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Abstract
Heavy metal contamination in groundwater is one of the most severe environmental issues in the area undergoing mining 
activities, but the underlying sources of heavy metals and the resulting health risk are not fully understood. In this study, 100 
shallow groundwater samples and six mining wastewater samples were collected in a multi-mineral resource, North China. 
The results showed that the distribution of mine ore resources and hydrogeochemical processes were related to the enrichment 
of Cd, As, Cu, and Ni in groundwater in the piedmont sloping plain, the southwest of the study area, and enrichment of Pb, 
Zn, and Hg in eastern mountainous and river valley. Water–rock interaction was the primary underlying source of As, Pb, Ni, 
and Cr(VI) with the non-negligible influence of mining activities, while Cd, Zn, and Hg were potentially originated from the 
anthropogenic activities (mining or agriculture). A combination of self-organizing map (SOM) and health risk assessment 
demonstrated the carcinogenic risks of Cd, As, and Cr(VI) to children and adults (exceeding the unacceptable risk level, 
1 × 10–6 < CRtotal < 1 × 10–4), particularly in the piedmont sloping plain and mountain valleys. The total carcinogenic risks for 
children were much higher than adults, which followed the orders as Cr(VI) > As > Cd, whereas the total non-carcinogenic 
hazard index of Cu, Pb, Zn, Ni, and Hg to children and adults was negligible. Therefore, there was a concern for carcinogenic 
risk that must be addressed in the multi-mineral resource area, with a particular focus on the Cr(VI) and As as the primary 
health risk management and control indexes in groundwater.

Keywords  Groundwater · Mineral resource · Hydrogeological condition · Health risk assessment · Chromium 
contamination

Introduction

As a reliable source of drinking water, groundwater is a 
critical water resource for maintaining the natural ecosys-
tem (Jha et al. 2020; Hua et al. 2015; Jiang et al. 2019). 
However, groundwater quality is increasingly deteriorating 
due to the intensive anthropogenic activities (Hua et al. 

2015; Li et al. 2017; Zhang et al. 2018), particularly in 
areas undergoing mining activities such as opencast min-
ing, deep mining or auxiliary projects (Degraff 2007; 
Feng et al. 2014; Zeng et al. 2018). On one hand, mining 
wastewater rich in elevated metals such as cadmium (Cd), 
arsenic (As), chromium (Cr), copper (Cu), lead (Pb), zinc 
(Zn), nickel (Ni), and mercury (Hg) is mainly formed from 
weathering, dissolution, leaching, and erosion of massive 
rock wastes and tailings by the atmospheric rainfall and 
surface water runoff (Akcil and Koldas 2006; Sun et al. 
2014; Kefeni et al. 2017; Zhu et al. 2020). The groundwa-
ter beneath mining operations is contaminated as a result 
of the poor-quality mine wastewater infiltration from the 
vadose zone to the aquifer in the so-called multi-mineral 
resources area (replete with a variety of mineral resources 
in aquifer media and undergoing intensive mining activi-
ties) (Newman et al. 2017; Singh et al. 2018; Adamu et al. 
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2015). On the other hand, the geogenic water–rock inter-
action and biological processes within the aquifer in the 
mining areas can also deteriorate the groundwater quality 
(Qu et al. 2018; Sheng et al. 2016, 2017). Most previous 
research concentrated on hydrochemistry evolution, distri-
bution and migration of heavy metals, and water quality 
assessment in mining areas with limited types of mine 
resources (e.g., coal mine and metal mine) (Bempah and 
Ewusi 2016; Singh et al. 2018; Jiang et al. 2021a; Zhang 
et al. 2016). However, the underlying sources of heavy 
metals and resulting health risk issues induced by mul-
tiple exposure pathways in the area with multi-mineral 
resources and the surrounding area have not been fully 
uncovered.

The heavy metals can enter the human body through 
the most suitable pathway, drinking or dermal absorption 
(Singh et al. 2018; Xiao et al. 2019; Sako et al. 2016; 
Wang et al. 2019a, b). In addition, in areas using ground-
water as irrigation water, the crops and soils may accu-
mulate heavy metals (Hashim et al. 2011; Larson et al. 
2013; Nath et al. 2018; Sheng et al. 2021), which can 
also enter into the human body if they are used as food. 
These consequences pose significant health risks (e.g., 
carcinogenic and non-carcinogenic) to regions primarily 
located in the proximity of mining region (Wu and Sun 
2016; Zhou et al. 2019), causing either acute or chronic 
diseases (Khaiwal and Mor 2019; Song and Li 2015; Zhou 
et al. 2019). Although some heavy metals are essential as 
micronutrients for humans (Goldhaber 2003), a variety of 
human health issues like damaging neurological system, 
kidney function, ossification process, dysfunction of liver 
and renal cortex as well as cancer are associated with high 
intake of potential toxicity (Lee et al. 2007; Singh et al. 
2018). For instance, As can lead to chronic arsenic poi-
soning through prolonged consumption of groundwater 
as drinking water, including skin lesions, peripheral neu-
ropathy, diabetes, gastritis, colitis, vascular diseases, and 
cancer (Cheng et al. 2016; Morales et al. 2000; Guo et al. 
2014; He et al. 2021; WHO 2011). Cr (VI), classified as 
a class A carcinogen (Park et al. 2004; WHO 2014), is a 
known source of carcinogens and toxicity with great harm 
to human health (Mohan and Pittman 2006; Huang et al. 
2021). Exposure to Cr(VI) has been identified as a cause 
of gastric, liver, lung, oral, kidney and urinary cancers 
(Linos et al. 2011; Yuan et al. 2011; Tseng et al. 2018). 
Anemia, kidney disease, gastrointestinal colic, and central 
nervous system diseases can occur when the toxic element 
Pb accumulates in the body above tolerable levels (Pareja-
Carrera et al. 2014). The excessive Cu posing significant 
threats to human health will cause metabolism disorders 
and even lead to liver cirrhosis (Ameh and Sayes 2019). 
In consequence, it is of great significance to reveal the 
harm of heavy metal contaminations to the ecosystem and 

human health, which have to be urgently concerned in the 
mining area (Mukherjee et al. 2020; Gao et al. 2019; Tong 
et al. 2021; Xiao et al. 2019).

Due to varying hydrogeochemical conditions and compli-
cated contamination sources, the distributions and sources 
of groundwater heavy metals are difficult to predict, sig-
nificantly challenging their prevention and risk management 
(He et al. 2019; Li et al. 2016). Therefore, it is necessary to 
degrade and categorize the data to accurately explain the 
relationships between the dependent variables and predic-
tors. The linear dimensionality reduction approach (e.g., 
principle component analysis) was widely utilized to classify 
samples in groundwater research (Lorite-Herrera et al. 2008; 
Moore et al. 2009; Cloutier et al. 2008; Gómez et al. 2008)). 
However, it cannot build clusters (Haselbeck et al. 2019) 
and can lead to inadequate interpretation when dealing with 
nonlinear relationships (Astel et al. 2007; Giraudel and Lek 
2001; Lee et al. 2019). Alternatively, a self-organizing map 
(SOM), which belongs to the domain of unsupervised arti-
ficial neural network algorithms, can map high dimensional 
data to low dimensional space, reveal local relationships 
between variables, and provide a small number of output 
neurons (Kim et al. 2020), serving as a promising tool for 
groundwater quality assessments (Choi et al. 2014; Zhu et al. 
2020; Lee et al. 2019; Qu et al. 2021).

As such, eight primary heavy metals (As, Hg, Cd, Cr, Pb, 
Cu, Ni) and other hydrogeochemical variables in 100 shal-
low groundwater in a multi-mineral resources area (~ 100 
mines including coal mines, gold mines, silver mines, copper 
mines, lead–zinc mines, etc.), northwestern China were ana-
lyzed. The correlation analysis and SOM were collectively 
used to identify the source apportionment and health risk 
assessment of heavy metals in groundwater in the multi-
mineral resource area.

Study Area

Hydrogeological Conditions

The main types of groundwater in the study area are loose 
rock pore water and bedrock fissure water. According to 
the aquifer lithology, groundwater occurrence conditions, 
and hydrodynamic characteristics, the groundwater is 
divided into five types: loose rock pore water, clastic rock 
fissure water, carbonate rock fissure karst water, mag-
matic rock fissure water, and metamorphic rock fissure 
water. The loose rock pore water is mainly distributed in 
the surface rivers and local areas along the river banks 
in the study area or the mountain valley. The lithology 
of the aquifer is quaternary gravel, gravel sand and sand 
layer interbedded with gravel sand loam. The groundwa-
ter with shallow buried depth and relatively better water 
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enrichment is mainly recharged by vertical infiltration of 
meteoric precipitation and surface runoff, and also from 
the confluence of groundwater in the mountain valley, 
followed by infiltration of irrigation. Most groundwa-
ter is discharged by runoff downstream along rivers and 
is exposed in the form of springs in some intermoun-
tain valleys except for a small amount of evaporation. 
In addition, artificial exploitation is another major way 
to discharge shallow groundwater in the study area. The 
bedrock fissure water is widely distributed, and its lithol-
ogy is mainly metamorphic basement granite, Jurassic 
intrusive granite, metamorphic basement diorite, gneiss, 
marble, etc. However, the degree of water enrichment is 
weak, and the groundwater dynamics are affected by the 
season. The groundwater comes from precipitation infil-
tration with a short runoff channel and is discharged to 
the aquifer of the intermountain valley. Therefore, the 
loose rock pore water is the primary exploitation of agri-
cultural irrigation, industrial production, and domestic 
water in the study area.

Distribution of Mineral Resources

The study area has various mineral resources, including 
coal, ferrous metals, non-ferrous metals, precious metals, 
and non-metallic mineral resources. The large scale and 
rich resources are coal, iron, gold, and silver ore resources, 
a small part of lead and zinc, phosphorite, and graphite 
mineral resources, while the other mineral resources are 
relatively small in scale or the distribution of ore spots.

The coal resources are primarily located in the south-
west and east mining areas of the study area, and the ore-
bearing strata of the Early Jurassic Xiahuayuan Formation 
are the coal-bearing rock series with the broadest distribu-
tion, the largest scale and the most abundant resources. 
Iron mines are mainly distributed in the south and north-
west area, followed by the central area, where hematite, 
magnetite, and titanium-magnet minerals of large scale 
are developed. The non-ferrous mineral resources (mainly 
lead–zinc ore, with a few copper and molybdenum ore) 
are mainly distributed in the southeast. The lithology of 
ore-bearing strata in the region is mainly amphibolic pla-
gioclase granulite, black cloud plagioclase gneiss, vol-
canic rock, and pyroclastic rock. Precious metal resources 
(mainly gold ore) mainly distributed in the central moun-
tainous area are the mineral resources with the broadest 
distribution area and the largest mining scale in this region 
(around 1500 km2). Additionally, silver ore resources in 
the study area are less abundant, and most silver deposits 
(points) are formed by the symbiotic or associated com-
bination of Ag and other beneficial ore-forming elements 
(e.g., Pb and Zn).

Materials and Methods

Sample Collection and Geochemical Measurement

In this study, 100 groups of shallow groundwater samples, 
including irrigation wells, domestic wells, and springs 
from unconsolidated rock pore aquifer, were collected in 
June 2020 based on the comprehensive consideration of 
various factors such as topography, water system charac-
teristics, and groundwater utilization status in the study 
area. The well depth ranged from 10 to 60 m, with the 
water level depth ranging from 5.28 to 16.78 m. The spring 
samples used for domestic water by local residents were 
collected from 16 sets. In addition, to explore the source 
of groundwater, six groups of mine wastewater samples 
including mine tailings pond wastewater, mine drainage, 
and sewage discharged from the dressing plant, were col-
lected. The distribution of collected samples (including 
groundwater and mine wastewater) and the groundwater 
flow direction were shown in Fig. 1.

Shallow groundwater samples were taken by a water 
pump until the stagnant water in the borehole was pumped 
out by at least 3 times pumping. pH, temperature (t), elec-
trical conductivity (EC), and dissolved SiO2 in groundwa-
ter were measured in-situ using portable field analyzers 
produced by CLEAN Instruments (Shanghai ZhenMai 
Instruments Co., Ltd, Shanghai, China) and HANNA 
instruments (HANNA Instruments Inc, Italy). The sam-
ples used for metal ions measurements were filtered with 
0.2 µm membrane filters, acidified using 10% HNO3 to 
pH < 2, stored in air-free sampling bottles, and stored in 
4 ℃ freezers before analysis. The samples were immedi-
ately transported and tested in the Supervision and Test-
ing Center of North China Mineral Resources, Ministry 
of Natural Resources. The Cd, Cu, Pb, Zn, Ni, Hg, and As 
were measured by Inductively Coupled Plasma Mass Spec-
trometry (ICP-MS, Thermo X series II, Thermo Fisher 
Scientific, USA). Triplicates were used for metal meas-
urements, and the recovery percentage for each analyzed 
metal was between 95 and 105%. Additionally, the Cr(VI) 
was tested by the colorimetric methods following the 
standard methods for the examination of water and waste-
water (State Environmental Protection Administration of 
China 2002). In the process of sample testing, laboratory 
ultrapure water was used for the blank sample and the 
experimental dilutions, and the blank value was far below 
the detection limits of the adopted methods. The detection 
limits of measured elements were 0.001 mg/L for Cu, Pb, 
Ni, Zn, Cd, and Hg, and 0.01 mg/L for As and Cr(VI). 
In addition, the accuracy and precision (repeatability) of 
samples were checked by analyzing blank, standard, and 
groundwater samples. Good repeatability was obtained 
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within ± 2% standard error. After the initial calibration, 
a standard was inserted to ensure the data accuracy after 
every 10 samples.

Major cations (K+, Na+, Ca2+, Mg2+) were measured 
with an Inductively Coupled Atomic Emission Spectrometer 
(ICP-AES, iCAP6300, Thermo Scientific, Waltham, USA). 
SO4

2−, Cl− and PO4
2− were measured by Ion Chromatog-

raphy (DX-120 IC, Thermo Scientific, USA). HCO3
− was 

measured by volumetric methods. The F− was measured by 
an ion-selective electrode method (Jiang et al. 2021b). NO3

−, 
NO2

− and total Fe were tested by the colorimetric methods 
following the standard methods (Liu et al. 2020a, b).

Self‑Organizing Map (SOM)

As an unsupervised competitive learning neural network 
method, SOM was designed for the two tasks of unsuper-
vised classification and nonlinear dimensionality reduction 
in analyzing a large multivariate dataset (Kohonen 1982). 
SOM can map the high-dimensional input data to low 
dimensional space while retaining the topology of the input 
data in high dimensional space. The similar sample points in 
high dimensional space could be mapped to the neighboring 
neurons in the two-dimensional output layer (2D); there-
fore, SOM was widely employed for data dimension reduc-
tion, mining and rule summary, such as in hydrology (Chen 
et al. 2018; Zhu et al. 2020). It constructs its own network 
structure by simulating the response of human brain neurons 
to external stimuli and forms a cluster area near each most 
matched neuron to classify the input vectors with similar 
features into a cluster.

Heuristic rules such as the empirical Eq. 5 
√

n suggested 
by Vesanto et al. (2000) can be used to select the appropri-
ate number of neurons in the neural matrix, where n is the 
number of samples. Additionally, the Davies-Bouldin Index 
can be used to determine the optimal number of clusters 
(Wang et al. 2017a, b; Park et al. 2014). The SOM calcula-
tion process was executed using MATLAB software accord-
ing to the method described by Li et al. (2020). Unified 
distance matrices (U-matrix) and median distance matrices 
(D-matrix) are standard tools for displaying SOM cluster-
ing structures (Kim et al. 2020). Specifically, the U-matrix 
denotes the Euclidean distance between the weight vectors 
of adjacent neurons on the map in the color scale, while the 
D-matrix represents the median distance between SOM neu-
rons. In the U-matrix, the color represents the weight vector 
of each neuron, and the weight vector value corresponds 
to the standardized value of the original data. The same or 
similar color gradient indicates a positive correlation and 
the higher the degree of similarity (Lee et al. 2019; Jampani 
et al. 2018; Dai et al. 2018). In addition, neurons with low 
distance (i.e., high similarity) can be regarded as a cluster, 
while neurons with high distance (i.e., low similarity) can be 
regarded as the cluster boundary (Kim et al. 2020).

Health Risk Assessment Model

The health risk assessment takes the risk degree as the evalu-
ation index and uses the combination of environmental qual-
ity and human health to quantitatively evaluate the potential 
health risk of hazardous substances to the human body (Giri 
and Singh 2015; Liu et al. 2010). The health risk assessment 

Fig. 1   Sampling location of groundwater and mine waste water and groundwater flow direction in the study area. ‘SG’ represents shallow 
groundwater
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model for the water environment proposed by the United 
States Environmental Protection Agency (USEPA 2017) 
was employed. Health risks of heavy metals to adults and 
children in shallow groundwater were assessed according to 
relevant technical requirements in China’s Technical Guide-
lines for Risk Assessment of Contaminated Sites (HJ 25.3-
2014) (CHNMEP 2014). It is generally believed that small 
amounts of carcinogenic chemicals, also known as genotox-
ins in water, can pose a severe health risk to human bodies. 
Also, the potential hazard of non-carcinogenic substances 
known as somatotoxins to human health cannot be neglected. 
This study determined the different evaluation indexes com-
bined with the information provided by the International 
Agency for Research on Cancer (IARC 2013) and the World 
Health Organization (WHO 2011) on the hazardous effects 
of different toxic chemicals on human health. Therefore, the 
model we used included the health risk assessment of chemi-
cal carcinogens, i.e., Cd, As, Cr(VI), and non-carcinogenic 
substances, i.e., Cu, Pb, Zn, Ni, and Hg.

Exposure Assessment

Dose–Response Assessment

The main routes of human exposure to heavy metals or 
metal-like substances in the environment generally include 
oral ingestion, dermal contact, and inhalation (Lee et al. 
2013). Among these pathways, oral ingestion (e.g., water 
and food) and dermal contact are two of the most com-
mon ones (Giri et al. 2014; Kim et al. 2004; Li et al. 2010; 
Miguel et al. 2007; Ravindra et al. 2019; Zhou et al. 2021). 
Therefore, since groundwater in the study area is used as 
domestic and irrigation water, the present study assessed 
the potential health risks for adults and children in shallow 
groundwater with different physiological conditions through 

oral ingestion and dermal contact routes. Different methods 
calculated the exposure dose for different routes according 
to the health risk assessment model recommended by the 
USEPA.

The calculation model for the exposure dose of the oral 
ingestion route was shown as Eq. 1.

The calculation model for the exposure dose of the der-
mal contact route was shown as Eq. 2.

where Ioral and Idermal represent the average daily exposure 
dose of drinking water and dermal contact route [mg/(kg d)], 
respectively. Cwater is the measured concentration of heavy 
metals in water (mg/L). IR represents the daily ingestion 
rate of water (L/d). EF is the exposure frequency, the time 
of exposure in one year (d/y). ED represents the duration of 
exposure, indicating the number of years that the substance 
is ingested in the body during its lifetime (y). BW is the 
average weight of residents (kg). AT is the average expo-
sure time, i.e., the life expectancy of residents (d). SA is the 
surface area of dermal contact at a dose of heavy metals. Kp 
is the skin permeability coefficient of the different indexes 
(cm/h). EV is the daily exposure frequency (1 in this study). 
ET is the contact duration (h/d). CF is a conversion fac-
tor (0.001 L/cm3). The exact values of each parameter were 
shown in Table 1.

(1)Ioral =
Cwater × IR × EF × ED

BW × AT

(2)
Idermal =

Cwater × SA × Kp × ET × EV × EF × ED × CF

BW × AT

Table 1   Parameters of health risk assessment model

Parameters Symbol Unit Children Adult References

Concentration Cwater mg/L Measured value Measured value Measured value
water intake IR L/d 0.7 1.5 Li et al. (2016), He et al. (2021), Wu and Sun, 

(2016), Wu et al. (2019
Exposure frequency EF d/y 350 350 Zeng et al. (2015), Tong et al. (2021), CHNMEP 

(2014)
Exposure duration ED y 6 24 CHNMEP (2014)
Body weight BW kg 15 70 Li et al. (2021), Tong et al. (2021), USEPA, (2013)
Exposure time AT d 365 × ED

(Non-carcinogenic)
365 × ED
(Non-carcinogenic)

USEPA (2004, 2011), Li et al. (2016)

365 × 70 (Carcinogenic) 365 × 70 (Carcinogenic)
Superficial area SA cm2 6600 18,000 USEPA (2004), Wang et al. (2017a, b), Xiao et al. 

(2019), Zeng et al. (2015)
Contact duration ET h/d 1 0.58 Wang et al. (2017a, b), Xiao et al. (2019
Conversion factor CF L/cm3 0.001 0.001 Li et al. (2016), Wu and Sun (2016)
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Risk Characterization

According to the health risk assessment model, the calcula-
tion methods of the potential risks for chemical carcinogenic 
and non-carcinogenic substances to human health under the 
same exposure pathway are distinct, where carcinogens are 
characterized by carcinogenic risk (CR), and non-carcino-
genic risks are characterized by non-carcinogenic hazard 
quotient (HQ) and hazard index (HI).

The carcinogenic risk caused by carcinogens through oral 
ingestion and dermal contact route was calculated as shown 
in Eqs. 3–5.

For carcinogenic risk assessment, the value of carci-
nogenic risk was calculated by Eq. 4 when Ioral × SFo or 
Idermal × SFd > 0.01 (Li et al. 2014; USEPA 2017; Yang et al. 
2015). The total carcinogenic risk CRtotal of various carcino-
gens was calculated by Eq. 5. Where CRi is the health risk 
value of carcinogenic index i, Ioral and Idermal are calculated 
by the Eqs. 1 and 2 and SF is the carcinogenic slope factor 
for chemicals [mg/(kg d)]−1.

The health risk caused by non-carcinogenic substances 
through oral ingestion and dermal contact route was calcu-
lated as shown in Eqs. 6 and7.

(3)CRi = Ioral × SFo + Idermal × SFd

(4)
CRi = 1 − exp

(

−Ioral × SFo
)

+ 1 − exp
(

−Idermal × SFd
)

(5)CRtotal =

n
∑

i=1

CRi

(6)HQj =
Ioral

RfDo
+

Idermal

RfDd

where HQj is the hazard quotient of non-carcinogenic index 
i, HI is the comprehensive/total risk value of various non-
carcinogenic indicators and RfD is the reference dose for 
chemicals [mg/(kg d)].

In this study, the acceptable level of carcinogenic risk 
was 1 × 10–6. When the CRtotal is less than 1 × 10–6, the 
carcinogenic risk is considered to be nonexistent or low. 
When 1 × 10–6 < CRtotal < 1 × 10–4, it indicates a possible 
carcinogenic risk. When CRtotal > 1 × 10–4, the level of 
potential carcinogenic risk is considered unacceptable 
(Duan and Zhao 2014; Fryer et al. 2006; Guney et al. 2010; 
Ravindra et al. 2019; Ravindra and Mor 2019). In addition, 
if HQ and HI are less than 1, the non-carcinogenic health 
risk caused by the chemical substance is considered to 
be an acceptable level. Otherwise, it is unacceptable, and 
the level of non-carcinogenic health risks tend to increase 
with the increase of HI (Chen et al. 2016; Li et al. 2016; 
Ravindra et al. 2019; Ravindra and Mor 2019; Wu and Sun 
2016; Yang et al. 2015).

Model Parameters

The carcinogenic slope factor SF and the reference dose 
RfD of heavy metals in the health risk assessment model 
were obtained based on the recommended values of 
the USEPA. However, the application conditions of the 
model may be different from the actual situation. Thus, 
the exposure parameters were appropriately adjusted by 
referring to the local Technical Guidelines HJ 25.3-2014 
(CHNMEP 2014) and published literature to ensure that 
the human health risk assessment results were relatively 
consistent with the actual situation of the study area. The 

(7)HI =

n
∑

j=1

HQj

Table 2   Reference values of Kp, SF and RfD for health risk assessment model

Date from USEPA (2004, 2011), Baltasa et al. (2020), Jiang et al. (2017), Pan et al. (2018), Chen et al. (2015), Zeng et al. (2015), and CHNMEP 
(2014)

Classes Element Kp SF [mg/ (kg d)]−1 RfD [mg/ (kg d)]

cm/h Oral ingestion Dermal contact Oral ingestion Dermal contact

Carcinogenic substances As 0.001 1.5 3.66 – –
Cd 0.001 6.1 0.38 – –
Cr(VI) 0.003 0.5 20 – –

Non-carcinogenic substances Cu 0.001 – – 0.04 0.012
Hg 0.001 – – 0.0003 0.000021
Ni 0.004 – – 0.02 0.0054
Pb 0.001 – – 0.0035 0.000525
Zn 0.0006 – – 0.3 0.06
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exact reference values of each parameter in the model were 
shown in Tables 1 and 2.

Results and Discussion

Heavy Metal Distribution in Groundwater

The single component assessment of groundwater, 
based on the national standard of ‘the People's Repub-
lic of China: Quality standard for groundwater’ (GB/
T14848-2017), was employed to determine whether the 
groundwater was acceptable for drinking or industrial 
and agricultural uses. To be noted, this assessment only 
considered the perspective of the selected heavy metals. 
Its principle is that the groundwater should be regarded 
as unsuitable for drinking water resources or industrial 
and agricultural uses if any index exceeds the standard of 
Grade III, equivalent to the drinking water standard (GB 
5749-2006) (CHNMH 2006). The Cr(VI) (54.7 µg/L) and 
Ni (24.9 µg/L) in two samples exceeded the standard of 
Grade III, while the other groundwater samples met the 
standard (Fig. S1, Table 3). Therefore, from the perspec-
tive of the selected heavy metals, the shallow groundwater 
quality was generally suitable for irrigation and drinking. 

However, the presence of As, Hg, Cr(VI), Cd and Pb etc., 
may still cause significant adverse effects on human health 
due to their high toxicity, even at low concentrations (Jia 
et al. 2018; Muhammad et al. 2011; Podgorski et al. 2017; 
Riederer et al. 2013; Singh et al. 2018). Although trace 
elements such as Cu, Zn, and Ni are essential for metabolic 
processes in plants, animals, and microorganisms, long-
term exposure of these metals to human result in accumu-
lated health risks in areas where groundwater is the main 
source of drinking water (Bodrud-Doza et al. 2019; Dieter 
et al. 2005; Fang et al. 2021).

The spatial distribution of the investigated heavy metal 
contents in the groundwater exhibited regional differences 
(Fig. 2). Samples with high Cd concentrations were mainly 
distributed in the river valley in the northwest and the pied-
mont sloping plain in the southwest of the study area. In 
contrast, samples with relatively high Cr concentrations 
were distributed in the river valley in the northwest, and a 
few samples were located in the east of the mountain valley. 
The distribution of Pb and Zn in groundwater was similar, 
mainly distributed in the northwest and east river valley and 
a small amount in the piedmont sloping plain in the south-
west. Cu, As, Ni, and Hg distributions were also similar, 
mainly distributed in the northwest and east river valley, and 
the other high concentrations were sporadically distributed 

Table 3   The statistics of heavy 
metals and other hydrochemical 
parameters in groundwater

Q1 and Q3 represent the Upper and Lower quartile, respectively

Parameter Unit Min Mean Max Q1 Median Q3

Cd μg/L 0 0.028 0.75 0.002 0.007 0.015
As μg/L 0 0.641 5.38 0.34 0.5 0.765
Cr(VI) μg/L 0 4.178 54.7 0 2.285 5.675
Cu μg/L 0 0.485 12.1 0.099 0.16 0.28
Pb μg/L 0 0.093 1.26 0.007 0.03 0.086
Zn μg/L 0 0.217 6.58 0.021 0.044 0.155
Ni μg/L 0.86 2.755 24.9 1.88 2.495 3.005
Hg μg/L 0 0.023 0.27 0.015 0.018 0.023
t ℃ 6.9 11.8 18.8 8.95 11.15 14.7
pH – 7.12 7.67 8.41 7.56 7.69 7.8
EC mS/cm 0.19 0.51 0.86 0.42 0.5 0.62
K+ mg/L 0.37 2.68 8.61 1.76 2.62 3.46
Na+ mg/L 5.44 15 51.76 7.53 11.72 17.58
Ca2+ mg/L 30.4 65.5 90.3 58.6 65.42 75.38
Mg2+ mg/L 2.05 17.2 39.43 11.09 15.61 23.95
Cl− mg/L 2.96 16.9 53.2 8.87 12.6 20.3
SO4

2− mg/L 6.66 50.7 148.9 25.86 37.86 62.63
HCO3

− mg/L 73.4 204 287 186 209.5 249
NO3

− mg/L 0.03 22.4 80 7.11 22.05 30.7
NO2

− mg/L 0 0.03 0.29 0.01 0.01 0.02
F− mg/L 0.27 0.76 1.64 0.55 0.7 1.01
SiO2 mg/L 0.84 2.99 20.6 1.32 1.55 1.84
PO4

3− mg/L 0.02 0.23 4.28 0.09 0.11 0.14
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Fig. 2   Distribution characteristics of eight heavy metals in groundwater
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in the northwest mountainous region. Additionally, the Cr, 
Pb, and Zn contents of groundwater samples in the river val-
ley in the northwest of the study area were relatively high. 
To sum up, groundwater in the piedmont sloping plain in 
the southwest of the study area harbored the high concentra-
tions of Cd, As, Cu, and Ni, and groundwater in the eastern 
mountainous and river valley harbored the high Cu, Pb, Zn, 
Ni, and Hg concentrations.

To further study the potential source of heavy metals in 
groundwater, the contents of heavy metals in some mine 
wastewater samples were measured and shown in Table S1. 
The contents of Pb and As in the disposal sewerage col-
lected from the gold concentrator were relatively high, with 
53.4 µg/L and 11.8 µg/L, respectively, which were 5.34 
and 1.18 times higher than the standard of Grade III (local 
groundwater standard), indicating a potential contamination 
source. Meanwhile, Pb, Hg, and Ni contents in samples col-
lected from iron mine drainage were high with 12.5 µg/L, 
3.76 µg/L, and 53.4 µg/L, which were 1.25, 3.76, and 2.67 
times higher than the local groundwater standard. The min-
ing residues and wastewater in the mine tailings pond and 
concentrators could pose a threat to the surrounding pristine 

groundwater, likely resulting in potential health risks to resi-
dents in the mining area.

The distributions of heavy metals can be related to hydro-
geochemical conditions in the study area. Mountain and 
river valleys are relatively concentrated distribution areas 
of mineral resources, the recharge area of regional ground-
water. The recharge conditions of unconfined groundwater 
are good due to large lithologic particles in the aquifer and 
short runoff paths in these large topographic slope regions 
(Fig. 2). Most meteoric waters recharge the shallow ground-
water by dispersing vertical infiltration after leaching and 
dissolving rocks and minerals. Therefore, heavy metals were 
relatively easy to enter shallow groundwater during the infil-
tration recharge process. However, heavy metals were not 
easily enriched in the groundwater due to the fast cycle alter-
nating frequency in this area. In the plains, shallow ground-
water is under worse runoff conditions with slow circulation 
alternates because of gentle terrain and finer lithologic par-
ticles, whereas there are few potential pollution sources of 
groundwater due to the mineral resources in this area. The 
quaternary loose sediments with different thicknesses are 
widely distributed overlying the aquifer, constituting a thick 
unsaturated zone. The lithology is mostly clay and silty clay 

Fig. 3   Pearson correlation analysis between heavy metals and other 
parameters in groundwater. The colors represent the correlation coef-
ficient, increasing from blue (negative) to red (positive). Bubble size 

represents the correlation coefficient (r), increasing from small size to 
large size. The bubble with an asterisk in it represents the significant 
correlation (p  ≦ 0.05)
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with fine particle size and low porosity. Thus, the content of 
heavy metals may be trapped in the unsaturated zone (Sheng 
et al. 2021), leading to relatively low heavy metal concentra-
tions in the groundwater (Table 3).

Correlation Analysis Between Heavy Metals 
and Other Hydrogeochemical Parameters

The As and Cr are widely distributed in the Earth’s crust 
(Facchinelli et al. 2001; Šajn et al. 2011), and infiltrated 
into the groundwater via the leaching process. As shown in 
Fig. 3, As was significantly correlated with Ni at the level of 
0.05, indicating that the sources of As and Ni in groundwa-
ter were similar. However, the correlation between As, Ni, 
and other heavy metals was low, indicating that the sources 
for other heavy metals were different from As and Ni. The 
Pearson correlations analysis showed that As was positively 
correlated with temperature, Na+, HCO3

− and F−, and Ni 
was positively correlated with pH, EC, Na+, Ca2+, Mg2+, 
and HCO3

− (Fig. 3), which were the main ionic component 
of natural groundwater. The F− is mainly affected by the 
weathering and dissolution of fluoride-rich minerals in natu-
ral groundwater, thus it is easy to enrich in the groundwater 
environment with high Na+ and HCO3

− (Feng et al. 2020; Li 
et al. 2019; Su et al. 2019; Wang et al. 2021; Wu et al. 2018). 
Therefore, the results indicated that the sources of As and Ni 
in groundwater were similar to Na+, HCO3

− and F−, which 
was mainly weathering and dissolution of surrounding rock 
minerals in aquifers, i.e., water–rock interactions controlled 
the source and distribution of the ions. However, because 
high concentrations of As and Ni have been found in the 
mining wastewater (Table S1), the As and Ni in groundwater 
may also be affected by mining activities. In addition to the 
natural sources, anthropogenic sources of Cr can also be 
important, including metallurgy, refractory, and chemical 
manufacturing (Rakhunde et al. 2012). Cr(VI) was nega-
tively correlated with pH, Mg2+

, and HCO3
− in groundwater 

(Fig. 3), indicating that pH, Mg2+
, and HCO3

− restricted the 
enrichment of Cr(VI) in groundwater to a certain extent. 
Previous studies have demonstrated that pH is a critical driv-
ing force governing the distribution of heavy metals. For 
instance, under different pH conditions, the adsorption and 
desorption of As (Huang and Matzner 2006; He et al. 2021; 
Khaska et al. 2018; Lidman et al. 2011; Sun et al. 2020; 
Wang et al. 2018) or Cr (Dermatas et al. 2015; Muhammad 
et al. 2011; Robles-Camacho and Armienta 2000) to miner-
als are important in their occurrences. The bioreduction of 
Cr(VI) with inorganic electron donors (e.g., elemental sul-
fur) was also reported to increase the groundwater pH values 
(Zhang et al. 2021). Likely because pH values in groundwa-
ter are circum-neutral or slightly alkaline with a low varia-
tion in the present study (7.12–8.41) (Table 3), pH did not 
display strong correlations with other heavy metals (Fig. 3).

To be noted, although the enrichment of Pb in ground-
water is mostly human-induced, such as the release of 
pesticide, leadstorage batteries, gasoline additives, or fire 
coal (Emenike et al. 2020; Shil and Singh 2019; Siddiqui 
et al. 2020; Singh and Kumar 2017), The significant posi-
tive correlation between Pb and Ca2+ (Fig. 3) indicated that 
Pb entered the groundwater probably due to the reaction 
between galena and carbonated water (Liao et al. 2018). As 
lead and zinc deposits were rich in the study area, the source 
of Pb in groundwater could be the weathering and disso-
lution of surrounding rock minerals. However, the Pb was 
also enriched in the area where mine wastewater samples 
with high Pb concentrations were collected, thus the cause 
of mining activities cannot be ruled out (Table S1). To sum 
up, the contents of As, Pb, Ni, and Cr(VI) in groundwater 
were mainly controlled by the weathering and dissolution 
of surrounding rock minerals (Khodapanah et al. 2009; 
Ravindra and Garg 2007; Wang et al. 2016), and might be 
affected by groundwater environment or human activities in 
the mining areas.

Cd in groundwater generally results from greenockite 
and/or industrial wastes and pesticides or fertilizers (Lv 
et al. 2015; Zhao et al. 2004). Although Cd was positively 
correlated with SO4

2− (Fig. 3), sulfur-bearing greenockite 
deposits were not distributed in the study area. Moreover, the 
correlation between Cd and other heavy metals and ground-
water chemical components was non-significant (Fig. 3). 
Thus, the source of Cd in the groundwater might not be the 
leaching of natural surrounding rock minerals but should be 
more likely the human-induced sources such as the use of 
agricultural fertilizer, especially phosphate fertilizer (Zhao 
et al. 2004). Moreover, Zn was positively correlated with 
K+, and PO4

3− (Fig. 3), but not with the main chemical 
components of groundwater (cations and ions). As shown 
in Table S1, the contents of Cd and Zn in the mining waste-
water were low, underlying that the source of Cd and Zn 
could result from other sources such as agricultural activi-
ties, i.e., the use of pesticides, fertilizers, or animal waste 
(Lv et al. 2015; Zhao et al. 2004). Hg was negatively corre-
lated with Zn, temperature, EC, K+, Na+, Mg2+, SO4

2−, and 
HCO3

− (Fig. 3), indicating that the sources of Zn and Hg and 
the factors affecting their migration and transformation in 
groundwater were inconsistent. Because Hg was high in the 
mine wastewater (Table S1), the influence of mining activi-
ties on the Hg content in groundwater was a potential source.

Clustering of Sample Sites by SOM

Self-organizing map (SOM) was employed to classify the 
groundwater samples based on the concentrations of heavy 
metals. 50 (5 × 10) neurons and 4 clusters were selected 
according to Heuristic rules and Davies–Bouldin index, 
and the results were shown in Fig. 4a. The samples in each 



817Distribution, Source Apportionment, and Health Risk Assessment of Heavy Metals in Groundwater…

1 3

cluster likely had similar distribution characteristics and 
sources of heavy metals in groundwater. Each U-matrix map 
represented an index value obtained after dimension reduc-
tion, as marked by shades of blue to red (Lee et al. 2019; 
Zhu et al. 2020). The neurons with high values or low values 
were shown in red or blue, respectively. After that, informa-
tive and qualitative relations among the parameters were 
intuitively shown by comparing SOM graphs according to 
the color gradient. The color change gradients of Cd, Ni and 
Hg were similar, indicating that these 3 indexes have positive 
correlations (Fig. 4b). Similarly, As and Zn or Cu and Pb 
also had similar color change gradients, suggesting the fac-
tors affecting their content and distribution in groundwater 
were similar to some extent. The SOM results demonstrated 
that the correlation of heavy metal indexes belonging to the 
same cluster in groundwater samples hinged on the similar-
ity of their spatial distribution.

Cluster 1, defined by the heavy metal indexes As, Cr(VI), 
and Zn was located at the top of the D-matrix map in the 
SOM results (Fig. 4a). Those groundwater samples were 

mainly located in mountainous valleys in the west and south-
west of the study area (Fig. S2), possibly affected by the 
weathering and dissolution of surrounding rock minerals.

Cluster 2 was located on the lower side of Cluster 1 
(Fig. 4a), in the middle and lower part of the D-matrix, and 
was dominated by As, Cr(VI), and Pb with the relatively low 
weight vector values of each component index. It indicated 
that the groundwater samples had relatively low metal con-
tamination. As shown in Fig. S2, these samples were from 
the mountainous valleys in the eastern mountain valleys and 
the upper part of the southwestern piedmont sloping plain 
in the study area.

Cluster 3, mainly comprised of Cu and Pb, was located 
in the lower-left part of the D-matrix. These samples were 
located near the mountainous region in the middle of the 
study area and close to the mining wastewater samples (Fig. 
S2), which represented the groundwater was affected by the 
weathering and dissolution of copper-bearing and lead-bear-
ing minerals in the aboveground mine tailings.

Fig. 4   a The SOM matrix map of groundwater samples: the cluster-
ing pattern in the SOM, different colors represent different clusters 
and the number in a hexagon denotes the sample number. b result 

of the SOM visualization of corresponding variables. The blue and 
red colors correspond to low and high values, respectively, which can 
detect the correlation between variables
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Cluster 4 was located at the lower right corner of the 
D-matrix and characterized by Cd, Ni, and Hg. The sam-
ples in the Cluster 4 were scattered in the vicinity of the 
central mountain and the upper part of the alluvial plain in 
the southern mountain of the study area, and were also near 
the mine waste water.

Health Risk Assessment

The comprehensive assessment of groundwater quality is 
an essential prerequisite to ensure the ecological security 
of the regional water environment and residents’ health in 
the water-shortage region (Mazhar et al. 2019). Based on 
the SOM results, the health risk assessment was conducted 
independently for each cluster.

Carcinogenic and Non‑carcinogenic Risk Assessments

The potential carcinogenic hazards to both children or adults 
caused by Cd, As, and Cr(VI) in all clusters had high levels 
of risk (CR > 10–6) (Fig. 5). Cr(VI) had the highest potential 
carcinogenic health risk level among the four clusters for 
both children and adults, especially in Cluster 1 (Fig. 5). 

Similarly, previous studies have found that Cr(VI) in some 
shallow groundwater environments was the main source 
of heavy metal health risks for residents (He, et al. 2019; 
Singh et al. 2018; Zhang and Wang 2021; Zhou et al. 2021). 
However, other groundwater studies in some mining area 
did not suggest the most significant role of Cr in creating 
groundwater health risk (Bempah and Ewusi 2016; Giri and 
Singh 2016), and alternatively, the As was suggested as the 
highest risk index. As had the second highest carcinogenic 
risk level in the present study, while the level of Cd was the 
lowest (risk level < 10–6 in most samples) except for samples 
in Cluster 4. These results were consistent with a coal mine 
(Jiang et al. 2021a), but were inconsistent with other mining 
areas where one of these parameters had the carcinogenic 
risk (Giri and Singh 2016; Zhang et al. 2016). The health 
risks of heavy metals in the groundwater samples of each 
cluster were shown in Table 4. The overall total carcinogenic 
risk level (CR) of each cluster followed the order: Cluster 
1 > Cluster 2 > Cluster 4 > Cluster 3, and overall CR of heavy 
metals followed the order: Cr(VI) > As > Cd for both chil-
dren and adults (Fig. 5).

The non-carcinogenic health risk assessment of heavy 
metals in groundwater was shown in Fig. 6. The highest 

Fig. 5   Box diagram of carcinogenic risk value of different heavy metals in groundwater: a and b represent the carcinogenic risk for children and 
adults of each cluster respectively
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Fig. 6   Box diagram of non-
carcinogenic hazard quotient 
of different heavy metals (a 
children, b adult)
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non-carcinogenic hazard quotient (HQ) of heavy metals 
Cu, Pb, Zn, Ni, and Hg to both children and adults in each 
cluster showed lower risks (< 1) (Fig. 6). As such, the Non-
Carcinogenic Hazard Index (HI) values to both children and 
adults in each cluster posed negligible health risks (Fig. 6). 
Interesting, contrary to carcinogenic risk results, the HI 

value caused by various non-carcinogenic indicators in each 
cluster followed the order: Cluster 4 > Cluster 3 > Cluster 
2 = Cluster 1.

Although the groundwater in Cluster 3 and 4 were located 
adjacent to the mine wastewater where intensive mining 
activities occurred, the carcinogenic health risk was not 

Fig. 7   Distribution characteris-
tics of comprehensive carcino-
genic health risk assessment 
results for different populations 
(a children, b adult)
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that noticeable. Instead, groundwater in the mountain val-
ley in the northwest and the piedmont sloping plain in the 
southwest of the study area where the aboveground mining 
activities were less frequent while buried abundant below-
ground mineral sources (Cluster 1), had the highest carcino-
genic health risk (Fig. 7a). However, this area had the low-
est non-carcinogenic health risk. Hence, the aboveground 
mine activities (defined as the mine wastewater contamina-
tion aboveground) mostly influenced the non-carcinogenic 
health risk but not much on the carcinogenic health risk. 
Precisely determining the sources of the heavy metals in 
the groundwater is extremely challenging, and past studies 
have found that both anthropogenic and geogenic sources 
affect the groundwater quality in other mine areas (Newman 
et al. 2017; Singh et al. 2018; Adamu et al. 2015). Addi-
tionally, we cannot rule out that the recharge and discharge 
of groundwater might affect this conclusion, although the 
groundwater flow direction (from north to south) did not 
show such effects.

Comprehensive Health Risk Assessment

The results of total carcinogenic risk (CRtotal) and hazard 
index (HI) of heavy metals were shown in Fig. S3. Across 
the whole study area, the CRtotal of Cd, As and Cr(VI) for 
children ranged from 5.950 × 10–6 to 2.877 × 10–5, and the 
CRtotal of 1 shallow groundwater sample exceeded the unac-
ceptable risk level and 94% samples were greater than the 
acceptable risk value. For adults, the CRtotal of the heavy 
metals was two times higher than that for children, and the 
CRtotal of 3 samples exceeded the unacceptable risk levels 
and 93% of samples were greater than the acceptable risk 
value. Therefore, it can conclude that the overall level of 
carcinogenic health risks posed by Cd, As, and Cr(VI) for 
adults was much higher than that for children (Fig. S3).

To be noted, HI shown by these trace elements for chil-
dren and adults was far below the acceptable risk level. 
Thus, only potential carcinogenic health risks caused by Cd, 
As, and Cr(VI) for children and adults should be considered 
when analyzing the comprehensive health risk assessment, 
while non-carcinogenic health risks could be removed. The 
high-risk samples were distributed in the river valley in the 
northwest of the study area, while a small number was dis-
tributed in the piedmont sloping plain in the southwest or 
eastern region (Fig. 7b). The population density was rela-
tively high in these regions due to the rapid development of 
urbanization. Hence, it is imperative to strengthen the long-
term monitoring of Cd, As, and Cr(VI) content and perform 
corresponding physical, chemical, and biological pretreat-
ments (Sheng et al. 2018; Zhang et al. 2021), especially for 
Cr(VI) and As, to reduce the public health risk.

The authenticity of heavy metal content in groundwa-
ter samples was confirmed via the preciseness of sample 

collection, storage, transportation, and the standardization 
of laboratory tests. However, some sources of uncertainty in 
the health risk assessment still exist. On one hand, it was dif-
ficult to quantify some parameters (e.g., IR, ED, BW and AT 
etc.) of the health risk assessment model for water environ-
ment in the actual calculation, which were all adopted from 
the existing empirical values or statistical average values 
in China's Technical Guidelines or published literature. On 
the other hand, the differences in demographic composition, 
physiology, and regional living habits were not considered, 
which may not conform to the actual situation of local resi-
dents in the study area. Thus, the evaluation results in the 
present study only represented the average health risk level 
of children and adults, and there may be some uncertain-
ties in the actual risk of individual persons. However, these 
uncertainties did not affect the authenticity and effectiveness 
of the health risk assessment as previously described (He 
et al. 2013; Zhou et al. 2021; Su et al. 2018; Qiao et al. 2020; 
Fang et al. 2021). The current results were still effective and 
time-sensitive, which was of great scientific significance to 
groundwater protection, drinking water safety, and reducing 
health risk levels for residents in the study area and similar 
multi-mineral resources area.

Conclusion

The distribution of Cd, As, Cr(VI), Cu, Pb, Zn, Ni, and Hg 
was unraveled, and potential health risk assessment was con-
ducted for children and adults considering different exposure 
pathways in the multi-mineral resources area. Groundwa-
ter in the piedmont sloping plain in the southwest of the 
study area had high concentrations of Cd, As, Cu, and Ni, 
and groundwater in the eastern mountainous and river val-
ley had the high Cu, Pb, Zn, Ni, and Hg concentrations. 
Water–rock interaction was the primary underlying source 
of As, Pb, Ni, and Cr(VI) with some influences of mining 
activities, while Cd, Zn, and Hg were potentially originated 
from anthropogenic activities. As a result, the overall level 
of total carcinogenic risk for adults was much higher than 
that for children across the whole study area, and for both 
children and adults, the carcinogenic risks followed the order 
of Cr(VI) > As > Cd. Meanwhile, the non-carcinogenic risks 
of Cu, Pb, Zn, Ni, and Hg for both children and adults were 
negligible. The potential health risks for residents, especially 
carcinogenic risks of groundwater, were presented in the 
mountain valley where geogenic sources may outweigh the 
anthropogenic sources. Cr(VI) and As should be the primary 
health risk control and pretreated index in the groundwater 
in multi-mineral resource areas.
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