
piratory tract inhalation, skin contact absorption, and others 
(Rudel and Perovich 2009). Some EDCs may be even more 
exposure in newborns and children than in adults because 
newborns and children require greater consumption of cer-
tain specific foods and water. Additionally, the ventilation 
rates, intestinal absorption, surface area-to-volume ratios, 
and hand-to-mouth activity are higher in babies and toddlers 
than in adults (Selevan et al. 2000). Breastfeeding is also a 
pathway to increase EDC exposure in infants (Grandjean and 
Jensen 2004). In contrast, adult occupational or workplace 
and accidental exposure to ECDs is more common. Occupa-
tional studies of persistent exposure to EDC have provided 
the first evidence of diabetogenicity in humans, when PFAS 
was certificated as a contributing factor to T2DM in samples 
exposed to these chemicals at work (Lundin et al. 2009). In a 
population near Washington (WV, USA), although consist-
ent exposure to PFAS-contaminated drinking water was not 
associated with T2DM (Conway et al. 2016; Karnes et al. 
2014), total PFAS concentrations measured in blood sam-
ples were associated with T2DM in Swedish (Lind et al. 
2014) and American cohorts (Sun et al. 2018; Cardenas et al. 
2019). In an American study, dietary intervention has shown 
to alter the risk of T2DM associated with PFAS exposure 
(Cardenas et al. 2019). Bisphenols and other non-persistent 
chemicals were considered to be the strongest associations 
with diabetogenicity in adults. Several previous case–con-
trol studies have associated BPA with an increased risk of 
T2DM (Li et al 2018; Murphy et al. 2019; Duan et al. 2019), 
the finding of the Prospective Nurses' Health was also like 
this (Sun et al. 2014). The effects of BPA on glucose, insu-
lin, and C-peptide have been determined in two small-scale 
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(n < 25) intervention studies, suggesting that concentrations 
deemed safe by US regulators change glucose-stimulated 
insulin responses in humans (Stahlhut et al. 2018; Hago-
bian et al. 2017). A previous meta-analysis has estimated 
EDC exposure and the pooled relative risk of T2DM. It is 
OR 1.45 (95% CI 1.13–1.87) for BPA and OR 1.48 (95% CI 
0.98–2.25) for phthalates (Song et al. 2016). Since then, a 
case-cohort study in French (Rancière et al. 2019) found that 
the risk of T2DM associated with measured BPA glucuro-
nide and BPS glucuronide has nearly doubled. This finding 
increases people's concerns on BPS and other replacements 
of BPA because they have been widely used in aluminum 
cans and thermal paper receipts. In addition, exposure to 
phthalates has associated with increased risk of T2DM in 
two case–control (Lind et al. 2014; Svensson et al. 2011) 
and two cohort studies (Sun et al. 2014; Lind et al. 2012). 
In summary, epidemiological and experimental data have 
suggested that exposure to polybrominated diphenyl ethers, 
some non-persistent pesticides and herbicides, parabens, and 
benzophenones could be associated with T2DM, but more 
research is needed in these fields.

Transgenerational Effects of EDCs on T2DM

The influences of EDCs on lipogenesis and glucose metab-
olism may not be limited to directly exposed individuals. 
Recent data suggest that exposure to EDCs during devel-
opment not only directly harms the exposed individual, 
but also harms the individual's offspring and future gen-
erations, a process known as transgenerational inheritance 
(Fig. 1) (Crews et al. 2007; Horan et al. 2017). Numerous 

animal models have demonstrated a direct causal relation-
ship between EDC exposure in utero and disease outcome, 
and in some cases the adverse effects can be transmitted to 
offspring through epigenetic inheritance across generations 
(Crews et al. 2007; Horan et al. 2017; Wolstenholme et al. 
2012). The effects of EDC exposure in pregnant F0 animals 
have been propagated until at least the F3 generation in sev-
eral recent studies (Tang-Péronard et al. 2011; Wing and 
Phelan 2005; Fothergill et al. 2016). When the maternal line-
age exposed to EDCs, F0 and F1 animals were also directly 
exposed to EDCs, and the F2 generation was exposed as 
germ cells within pregnant F1 animals. The F3 generation 
was the first generation without direct contact with EDCs. 
Therefore, the actions observed at F3 and beyond were con-
sidered to be transgenerational and permanent (Walker and 
Ho 2012). The ability to induce permanent epigenetic altera-
tions in germ cells without subsequent long-term exposure 
suggests a new form of inheritance that may have greater 
implications for biology, disease etiology, and evolution 
(Guzylack-Piriou and Ménard 2021). In these models of F0 
exposed to EDCs, the persistence of the metabolic abnor-
malities in the F3 is attributed to epigenetic modifications. 
The exposure of germ cells is important to take into account 
when addressing multigenerational effects (Guzylack-Piriou 
and Ménard 2021). Indeed, the relationship between BPA, 
tributyltin (TBT), pesticide and phthalate exposures, and 
increased prevalence of obesity and reproductive disease in 
animal models has been observed up to the third genera-
tion (Kirchner et al. 2010; Manikkam et al. 2013; Maresca 
et al. 2016). Skinner et al. (2013) clearly demonstrated that 
exposure to DDT, a mixed hydrocarbon mixture (jet fuel 
JP-8), and plastic components such as BPA, DEHP, and 

Fig. 1   Transgenerational effects 
of EDCs on T2DM. Pregnant 
women exposure to EDCs 
means direct influence on 
mother and fetus (intergenera-
tional) and developing primor-
dial germ cells of growing fetus 
(transgenerational inheritance). 
EDC exposures in humans 
begin as early as in the mother’s 
womb (F0). Because some 
EDCs have been demonstrated 
to cross the placenta and reach 
the fetus. During this critical 
period of early development 
and growth, intrauterine EDC 
exposure offspring (F1) has pre-
disposed to increase the risk of 
metabolic diseases manifested 
during adulthood
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dibutyl phthalate all result in transgenerational obesity in 
the F3 generation. This effect is related to the epimutations 
in a network of obesity-related and its complication-related 
genes. The exact molecular mechanisms of transgenerational 
effects are not well known, however, a number of EDCs 
act through nuclear receptors that may be associated with 
epigenetic changes (Szyf et al. 2015; Radford et al. 2014). 
Epigenetic modifications may play an important role in the 
transgenerational effects. Collectively, altered DNA meth-
ylation, histone modifications, copy number variants, and 
microRNA-mediated regulation have all been associated 
with transgenerational phenotype transmission as a result 
of exposure to EDCs (Kirchner et al. 2010; Ho and Burg-
gren 2010; Öst and Pospisilik 2015; Guerrero-Bosagna 
et al. 2014). The transgenerational epigenetic inheritance of 
changes in glucose homeostasis in animal studies induced 
by BPA through histone modifications affecting pancreatic 
and duodenal homeobox 1 (Pdx1) and insulin-like growth 
factor 2 (IGF2) expression have been demonstrated (Mao 
et al. 2015; Chang et al. 2016). Exposure to BPA in utero 
appears to alter epigenetics in the male germ-line and sub-
sequently promotes adult-onset disease in subsequent gen-
erations. Fetal exposure to bisphenol A (BPA) has been 
shown to alter epigenetic modification and result in glucose 
intolerance in adulthood. Fetal exposure to BPA can also 
induce epigenetic modification and phenotypic changes in 
their subsequent offspring. Mao et al. (2015) confirmed that 
BPA exposure during early life can result in generational 
transmission of glucose intolerance and β-cell dysfunction 
in the offspring through male germ-line, which is associ-
ated with hypermethylation of Igf2 in islets. The changes 
of epigenetics in germ cells may contribute to this genera-
tional transmission. In addition, the association of perinatal 
BPA exposure and alteration of hepatic glucokinase (GCK) 
promoter methylation has also been observed (Ma et al. 
2013). These findings further support the potential role of 
epigenetics in fetal reprogramming by BPA-induced meta-
bolic diseases in adulthood (Ma et al. 2013; Li et al. 2014). 
These findings suggest that exposure to EDCs could have 
consequences not only for our own health and for that of 
our children, but also for the health of the generations to 
come through environmentally induced epigenetic modifi-
cations. Therefore, if we continue to ignore the impact of 
EDCs on environmental conditions, the sustainability of 
wildlife and humans will become a conundrum. We cannot 
currently detect the effects of all EDCs because of EDCs' 
covert nature, but EDC has become one of the main risk 
factors that can substantially compromise our environment 
(Colborn et al. 1993). Therefore, precaution dictates that we 
cannot wait for exact evidence of harm to humans to take 
preventive and control actions.

Possible Diabetogenic Mechanisms

The prevalence of T2DM has increased significantly glob-
ally at any age over the past few decades. This epidemio-
logical trend in T2DM is consistent with an exponential 
increase in the production of synthetic chemicals, evidence 
that prompted us to consider the possibility of a role for 
EDCs as diabetogenic compounds (Neel and Sargis 2011). 
Any aspect of endogenous hormonal action can be inter-
fered by EDCs (Kiyama and Wada-Kiyama 2015; Silver 
et al. 2011; Alonso-Magdalena et al. 2011). In both pro-
spective studies with measurements of exposure in utero and 
cross-sectional studies in adults, EDCs have been shown to 
disrupt the peroxisome proliferator-activated, estrogen, and 
thyroid hormone receptors, among other metabolic signaling 
pathways (Kahn et al. 2020). PPARγ (PPARG) is a nuclear 
receptor controlling the expression of genes involved in lipid 
storage and glucose metabolism and target for obesogenic 
compounds (Androutsopoulos et al. 2013; Pillai et al. 2014; 
Janani et al. 2015; Grimaldi et al. 2015). This endocrine dis-
turbance results in an imbalance in the maintenance of key 
cellular homeostasis, which ultimately increases the risk of 
unfavorable health conditions (Vandenberg et al. 2012; Xin 
et al. 2015). Human beings may be exposed to EDCs from a 
variety of sources, including personal care products, plastic 
food containers, thermal receipts, medical equipments, and 
agricultural pesticides. EDC exposure in humans begins as 
early as in the mother's womb, where several EDCs have 
been shown to cross the placenta to the fetus (Tang et al. 
2020). Developing fetuses and neonates are particularly vul-
nerable to EDC exposure because the enzymes involved in 
the xenobiotic biotransformation and elimination of these 
EDCs are not fully functional during these developmental 
stages (Choudhary et al. 2003). As a result, excessive accu-
mulation of these EDCs in some target organs and develop-
ing tissues such as developing gonads, pancreas, placenta, 
and brain can lead to their dysfunction (Latini et al. 2004). 
Furthermore, environmental exposure in early life coincides 
with extensive epigenetic reprogramming that occurs during 
early embryogenesis and germ cell specification (Weaver 
et al. 2009). In the developing fetus, EDCs can alter the 
maintenance, remodeling, and erasure of epigenetic marks, 
ultimately leading to increased susceptibility to adult dis-
orders (Schug et  al. 2011; Mandy and Nyirenda 2018). 
The diabetogenic mechanism of EDCs is currently poorly 
understood. Pancreatic β-cell function might be affected by 
EDCs through different ways. Several possible diabetogenic 
mechanisms of EDCs are as follows.
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EDCs Disrupt Insulin Production

Diabetogenic EDCs may exert their action on impairing 
insulin production at the pancreatic β-cell level. EDC actions 
on pancreatic function can occur through different mecha-
nisms (Street et al. 2018); for examples, TBT reduces β-cell 
mass and enhances β-cell apoptosis (Zuo et al. 2014); phtha-
lates reduce β-cell insulin content (Lin et al. 2011); BPA 
impairs insulin secretion (Soriano et al. 2012). (1) In animal 
models of diabetes, alloxan, a glucose analog and strepto-
zotocin, selectively destroys pancreatic β-cells (Karam 
et al. 1980). (2) Pyrinuron (Vacor) exposure leads to β-cell 
destruction and development of type 1 diabetes (Kurita et al. 
2009; Fernández-García et al. 2014). (3) A man exposed 
to high levels of the fungicide chlorothalonil developed 
diabetic ketoacidosis (Piaggi et al. 2007). (4) Interestingly, 
some EDCs disrupt β-cell signaling and function, thereby 
increasing glucose-stimulated insulin secretion (GSIS) in 
isolated islets, promoting sustained insulin release, and ulti-
mately leading to depletion of intracellular insulin content or 
promoting β-cell “exhaustion” (Soriano et al. 2012). These 
EDCs include a PCB mixture (Aroclor 1254) (Alonso-
Magdalena et al. 2011), 2,3,7,8-tetrachlorodibenzodioxin 
(TCDD) (Yau and Mennear 1977), PCBs (Alonso-Magda-
lena et al. 2011), BPA, and other phenolic compounds such 
as nonylphenol and octylphenol (Alonso-Magdalena et al. 
2005). (5) DDT impairs GSIS and insulin secretion of tolbu-
tamide (Douillet et al. 2013). (6) BPA alters calcium signal-
ing in α-cells (Zuo et al. 2014). (7) TBT promotes hyper-
glycemia and reduces circulating insulin levels, and it also 
increases islet apoptosis and reduces cellular proliferation 
(Bodin et al. 2013). (8) BPA exposure can trigger changes in 
the β-cell life cycle, with increased apoptosis and decreased 
proliferation leading to a reduced β-cell mass. These effects 
are at least partly due to the decreased expression of certain 
cell cycle activators, such as cyclin D2 (CCND2), and the 
increased expression of some cell cycle inhibitors, such as 
cyclin-dependent kinase inhibitor 2A (CDKN2A). (9) In rat 
insulinoma cell lines, 48 h of exposure to BPA decreases cell 
viability, disrupts GSIS, and triggers apoptosis in a dose-
dependent manner. BPA activates β-cell apoptotic signaling 
via the increased expression of pro-apoptotic Bax protein 
and the reduced expression of anti-apoptotic Bcl-2 (Lin et al. 
2013). (10) Makaji et al. (2011) showed that lower doses of 
BPA (0.1–1.0 μg/L) could increase both basal and GSIS. 
As GSIS depends on signals generated by β-cell mitochon-
dria, any mitochondrial abnormality could be a potential 
contributor to metabolic disorders such as T2DM (Maechler 
and Wollheim 2000). Ultrastructural observation has also 
confirmed that BPA and other phenolic estrogens induce 
β-cell mitochondrial swelling with a loss of structural integ-
rity, impair mitochondrial cytochrome C oxidase function, 
and reduce cytosolic ATP levels in BPA-treated islets (Song 

et al. 2012). (11) BPA is involved in β-cell damage through 
interaction with human islet amyloid polypeptide (hIAPP). 
hIAPP is a 37-residue soluble polypeptide that is produced 
by β-cells and co-secreted with insulin. hIAPP monomers 
also have an inherent tendency to misfold, forming β-sheet 
oligomers that assemble into linear fibrils. The oligomers 
and fibrils exert cytotoxic effects on pancreatic β-cells by 
inducing membrane permeabilization and disruption (Bren-
der et al. 2012; Anguiano et al. 2002). The link between 
hIAPP and T2DM has been demonstrated by studies that 
IAPP aggregates are detectable in the majority of diabetic 
patients, and the spatial correlation between IAPP deposi-
tion and β-cell mass loss has been well established (Lorenzo 
et al. 1994; Westermark et al. 2011; Brender et al. 2012). 
Aggregates of IAPP insert into the β-cell membrane, leading 
to leakage of cellular contents, ultimately leading to apopto-
sis. In vitro studies using a rat insulinoma cell line showed 
that BPA promoted human amylin polypeptide (hIAPP) 
aggregation and membrane disruption in a dose-dependent 
manner (Gong et al. 2013). As cell membranes become more 
permeable, Ca2+ ions enter the cell and trigger the produc-
tion of harmful reactive oxygen species (ROS; Fig. 2).

EDCs Impair Peripheral Insulin Action

Diabetogenic EDCs may also exert their action on disrupting 
insulin sensitivity in peripheral tissues. EDCs can reduce 
insulin sensitivity acting on insulin targets, particularly 
in the liver. In animal models, BPA alters hepatic glucose 
sensing, impairing glucokinase (GCK)-specific activity 
(Perreault et al. 2013). (1) EDCs impair insulin signaling 
or insulin-stimulated glucose handling in different cell lines 
and organ culture models, including TCDD (Paul et al. 2007; 
Sargis et al. 2019), tolylfluanid (Xue et al. 2011), inorganic 
and methylated arsenic species (Rengarajan et al. 2007; 
Rajesh et al. 2014a), DEHP (Rajesh et al. 2013; Indumathi 
et al. 2013), and persistent organic pollutants (Chamorro-
Garcia et al. 2013). (2) BPA can inhibit insulin-stimulated 
glucose utilization in 3T3-L1 adipocytes (Lehmann et al. 
1995), increase basal and insulin-stimulated glucose uptake 
in 3T3-F442A cells (Enan et al. 1992), cause hyperinsuline-
mia, disrupt hepatic insulin signaling, enhance insulin resist-
ance, increase postpartum weight gain, hyperinsulinemia, 
elevate plasma leptin, triglyceride, and cholesterol, develop 
IGT, and decrease insulin sensitivity at four months postpar-
tum (Alonso-Magdalena et al. 2011; Farrugia et al. 2021). 
(3) EDCs disrupt cellular energy processing and promote 
insulin resistance. For example, in vivo exposure to DEHP 
downregulates the expression of insulin signaling intermedi-
ates in adipocytes (Jayashree et al. 2013); exposure to BPA 
in rats reduces insulin signaling intermediates in muscle and 
liver (Han et al. 2003); TCDD reduces glucose uptake in 
fat and brain (Regnier et al. 2015; Paul et al. 2011); the 
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fungicide to sulfanilide promotes glucose intolerance with 
concomitant systemic and fat-specific insulin resistance, the 
latter caused by specific downregulation of insulin recep-
tor substrate-1 (Hill et al. 2009). (4) Long-term exposure 
to persistent organic pollutants promotes insulin resistance 
(American Diabetes Association 2011). Likewise, BPA pro-
motes insulin resistance in mice (Nadal et al. 2000), and this 
effect can be observed with exposure times as short as 8 days 
(Huang et al. 2015). TBT exposure in mice induces hyperin-
sulinemia (Lim et al. 2009). (5) BPA enhances insulin resist-
ance in pregnant women, with female offspring exhibiting 
higher insulin levels, while males exhibit glucose intoler-
ance and systemic insulin resistance (Marta García-Arevalo 
et al. 2014). Insulin resistance has also been observed in 
BPA-exposed rats (Wan et al. 2014), and another mouse 
model similarly exhibits insulin resistance-induced glu-
cose intolerance. However, this effect was only observed 

at low doses (Hatch et al. 2015). (6) A high-fat diet may 
increase BPA-induced insulin resistance (Ryan et al. 2010) 
and enhance GSIS impairment caused by subcutaneous 
administration of low-dose BPA (Lv et al. 2013). However, 
in CD-1 mice, developmental exposure to BPA did not alter 
glucose homeostasis in adult mice fed a normal chow or 
high-fat diet (Delclos et al. 2014). (7) Exposure to other 
EDCs during development promotes altered insulin action. 
For example, exposure to low-dose perfluorooctanoate in 
middle age increases insulin levels (Rodriguez et al. 2016), 
while exposure to perfluorooctane sulfonate during preg-
nancy and early postpartum causes glucose intolerance and 
insulin resistance (Attina and Trasande 2015). Rats exposed 
to perfluorooctane sulfonate from gestation day 0 to postpar-
tum day 21 also exhibited glucose intolerance and increased 
insulin levels (Wang et al. 2010). (8) Development expo-
sure to DEHP resulted in hyperglycemia and concomitant 

Fig. 2   The possible effect mechanisms of EDCs on pancreatic β 
cells. Delta (δ) cell: secreting somatostatin; F cell: secreting pancre-
atic polypeptide; Alpha (α) cell: secreting glucagon; Beta (β) cell: 
secreting insulin. Circulating glucose enters pancreatic β-cells via the 
glucose transporter 1. Glucose in β-cells is metabolized in the mito-
chondria, resulting in an increase in the ATP/ADP ratio; thus causing 
the membrane ATP-sensitive K+ channel (KATP) responsible for the 
resting membrane potential to close. The closure of KATP channels 

causes cellular depolarization, opens voltage-gated calcium chan-
nels, triggers Ca2+ signals, induces insulin granule exocytosis, and 
then increases circulating insulin levels. This secretory pathway can 
be disrupted by EDCs in different manners: EDCs (1) impair mito-
chondrial function; (2) block KATP channels after binding ERβ; (3) 
alter calcium signaling; (4) disrupt insulin secretion; and (5) regulate 
insulin gene expression via Erα
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decreased insulin levels in female rats, while male offspring 
had elevated insulin levels but normal glucose tolerance 
(Svensson et al. 2011). In another model, DEHP exposure 
resulted in glucose intolerance and insulin resistance in off-
spring, although this model also revealed a central defect 
in β-cell function (Alonso-Magdalena et al. 2015). (9) Sex-
specific effects of DEHP exposure on insulin resistance were 
also observed in some epidemiological surveys (Lind et al. 
2012), but not in others (Kamath and Rajini 2007).

Specific Defects in Intermediary Metabolism of EDCs

With regard to specific defects in intermediary metabolism 
of EDCs, we remain poorly understood. (1) TCDD reduces 
the expression of lipoprotein lipase in the 3T3-F442a cell 
line (Paul et al. 2007), which may promote hypertriglyc-
eridemia. (2) Polybrominated biphenyl ether exposure 
inhibits adipose glucose oxidation while enhancing iso-
proterenol-induced lipolysis (Martinelli et al. 2005), pos-
sibly increasing circulating free fatty acid levels, which are 
substrates for hepatic triglyceride synthesis. (3) Perinatal 
exposure to 4-nonylphenol may induce dyslipidemia, espe-
cially increased serum total cholesterol (Yin et al. 2016). 
(4) Subchronic exposure to malathion results in hepatic 
metabolic dysfunction, which causes hyperglycemia and 
increased hepatic gluconeogenesis and glycogenolysis 
(Turner et al. 2014). (5) Chronic intake of DEHP impairs 
glucose tolerance with a change in glycolytic intermediates 
in both liver and muscle, suggesting impaired lactate and 
glucose handling (Perreault et al. 2013). (6) In a rat model, 
intrauterine and lactation exposure to BPA decreased hepatic 
glycogen content at 21 weeks of age, the promoter of hepatic 
glucokinase was hypermethylated, and the expression of this 
key enzyme decreased (Wan et al. 2014). (7) In a multi-
generational rat model, BPA exposure in the F0 generation 
promotes glucose intolerance and insulin resistance in the F2 
generation, with a concomitant decrease in hepatic glucoki-
nase expression and hypermethylation of the gene promoter 
(Al-Eryani et al. 2015). (8) BPA exposure in adult mice 
exhibited reduced hepatic glucokinase activity (Cave et al. 
2010), suggesting that disruption of hepatic glucose process-
ing may be a common mode of EDC-promoted metabolic 
dysfunction. Some diabetogenic EDCs may impair insulin 
production at the pancreatic β-cell level and disrupt insulin 
sensitivity in peripheral tissues. (9) Sex-specific effects of 
DEHP on measures of insulin resistance have been observed 
in some epidemiological surveys (Lind et al. 2012), but not 
in others (Kamath and Rajini 2007). These findings suggest 
that both adult and development exposures to various EDCs 
have the ability to modulate global insulin action and at 
the cellular level. (10) BPA also induces oxidative stress in 
hepatocytes by reducing the activities of antioxidant enzyme 
superoxide dismutase, glutathione peroxidase, and catalase 

(Bindhumol et al. 2003), and stimulates lipid accumulation 
through the upregulation of lipogenic genes, such as sterol 
regulatory element-binding protein 1 (SREBP1) (Lin et al. 
2017; Shimpi et al. 2017). Adult mice sustained exposure to 
BPA over a period of eight months results in the significant 
upregulation of genes involved in de novo lipogenesis. These 
genes include fatty acid synthase (FASN, encoding fatty acid 
synthase), thyroid hormone-responsive protein (THRSP), 
syndecan 1 (SDC1), patatin-like phospholipase domain con-
taining 3 (PNPLA3), and sterol regulatory element-binding 
transcription factor 1 (SREBF1). Moreover, long-term BPA 
exposure leads to an increase in the key enzymes of de novo 
cholesterol biosynthesis, including 3-hydroxy-3-methyl-glu-
taryl-coenzyme A reductase (HMG-CoA reductase) (Far-
rugia et al. 2021).

Effects of EDCs on Epigenetic Modification

An additional mechanism of EDC action involves the modu-
lation of epigenetic mechanisms through changes in DNA 
methylation, histone modification, and microRNA expres-
sion (Fernandez-Twinn et al. 2019; Cimmino et al. 2020). 
For instance, BPA can have both short-term and long-term 
effects with the latter typically occurring through epigenetic 
mechanisms such as DNA methylation (Mileva et al. 2014). 
Epigenetics is defined as changes in gene transcription and 
expression that occur without altering the DNA sequence 
and result in long-term changes in cellular and biological 
functions (Jaenisch and Bird 2003). The investigation of epi-
genetics and its involvement in metabolic diseases is still a 
young research field, but it is now attracting a lot of attention 
and growing at a fast pace. Environmental, lifestyle, and 
dietary factors or gut microbiota can influence the epigenetic 
programming of parental gametes, fetus and early postnatal 
development, or through the various periods of life to influ-
ence epigenetic programming (Lopomo et al. 2016). The 
epigenetic states can be transferred through (i) mitotic inher-
itance to maintain epigenetic changes across cell cycles and/
or (ii) meiotic inheritance carried by sperm cell and oocyte 
to transmit epigenetic changes across generations (Trerotola 
et al. 2015). The main epigenetic mechanisms include DNA 
methylation, histone variants/modifications, chromatin-
modifying (chromatin remodeling) proteins, and non-coding 
microRNA-mediated regulation (Fernandez-Twinn et al. 
2019). (1) DNA methylation: DNA methylation is the most 
frequently studied modification because its covalent chemi-
cal structure makes it highly stable, and therefore can be 
quantified in a range of archived tissues and cells. Several 
studies have demonstrated that environmental disturbances, 
including assisted reproductive technologies (ART), prenatal 
famine, and EDCs, are associated with altered global and/or 
gene-specific DNA methylation patterns (Lucifero et al. 
2004; Susiarjo et  al. 2013; Tobi et  al. 2014). DNA 
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methylation is a widely studied epigenetic modification that 
regulates genes with critical roles in a variety of biological 
processes (Smith and Meissner 2013). This epigenetic modi-
fication is associated with gene silencing in regulatory 
regions. Alterations in DNA methylation patterns can induce 
aberrant gene expression and appear abnormal phenotypes 
(Bernal and Jirtle 2010). Finally, DNA methylation is an 
important regulator of a subset of key genes for fetal and 
placental development, termed imprinted genes (Kang et al. 
2011). In the peripheral blood samples of offspring, Chen 
et al. (2017) have identified differentially methylated CpGs 
in 39 genomic regions which were affected by intrauterine 
exposure to GDM. Methylation at three sites is associated 
with insulin secretion, while a fourth site is associated with 
future risk of T2DM. The study conducted by Declerck et al. 
(2017) showed that prenatal EDC exposure was associated 
with a differential DNA methylation profile in children car-
rying the PON1 192R-allele compared to children with the 
PON1 192QQ genotype and unexposed children. Differen-
tially methylated genes were enriched in several neuroendo-
crine signaling pathways including T2DM signaling. These 
findings suggest that DNA methylation may be an underly-
ing mechanism explaining an adverse cardio-metabolic 
health profile in children carrying the PON1 192R-allele and 
prenatally exposed to EDCs. Pyrosequencing showed that 
the G protein-coupled receptor 39 (GPR39) DNA methyla-
tion was reduced in prenatally pesticide exposed R-allele 
carriers. GPR39 is obestatin receptor belonging to the ghre-
lin receptor family. It was involved in regulation of appetite 
and glucose homeostasis (Zhang et al. 2005; Verhulst et al. 
2011; Declerck et al. 2017). Interestingly, some of the medi-
ator marks linked to specific genes were also changed in 
prenatally pesticide exposed children. For example, fatty 
acid-binding protein 4 (FABP4) encodes for a member of the 
fatty acid-binding protein family regulating lipid trafficking, 
signaling, inflammation, and metabolism. Different studies 
have demonstrated the role of this protein in obesity, T2DM, 
and atherosclerosis development (Furuhashi et al. 2014; Wu 
et al. 2014; Hotamisligil and Bernlohr 2015). In addition to 
causing changes in DNA methylation patterns, EDC expo-
sure has been shown to disrupt other parameters of epige-
nome programming, including histone modification pattern. 
Several different modifications can occur within the highly 
basic histone amino (N)-terminal tail region (Bannister and 
Kouzarides 2011). These modifications can affect the inter-
action of these (N)-terminal tails between subunits of the 
same nucleosome or between subunits of adjacent nucle-
osomes. These modifications can also recruit and interact 
with chromatin-remodeling enzymes that alter the overall 
structure and conformation of chromatin. (2) Histone modi-
fication: In addition to causing changes in DNA methylation 
patterns, EDC exposure has been shown to disrupt other 
parameters of epigenome programming, including histone 

modification pattern. Several different modifications can 
occur within the highly basic histone amino (N)-terminal tail 
region (Bannister and Kouzarides 2011). These modifica-
tions can affect the interaction of these (N)-terminal tails 
between subunits of the same nucleosome or between subu-
nits of adjacent nucleosomes. These modifications can also 
recruit and interact with chromatin-remodeling enzymes that 
alter the overall structure and conformation of chromatin. In 
this way, histone modifications can regulate gene transcrip-
tion by affecting the accessibility of promoter sequences to 
transcriptional complexes required to initiate gene expres-
sion. Chang et al. (2016) also found that maternal exposure 
to BPA reduces pancreatic β-cell mass at birth by reducing 
PDX1 + progenitors during fetal development through alter-
ing the histone modifications of Pdx1 [histones H3 and H4 
deacetylation, along with demethylation of histone 3 lysine 
4 (H3K4) and methylation of histone 3 lysine 9 (H3K9)], 
which can be propagated to later life and increase the sus-
ceptibility to glucose intolerance. (3) microRNA-mediated 
regulation: More recently, a class of small non-coding RNAs 
called microRNAs (miRNAs) are emerging as key regulators 
of metabolic abnormalities (La Sala et al. 2020). miRNAs 
are short non-coding RNA sequences of 18 to 25 nucleotides 
in length that are capable of regulating gene expression 
through gene silencing and post-transcriptional changes 
(Pasquinelli 2012). Since they were discovered in 1993, 
miRNAs are present in all eukaryotic cells conserved across 
species. miRNAs regulate gene expression by inducing 
mRNA cleavage or by inhibiting protein translation, and by 
binding to complementary sequences in the 30-untranslated 
regions (30UTRs) of target messenger RNAs (mRNAs), 
thereby reducing their stability and translation efficiency 
(Sluijter and Pasterkamp 2017). Dysregulation of miRNA 
expression has been shown to regulate pathological path-
ways involved in the development of various diseases (Vish-
noi and Rani 2017). Accumulating evidence supports intra- 
and extracellular miRNAs as determinants of crosstalk 
between adipose tissue, liver, skeletal muscle, and other 
organs, triggering paracrine communication between differ-
ent tissues (La Sala et al. 2020). More than 2500 mature 
miRNAs have been found in the human genome (Kozomara 
et al. 2019). More than 60% of protein-coding genes in the 
human genome are reported to be targeted by miRNAs 
(Akhtar et al. 2016), with a single miRNA capable of target-
ing and regulating thousands of mRNAs (Ghorai and Ghosh 
2014). Thus, miRNAs are considered key gene regulators in 
a variety of biological processes, including adipocyte pro-
liferation and differentiation, and have been associated with 
insulin resistance in obese individuals (Cruz et al. 2017). In 
a recent study, Wei et al. (2020) showed that di(2-ethylhexyl) 
phthalate (DEHP) inhibits miR-17 to disrupt the Keap1-Nrf2 
redox system and activate oxidative stress-responsive Txnip 
in skeletal muscle. Oxidative stress upregulates miR-200a, 
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which directly targets the 3'UTR of Insr and Irs1, leading to 
impaired insulin signaling and insulin-dependent glucose 
uptake in skeletal muscle, ultimately promoting the develop-
ment of insulin resistance. Adeno-associated virus 9 
(AAV9)-induced overexpression of miR-17 and lentivirus-
mediated silencing of miR-200a in skeletal muscle amelio-
ratessystemic insulin resistance in mice exposed to DEHP. 
These findings suggest that the miR-17/Keap1-Nrf2/miR-
200a axis contributes to DEHP-induced insulin resistance. 
miR-17 is a positive regulator, while miR-200a is a negative 
regulator of insulin signaling in skeletal muscle, and both 
miRNAs have potential therapeutic targets for the prevention 
and treatment of insulin resistance or T2DM. In addition, 
several polymorphisms in the melatonin receptor 1B 
(MTNR1B) are associated with T2DM, fasting glucose con-
centration, and insulin secretion (Mussig et  al. 2010; 
Nagorny and Lyssenko 2012; Karamitri et al. 2013). The 
complex interplay between genetic or polygenic susceptibil-
ity, adverse fetal environment, and the environmental impact 
of EDCs may lead to the activation or inactivation of genes 
through epigenetic mechanisms, enabling adaptation (in 
some degree) to various environmental situations, but some-
times bringing about the development of various diseases. 
Given that some epigenetic changes are reversible, the iden-
tified epigenetic marks could be important diagnostic meas-
ures, therapeutic targets, and potential prognostic tools.

Conclusions and Future Outlook

Since the probable exposure-outcome associations of EDCs 
and T2DM were identified, there has been an increase in 
studies in humans of exposure to EDCs and a deepened 
understanding of their effects on T2DM. For example, the 
relationship between exposure to PFAS and phthalates in 
adulthood and child and adult obesity, IGT and GDM has 
been observed; the association between exposure to PFAS, 
phthalates as well as bisphenols and adult diabetes has also 
been noticed (Kahn et al. 2020). EDCs have been now rec-
ognized as serious and urgent threats to public health, poten-
tially emerging as one of the leading environmental risks 
globally. There has been increasing recognition that the risk 
of T2DM can be affected by EDC exposure, especially pre-
natal, neonatal, and childhood EDC exposures. Exposure to 
EDCs at these developmental window periods may alter the 
maternal gestational milieu and result in an increased risk of 
offspring's endocrinopathy and metabolic diseases in adult-
hood. Although the profound effects of EDCs on adipocyte 
physiology and glucose metabolism have been demonstrated 
in previous experimental animal models, evidence in human 
beings remains scant and data are often conflicting. It is dif-
ficult to conduct studies with experimental animals using 
different EDCs and to determine the underlying alterations 

observed in human studies. Furthermore, it seems more dif-
ficult to demonstrate a direct effect of EDCs in humans (He 
et al. 2020). Therefore, it is difficult to draw a firm conclu-
sion from these limited evidences and inconsistent results. 
The reasons for these differences are complex and may be 
the results of different factors, including confounding fac-
tors, the complex mixtures of exposures and their inter-
relationships, the intrinsic characteristics of each EDC, the 
variability in exposure distribution of EDCs in the environ-
ment and timing across studies, the cross-sectional designs 
of many studies, and the imprecision of exposure assess-
ment methods, especially for chemicals with short half-lives 
(Kahn et al. 2020), developmental time windows of exposure 
and concomitant exposure to a mixture of chemicals that 
may synergistic effects in mixtures of chemicals, known as 
the cocktail effect phenomenon (Le Magueresse-Battistoni 
et al. 2017), the type and dose of the chemical, the timing 
of exposure, the metabolic route (Pinos et al. 2021), dif-
ferences in maternal age, BMI, probe set, race and ethnic-
ity, socioeconomic status, and educational background of 
the studies, and variability in BPA exposure and metabo-
lism between individuals and populations (Farrugia et al. 
2021). This complexity makes it difficult to develop robust 
epidemiological models to study the mechanism of action 
of EDCs in humans and to understand the actual clinical 
impact of each EDC. In addition, the major publications 
in this field involve cross-sectional or case–control studies. 
Longitudinal studies are still very limited. Therefore, fur-
ther studies are still needed to elaborate on the effects of 
EDCs and other synthetic chemicals on human T2DM with 
greater precision, and more research is also necessary to 
confirm or strengthen data derived from experimental mod-
els and cross-sectional studies, and improve understanding 
of whether repeated exposures over time or just short-term 
exposures to EDCs during critical windows of development 
are related to T2DM. Metabolomic technologies hold prom-
ise in the identification of a broad array of emerging and 
novel exposures. The application of exposomic methods 
can yield more integrated views about combined effects of 
multiple exposures to a particular phenotype (Pinos et al. 
2021), and offer mechanistic insights and opportunities to 
develop intermediate markers that could reliably predict dis-
ease endpoints and aggregate effects of multiple interacting 
exposures. Genomics and related tools can carefully exam-
ine gene-exposure interactions and their influence on the 
health outcomes of exposure to ECDs (Engel et al. 2016). 
Additionally, larger sample sizes are also needed to suffi-
ciently power interaction testing across chemical mixtures. 
Although systematic evaluation is needed of the probability 
and strength of these exposure-outcome associations, the 
growing evidence supports urgent action to reduce exposure 
to EDCs. As Bradford Hill described in his landmark lecture 
on causality, actions—in this case, to reduce exposure to 
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EDCs—require consideration of the evidence and the stakes 
involved in the decision (Hill 1965; Kahn et al. 2020). In 
many cases, alternative manufacturing practices can be 
applied to mitigate exposure to EDCs. Although there are 
actions that individuals can take to reduce their exposure, 
the definitive way to make a difference on a population level 
is through regulation. Regulation policies can reduce expo-
sure, prevent disease, and produce economic benefits that 
might even outweigh the costs of safer alternatives (Kahn 
et al. 2020).
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