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Abstract
Recently, high levels of  Cr6+ in groundwater have been found and are threatening public health in the Guanzhong Basin of 
China. For this reason, this study aims to specify the occurrence and spatial distribution of groundwater  Cr6+ and to analyze 
the favorable hydrogeochemical environment elevating its concentration in the Guanzhong Basin. The impacts of  Cr6+ on 
human health were also estimated based on the health risk assessment model recommended by the USEPA. Results show 
that 45.40% and 37.36% of the groundwater samples contain  Cr6+ concentration lower than 10 μg/L and ranging within 
11–50 μg/L, respectively. And they are predominantly of  HCO3-Ca and  HCO3-Ca(Mg) water type. About 17.24% of the total 
water samples present  Cr6+ concentrations exceeding the acceptable limit for drinking purpose of 50 µg/L, and are mainly 
classified as  HCO3-Na water type. Low  Cr6+ groundwater is mainly observed in the alluvial aquifer.  Cr6+ concentration in the 
samples from the loess aquifer is higher due to low groundwater velocity caused by the low permeability of loess, as verified 
by the relationship between  Cr6+ and major ions. The relationship between  Cr6+ and pH and molar ratio of  Na+/(Na+ +  Ca2+) 
suggest that alkaline environment and cation exchange are beneficial to high concentration of  Cr6+ in groundwater. Industrial 
activities are also responsible for the elevation of  Cr6+ to some extent. Health risk assessment results show that the adults 
and children in the study area face higher carcinogenic risks than non-carcinogenic risk induced by  Cr6+.
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Introduction

Groundwater is the primary source of drinking water for 
approximately 2 billion humans (Gleeson et al. 2010) and 
supports economic development and ecological environment 
(Li et al. 2021; Wang et al. 2020; Su et al. 2020). However, 
heavy metal pollution of groundwater and sediments is seri-
ously affecting the sustainable development of groundwater 
resources (Kumar et al. 2020; Zhao et al. 2021; Li et al. 
2015, 2016; Khan et al. 2020, 2021). Many studies have 
reported that  Cr6+ concentration in groundwater exceeded 
the acceptable limit of 50 μg/L recommended by the World 

Health Organization for drinking purpose (Ball and Izbicki 
2004; Bourotte et al. 2009; Coyte et al. 2020; He and Li 
2020a; Kazakis et al. 2017; Manning et al. 2015; Mills et al. 
2011; Vengosh et al. 2016). Chromium in natural groundwa-
ter systems is primarily present in two oxidation states, triva-
lent chromium  (Cr3+) and hexavalent chromium  (Cr6+). The 
speciation of chromium depends on pH and redox conditions 
of groundwater (Rajapaksha et al. 2013; Richard and Bourg 
1991). Under alkaline and mild oxidization conditions,  Cr6+ 
will prevail in groundwater, while  Cr3+ will predominate 
under acidic and reduction conditions (Bourotte et al. 2009). 
Compared to  Cr3+,  Cr6+ is more water soluble and is com-
paratively more mobile in groundwater (Coyte et al. 2020; 
Tseng et al. 2018). In addition,  Cr3+ is a micronutrient with 
a relatively low toxicity, but  Cr6+ is a known carcinogen. The 
intake of high levels of  Cr6+ can cause various types of can-
cer and DNA damage in humans, and this has been reported 
in a number of studies (Linos et al. 2011; Tseng et al. 2018).

Because of the high toxicity of  Cr6+, the occurrence and 
sources of  Cr6+ as well as associated health risks in ground-
water have attracted worldwide attention (He and Li 2020a). 
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The occurrence of  Cr6+ in groundwater largely depends on 
the geological background, especially those containing chro-
mium such as ultramafic rocks and serpentinites of ophi-
olite complexes (Bourotte et al. 2009; Coyte et al. 2020; 
Equeenuddin and Pattnaik 2020; Kazakis et al. 2015; Lelli 
et al. 2014; Mills et al. 2011; Oze et al. 2007; Vengosh et al. 
2016). The prevailing hydrogeological environment and geo-
chemical processes may influence its concentration, such as 
pH (Oze et al. 2007), redox environment (Hausladen et al. 
2018; Liang et al. 2021), vadose processes (Kazakis et al. 
2015; Manning et al. 2015), and cation exchange (Bertolo 
et al. 2011; Mills et al. 2011). High levels of  Cr6+ associ-
ated with natural sources are not common in a local region. 
Therefore,  Cr6+ in groundwater can also be associated with 
various anthropogenic activities, such as coal combustion, 
fly ash deposits (Kazakis et al. 2017), paint manufacturing 
(Hausladen et al. 2018), mining activities (Kumari et al. 
2017), leather tanning, phosphate fertilizer manufacturing 
(Molina et al. 2009; Vasileiou et al. 2019), as well as the 
overexploitation of groundwater (Gu et al. 2015; Testa et al. 
2004).

The Guanzhong Basin lies in the middle of Shaanxi Prov-
ince, being an important part of the Yellow River Basin. It 
belongs to the semi-humid and semiarid zone. It is also the 
most densely populated area and the most important agri-
cultural area in northwest China (Deng et al. 2021; Ren et al. 
2021). Limited surface water makes groundwater the main 
source of drinking water or other domestic purposes in this 
area, especially in rural and isolated urban areas. Ground-
water polluted by nitrogen, fluoride and arsenic has been 
widely reported for a long time in the Guanzhong Basin 
and drawn a great deal of scholars’ attention (Li et al. 2014; 
Luo et al. 2014; Wu and Sun 2016; Zhang et al. 2018, 2019; 
Zhu et al. 2006). However, high concentration of  Cr6+ has 
also been found in the groundwater of Guanzhong Basin in 
recent years (Dong et al. 2018; Lei et al. 2019; Qiao et al. 
2020). There are also many areas near the Guanzhong Basin 
that are polluted by  Cr6+, such as Yuncheng and Hejin in 
the west of Shanxi Province, Yan’an, Yulin in the northern 
of Shaanxi (Li 2006; Su et al. 2017; Tian and Wu 2019; 
Zhang 2012). According to the report, about 4% of the rural 
drinking water had concentrations of  Cr6+ exceeding the 
acceptable level (50 μg/L) in the Guanzhong Basin, third 
only after fluoride and nitrogen, and even higher than arsenic 
(Chang et al. 2019). The rate of  Cr6+ exceeding standard 
limit of groundwater (5.83%) was higher than that of sur-
face water (0.27%) (Lei et al. 2019). Further, the studies on 
 Cr6+ contamination of groundwater in the Guanzhong Basin 
are limited, and the distribution and occurrence of  Cr6+ as 
well as associated influences on human health are not well 
understood. Accordingly, the main objectives of this study 
are (1) to delineate the occurrence and spatial distribution of 
groundwater  Cr6+ in the Guanzhong Basin, (2) to analyze the 

controlling factors influencing the concentration of ground-
water  Cr6+, and (3) to estimate the health risks caused by 
 Cr6+. The results of this study may provide a scientific guid-
ance for improving local groundwater quality to reduce the 
risk of  Cr6+ exposure and support ecological protection and 
high-quality development in the Yellow River basin.

Study Area

Location and Geography

The Guanzhong Basin is located between longitude 
E107°30′–110°30′ and latitude N34°00′–35°40′. The study 
area covers 1.9 ×  10–4  km2 and constitutes a basin sur-
rounded on three sides by mountain ranges and open to 
the east. The Wei River flows across the basin from west 
to east and then empties into the Yellow River (Fig. 1). The 
occurrence of floods, loess accumulation and the Wei River 
flowing through this area supplies the geomorphology of 
the study area. From the north and south piedmont to the 
center of the basin, the landform types evolve stepwise from 
a piedmont pluvial plain into a loess tableland and a valley 
terrace. The general terrain of the study area is high in the 
west and low in the east, the altitude varies from 325 to 
800 m. The climate in the study area is governed by the 
temperate semiarid and semi-humid monsoon climate char-
acterized with a cold and dry winter and a hot and wet sum-
mer. The annual precipitation is 530–700 mm, where about 
45% of the precipitation concentrates in July to September. 
The annual temperature and evaporation are 12–13.6 °C and 
1000–1200 mm, respectively.

Geological and Hydrological Settings

Geologically, the Guanzhong Basin is a Cenozoic fault basin 
formed by Himalayan movement. The basin subsided con-
tinuously and accepted deposition during the Late Eocene to 
Pliocene epochs, thereby accumulating very thick Tertiary 
fluvial–lacustrine facies in clastic rock. Deposition contin-
ued during the Quaternary, a thick layer of unconsolidated 
sediments overlay the Tertiary rocks. The Quaternary sedi-
ments of the basin are mainly lacustrine and alluvial deposits 
in the central part of the basin, and interbedded with alluvial, 
diluvial and loess deposits in the marginal areas.

The Guanzhong Basin is a relatively closed basin, which 
makes it an independent hydrogeological unit. Groundwa-
ter is widely distributed in the study area. According to 
geomorphology and hydrogeological conditions, aquifers 
in the Guanzhong Basin can be mainly divided into three 
types of which the first is the alluvial aquifer comprised by 
sand and sandy gravel. The second is the pluvial aquifer 
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composed of sand, sandy gravel and boulder. The third 
group is the aeolian loess aquifer formed by loess layers 
(Fig. 3). The flow direction of groundwater is basically the 
same as the topography, that is, it flows from the southern 
and northern margins to the central areas of the basin, 
from the upper reaches to the lower reaches of the val-
ley, and finally is discharged into rivers and valleys. The 
groundwater is mainly recharged by rainfall, river leakage, 
and irrigation infiltration. Groundwater discharge mainly 
occurs by artificial abstraction, evaporation, and discharg-
ing toward the river.

Materials and Methods

Datasets

For this study, the data of groundwater in the Guanzhong 
Basin were obtained from National Geological Archives of 
China (Li et al. 2018a). Sample collection and treatment 
methods can be seen in the paper published by Li et al. 
(2018a). Conductivity and pH were directly measured in the 
field using LOVIBOND multiparameter measuring instru-
ment (SD150D) and geographical location names, latitude 
and longitude were recorded. Simultaneously, two 500 mL 

Fig. 1  Location of the study area showing the groundwater level and sampling sites



242 L. Wang et al.

1 3

water samples were collected and sealed in polyethylene 
plastic bottles and then sent to the Experimental Testing 
Center of Xi’an Institute of Geology and Mineral Resource 
for analysis of the other parameters. All analytical methods 
followed the national technical regulations (Ministry of Land 
and Resources of the P. R. China 2006). In addition, the 
groundwater hydrochemical data were validated by charge 
balance error percentage (CBE%). Finally, 174 groundwater 
the samples with CBE% smaller than ± 5% were retained, 
and 13 hydrochemical parameters were selected for subse-
quent analysis of this study, including pH, TDS,  Na+,  K+, 
 Ca2+,  Mg2+,  Cl−,  SO4

2−,  HCO3
−,  CO3

2−,  NO3
−,  F− and  Cr6+.

Human Health Risk Assessment

Human health risk assessment is an important methodol-
ogy utilized to assess the probability of deleterious effects 
on human health to support water quality evaluation and 
management (Shukla and Saxena 2020). In this study, the 
non-carcinogenic and carcinogenic health risk of  Cr6+ were 
estimated in two different age groups (adults and children) 
with the USEPA model (USEPA 1989). But only drinking 
water ingestion pathway was considered as the most remark-
able source of exposure, because all the other exposure path-
ways such as inhalation and dermal absorption were negli-
gible (Wu et al. 2019, 2020). Because potential health risk 
is posed only by one contaminant, the non-carcinogenic risk 
of  Cr6+ through drinking water ingestion can be expressed 
by using the hazard quotient (HQ).  Cr6+ is recognized as a 
Group 1 carcinogen by the WHO (World Health 2017), the 
carcinogenic risk (CR) of  Cr6+ through drinking water inges-
tion can also be assessed. The computation can be conducted 
by the following equations (He et al. 2021; Wei et al. 2021; 
Li et al. 2019a, b).

where RfD indicates the reference dosage for  Cr6+ through 
drinking water ingestion pathway, and the value of RfD for 

(1)HQ =
CDI

RfD

(2)CR = CDI × SF

 Cr6+ is 0.003 mg/kg/day in this study. SF is the slop factor of 
 Cr6+ (mg/kg/day), and the SF value of  Cr6+ is set at 0.5 mg/
kg/day. CDI denotes the chronic daily intake (mg/kg/day) 
and is determined with the following equation (He and Wu 
2019; He et al. 2019; Ji et al. 2020).

where C indicates the  Cr6+ concentration in groundwater 
(mg/L); IR is ingestion rate of drinking water (in L/day); EF 
is the frequency of exposure (days/year); ED is the duration 
of exposure (years); BW is average body weight of a person 
(kg), and AT is average time for non-carcinogenic or carci-
nogenic effects (days). The reference values for computing 
CDI are determined by USEPA guidelines statistics data and 
adjusted according to the habits of local residents (Ministry 
of Environmental Protection of the P. R. China 2013). The 
values of these parameters are shown in Table 1.

Results and Discussion

Cr6+ Concentration in Groundwater

The basic statistical analysis of groundwater  Cr6+ concentra-
tions was performed (Table 2). The analytical results indi-
cate that the  Cr6+ values range from 1 to 220 μg/L with an 
average of 29 μg/L and a median of 16 μg/L. According to 
the groundwater quality standard of China (General Admin-
istration of Quality Supervision, Inspection and Quarantine 
of the P. R. China and Standardization Administration of the 
P. R. China 2017), the  Cr6+ concentrations of groundwater 
in the study area can be divided into four intervals: ≤ 10, 
11–50, 50–100 and > 100 μg/L, respectively. Table 2 sum-
marizes the percentages of groundwater samples classified 

(3)CDI =
C × IR × EF × ED

BW × AT

Table 1  Parameter values for 
health risk estimation

Parameter Mean Unit Adults Children

C Concentration of  Cr6+ in water mg/L – –
IR Ingestion rate L/day 1.9 1.1
EF Exposure frequency Days/year 365 365
ED Exposure duration Years 30 6
BW Body weight kg 62.5 25.8
AT Non-carcinogenic average time Days 30 × 365 6 × 365

Carcinogenic average time Days 70 × 365 70 × 365

Table 2  Statistics for percentages of groundwater samples at different 
 Cr6+ concentration intervals

Cr6+ concentration (μg/L) ≤ 10 11–50 50–100 > 100

Percentage (%) 45.40 37.36 9.77 7.47
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by the four intervals. As shown in Table 2, the  Cr6+ concen-
trations of the groundwater samples are mainly in the range 
of ≤ 10 μg/L and 11-50 μg/L, accounting for 45.40% and 
37.36% of the groundwater samples, respectively. In addi-
tion, about 17.24% of all groundwater samples measured for 
 Cr6+ (30 out of 174) exceeded the allowable limit for drink-
ing purpose (50 µg/L), which indicates a potential cancer 
risk to human health.

Hydrogeochemical Characteristics in Different  Cr6+ 
Concentration Intervals

The statistics for groundwater chemistry characteristics 
between different  Cr6+ concentration intervals are listed in 
Table 3. Groundwater samples with  Cr6+ concentration < 
10 μg/L are characterized by highest mean concentrations 
of  Ca2+, low levels of TDS and lowest mean concentrations 
of pH,  Na+,  Mg2+,  Cl−,  HCO3

− and  F−. Groundwater with 
 Cr6+ concentrations of 10–50 μg/L have lowest mean levels 
of TDS and  SO4

2−, and the pH and other major ion  (Na+, 
 Mg2+,  Cl−,  HCO3

− and  F−.) concentrations are a little higher 
than groundwater with  Cr6+  < 10 μg/L, but concentrations of 
 Ca2+ are lower by comparison. For Groundwater with  Cr6+ 
concentrations of 50–100 μg/L, their mean concentrations of 
TDS,  Na+,  Mg2+,  Cl−,  HCO3

− and  F− are elevated, and the 
 Ca2+ concentrations become even lower. Further, ground-
water samples with  Cr6+ concentration > 100 μg/L have the 
lowest mean concentrations of  Ca2+ (mean 42.6 mg/L), and 
highest mean concentrations of TDS,  Na+,  Mg2+,  Cl−  SO4

2−, 
 F−. These results indicate the occurrence of  Cr6+ is greatly 
related to the interaction between water and rock, because 
the concentration of major ions increases with the increase 
of  Cr6+ concentration interval except  Ca2+.

Figure 2 plots the Piper diagram (He and Li 2020b) for the 
four  Cr6+ concentration intervals of the groundwater samples 
to study the hydrochemical types of groundwater. This figure 
indicates that the groundwater samples are predominantly of 
the  HCO3-Ca(Mg) water types, and this agrees with the find-
ings of Duan et al. (2011). It shows that carbonate dissolu-
tion is an important process regulating the major anions. The 
groundwater samples with  Cr6+ concentrations < 50 μg/L 
are clearly distinguished from those > 50 μg/L. Groundwater 
in  Cr6+ concentration intervals ≤ 10 μg/L and 11–50 μg/L 

are mainly of  HCO3-Ca and  HCO3-Ca(Mg) type, and a por-
tion of groundwater samples can be classified as  HCO3-Na 
or  SO4·Cl-Na types. Groundwater having  Cr6+ concentra-
tions > 50 μg/L are classified as  HCO3-Na type, and several 
samples are plotted in  SO4·Cl-Na or  SO4·Cl-Ca·Mg type 
zone. The observation of Piper diagram suggests that low 
concentrations of  Cr6+ are associated with high  Ca2+ and 
that high  Cr6+ samples are low  Ca2+ and high  Na+ water.

Spatial Distribution of  Cr6+ in Groundwater

The spatial distribution of  Cr6+ is delineated in Fig. 3. As a 
whole, the concentration of groundwater  Cr6+ in the north of 
Weihe River is higher than that in the south of Weihe River. 
Groundwater  Cr6+ concentrations ≤ 10 μg/L are mainly 
found in the alluvial aquifer and pluvial aquifer occurring 
at the northern base of the Qinling Mountain. Most of the 
groundwater samples from the pluvial aquifer located in the 
north of the Wei River and most of the loess aquifer show 
that the  Cr6+ concentrations range from 11 to 50 μg/L. Zones 
with groundwater  Cr6+ concentrations > 50 μg/L are mainly 
distributed in the loess aquifer and a portion of alluvial 

Table 3  Mean values of the physicochemical indices within different  Cr6+ concentration intervals

Cr6+ concentration 
interval (μg/L)

pH TDS Na+ K+ Ca2+ Mg2+ Cl− SO4
2− HCO3

− CO3
− NO3

− F−

/ mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

≤ 10 7.71 911.6 105.0 4.0 111.1 48.8 76.6 178.3 458.0 0.1 44.5 0.7
11–50 7.85 815.4 107.9 2.8 77.5 56.6 81.5 134.4 479.2 4.0 50.1 0.9
50–100 7.94 1110.4 202.3 1.1 47.1 71.8 110.5 187.6 599.2 1.3 76.7 1.4
> 100 7.94 1371.5 244.6 1.8 42.6 78.7 125.0 317.7 565.3 3.5 42.6 1.6

Fig. 2  Piper diagram showing the hydrochemical characteristics of 
different  Cr6+ concentration intervals
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aquifer in the Yanliang district, Xianyang City, Qian, Jin-
gyang, Sanyuan and Pucheng Counties, and these areas are 
high-risk zones to health issues due to high  Cr6+ concentra-
tions exceeding the limit for drinking. Previous studies have 
also revealed the occurrence of  Cr6+ in both groundwater 
and surface water in the loess areas of China (He and Li 
2020a; Xiao et al. 2019). Groundwater samples with  Cr6+ 
concentration > 100 μg/L were concentrated in Xianyang 
City and Sanyuan County, which may induce a greater risk 
of disease associated with excessive  Cr6+ concentrations. 
The above results indicate that the geological characteristics 
of loess may promote the occurrence of  Cr6+.

To understand how loess affects the concentration of  Cr6+ 
in groundwater, total Cr in the soil of the Guanzhong Basin 
was measured in 2019. The spatial distribution of total Cr 
in the soil is generated. As shown in Fig. 4, the total Cr 
levels in the soil are higher in the south of the Weihe River 
Basin than in the north of the basin, and higher in the west 
than in the east of the basin, which is similar to continental-
scale spatial distribution of chromium in catchment sedi-
ment/alluvial soil of China published by Yan et al. (2021). 
However, the total Cr distribution in soil is inconsistent 
with that of  Cr6+ in groundwater in the Guanzhong Basin, 
because Cr is present in the loess in the form of  Cr3+ instead 
of  Cr6+ as revealed by the research pf He and Li (2020a). 
This indicates that the total Cr in sediments does not have 
direct effect on the occurrence and distribution of  Cr6+ in 
groundwater of the Guanzhong Plain. However, the loess 
provides the geogenic source of  Cr3+ to form groundwater 
 Cr6+. Thus, it can be inferred that the high concentration 
of  Cr6+ may be attributed to the low groundwater velocity 

caused by the low permeability of loess. Lower groundwater 
seepage velocity can be associated with longer residence 
time of the groundwater, favoring the transform of  Cr3+ in 
the loess into  Cr6+ in groundwater. This is consistent with 
the previous result that the occurrence of  Cr6+ is greatly 
related to water–rock interactions.

Hydrogeochemical Factors Controlling  Cr6+ 
Concentrations

Hydrogeochemical processes are accountable for the occur-
rence of the  Cr6+ in groundwater. The analysis of the rela-
tionship between  Cr6+ and the other chemical components 
in groundwater is helpful for achieving a further under-
standing of the occurrence of groundwater  Cr6+ in a study 
area (Fig. 5). As shown in Fig. 5a, there is weak linear rela-
tionship between groundwater  Cr6+ and pH, but the higher 
concentrations of  Cr6+ do tend to occur between about pH 
7.7–8.5. This indicates that an alkaline environment is more 
conducive to  Cr6+ occurrence in groundwater, because of 
stronger sorption and greater tendency toward reduction 
under neutral and acid environment (Bertolo et al. 2011; 
Coyte et al. 2020).

As shown in Fig. 5b, c, there are a positive correlation 
between  Cr6+ and  Na+, and a negative relationship between 
 Cr6+ and  Ca2+ in groundwater, indicating that occurrence 
mechanism for high  Cr6+ concentration is likely related to 
Ion exchange between  Ca2+ and  Na+ ions, which removed 
 Ca2+ from groundwater by replacing with  Na+ on the sur-
faces of the clay minerals. The exchange occurs particularly 
in the aquifer sediment matrixes consisting of fine particles 

Fig. 3  Spatial distributions of groundwater  Cr6+, overlying hydrogeological map
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like clay and silty clay. Bourotte et al. (2009) also found 
cation exchange between  Ca2+ and  Na+ may result in the 
desorption of  Cr6+ to the aquifer.

In this study, Chloro alkaline indices (CAI-1 and CAI-2) 
proposed by Schoeller was used to evaluate the process of 
cation exchange. CAI-1 and CAI-2 can be calculated as fol-
lows, where all ions are expressed in meq/L (Li et al. 2018b).

When CAI-1 and CAI-2 both have negative values, indi-
cating that cation exchange processes occur between  Ca2+ 
in groundwater is exchanged for adsorbed  Na+ in sediment. 
However, if the indices were both positive, the exchange 
occurred in the reverse order. As shown in Fig. 6a, negative 
CAI-1 and CAI-2 values in most of the groundwater samples 
indicate that cation exchange of  Na+ in sediment against 
 Ca2+ in the groundwater may prevail across the entire basin. 
Meanwhile, the relationship between  Cr6+ concentration and 
the molar ratio of  Na+ to  (Na+ +  Ca2+) is showed to signify 
the impact of cation exchange on  Cr6+ concentrations in the 
study area (Fig. 6b). Figure 6b indicates that the intensive 
cation exchange led to the molar ratio of  Na+ to  (Na+ +  Ca2+) 
approaching to one and high  Cr6+ concentration. This is 
because cation exchange decreases the concentration of  Ca2+ 
and seems to driving the dissolution of carbonate miner-
als, increasing the pH and  HCO3

− concentration. Further, 

(4)CAI-1 =
Cl− − (Na+ + K+)

Cl−

(5)CAI-2 =
Cl− − (Na+ + K+)

SO2−

4
+ CO2−

3
+ HCO−

3
+ NO−

3

the increasing monovalent  Na+ concentrations compared to 
the divalent  Ca2+ concentrations can reduce the repulsive 
potential between the positive hydrous metal oxide surfaces 
and negative ions with the help of alkaline conditions, and 
thus promote the desorption of  Cr6+ anions  (CrO4

2−) to the 
aquifer following the counterion effects (Liu et al. 2018; 
Zachara et al. 1987).

Impacts of Human Activities on  Cr6+

Human activities can affect the occurrence and distribution 
of  Cr6+. Industrial emissions can affect the concentration of 
 Cr6+ in groundwater through leaching. As shown in Fig. 3, 
groundwater samples with high concentrations of  Cr6+ are 
accompanied by industrial pollution sources and solid waste 
dump sites. Furthermore, the information of industrial pollu-
tion sources listed in Table 4 shows that many industrial pol-
lution sources, such as electroplating, printing and dyeing, 
fertilizer manufacturing and other enterprises, are widely 
distributed in the high  Cr6+ areas. These industrial pollu-
tion sources can discharge a large amount of chromium-con-
taining wastes and/or wastewater to the environment, caus-
ing the elevation of  Cr6+ concentration in the surrounding 
groundwater. For example, Xianyang downtown has densely 
distributed industries, correspondingly groundwater is heav-
ily polluted by  Cr6+ (Dong et al. 2018; Wang et al. 2012).

The use of fertilizer in agriculture may also be a poten-
tial factor affecting the concentration of  Cr6+ in groundwa-
ter, because phosphate fertilizer usually contains a certain 
amount of chromium, particularly in inferior phosphate fer-
tilizer. In the Guanzhong Basin, the  NO3

− concentration in 

Fig. 4  Spatial distribution of Cr in the soil samples of the study area
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groundwater ranges from 0.16 to 373.00 mg/L with an aver-
age of 49.57 mg/L, indicating that the agricultural activi-
ties affect the groundwater quality due to fertilizer as well 
as animal and human wastes (Duan et al. 2011). However, 
 Cr6+ concentration in groundwater shows a poor correlation 
with  NO3

− (Fig. 5d), suggesting that input from agricultural 
activities do not affect the  Cr6+ level in groundwater.

Health Impacts of Groundwater  Cr6+

High  Cr6+ level in groundwater may pose serious health haz-
ards to local populace through multiple exposure pathways, 
especially for the drinking intake of untreated water. There-
fore, the health risk assessment methodology was used to 
estimate the non-carcinogenic and carcinogenic health risks 

to adults and children by  Cr6+. Table 5 presents the statistical 
results of the risk assessment to adults and children when 
they are exposed through drinking water intake.

For the non-carcinogenic risk, if HQ > 1 is considered 
that there is a certain health risk. The values of HQ for adults 
range from 0.010 to 2.229 with an average value of 0.294, 
with 7.47% samples exceeding the acceptable limit value. 
However, the HQ values for children range from 0.014 to 
3.127 with an average value of 0.413, about 12.07% of the 
total samples with the HQ values than 1. Above results 
indicate that non-carcinogenic health risk caused by  Cr6+ 
is under the acceptable level through drinking water inges-
tion pathway in most of study area. Meanwhile, children are 
at higher non-carcinogenic risk than adults owing to lower 
body weight for children.

Fig. 5  The relationship between concentrations of  Cr6+ and pH (a),  Cr6+ and  Na+ (b),  Cr6+ and  Ca2+ (c),  Cr6+ and  NO3
− (d)
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Fig. 6  Plots of CAI-1 against CAI-2 (a), and  Na+/(Na+ +  Ca2+) versus  Cr6+ (b)

Table 4  List of industrial pollution source information

Number Name of pollution source Process that causes pollution

1 Xianyang Textile Industrial Park Printing and dyeing, leather tanning
2 Shaanxi Xinyu Surface Engineering Co., Ltd Electroplating
3 Xianyang Northwest Medical Instrument Co., Ltd Electroplating
4 Xianyang Jihuaxin Sanzero Printing and Dyeing Co., Ltd Printing and dyeing
5 Shaanxi xianyang chemical industry Co., Ltd Chemical engineering
6 Liquan xinwei casting Co., Ltd Electroplating
7 Xianyang baofeng biological fertilizer factory Fertilizer manufacturing
8 Liquan Industrial Park Electroplating, metal processing
9 Qianxian Industrial Park Printing and dyeing, coating production
10 Xi’an Aircraft Industry Aluminium Co., Ltd Electroplating
11 Yanliang Industrial Park Electroplating, metal processing
12 Shaanxi White Deer Pharmaceutical Co., Ltd pharmaceutical technique
13 Zhuangli Industrial Park Metal processing, coal combustion
14 Shaanxi shaanjao chemical industry Co., Ltd Coal combustion
15 Fuping Wofuda Biological Technology Co., Ltd Fertilizer manufacturing
16 Lime/brick kiln Coal combustion
17 Shaanxi Dongsheng Garment Co., Ltd Printing and dyeing

Table 5  Statistical results of health risk assessment

Age group Non-carcinogenic risk (HQ) Carcinogenic risk (CR)

Min Max Mean Proportion of samples 
inducing risk

Min Max Mean Proportion of 
samples inducing 
risk

Adults 0.010 2.229 0.294 7.47% 6.51E−06 1.43E−03 1.89E−04 50.57%
Children 0.014 3.127 0.413 12.07% 1.83E−06 4.02E−04 5.31E−05 16.67%
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In terms of the carcinogenic risk, there are multiple stand-
ards for the acceptable levels of cancer risk, such as  10−4 in 
Netherlands,  10−5 in Canada and New Zealand, and  10−6 in 
America and Australia. In this study, value of carcinogenic 
risk above  10−4 is considered as unacceptable. The values 
of carcinogenic risk range from 6.51E−06 to 1.43E−03 
with a mean value of 1.89E−04 for adults and vary from 
1.83E−06 to 4.02E−04 with a mean value of 5.31E−05 for 
children. 50.57% of the total samples for adults and 16.67% 
of the sample for children exceed the acceptable limit of the 
carcinogenic risk  (10−4). It is obvious that the carcinogenic 
risk of  Cr6+ has a higher impact than non-carcinogenic risk 
for adults and children. However, in contrast to the non-
carcinogenic risk, the carcinogenic risk of  Cr6+ for adults is 
significantly higher than that for children, because the longer 
exposure duration leads to the accumulation of  Cr6+ in the 
body. The study results indicate that groundwater treatment 
is necessary to reduce the  Cr6+ concentration for drinking 
or other domestic purposes, especially in rural areas where 
water is not treated. Otherwise, the carcinogenic risk of  Cr6+ 
continues to increase as children grow up.

Conclusions

Groundwater polluted by nitrogen, fluorine and arsenic 
has been well known and attracted much attention in the 
Guanzhong Basin, but high concentrations of  Cr6+ has also 
been found in recent years. In this study, 13 parameters of 
174 groundwater samples were obtained in the Guanzhong 
Basin. The occurrence and factors influencing the concen-
tration of groundwater  Cr6+ were analyzed. The non-carci-
nogenic and carcinogenic health risks of groundwater  Cr6+ 
through drinking water ingestion were assessed. The main 
conclusions are summarized:

(1) Groundwater samples from the Guanzhong Basin 
display  Cr6+ concentrations of 1–220 μg/L. 45.40% 
and 37.36% of the groundwater samples contain  Cr6+ 
concentrations ranged ≤ 10  μg/L and 11–50  μg/L, 
respectively. And they are mainly of  HCO3-Ca and 
 HCO3-Ca(Mg) type. Around 17.24% present  Cr6+ con-
centrations exceeding the allowable value for drinking 
purpose of 50 µg/L and are predominantly classified 
as  HCO3-Na type. The concentrations of major ions 
increase with the increase of  Cr6+ concentration inter-
val except  Ca2+.

(2) Groundwater with low concentration of  Cr6+ is mainly 
found in the alluvial aquifer, whereas high concentra-
tion of  Cr6+ is associated with the loess aquifer. Low 
groundwater velocity caused by the low permeability 
of loess indicates longer residence time of the ground-
water, which may favor  Cr6+ generation in loess aquifer.

(3) Alkaline environment and cation exchange of  Na+ in 
sediment against  Ca2+ in the groundwater are more 
conducive to  Cr6+ formation in groundwater. Industrial 
activities can discharge a large amount of chromium-
containing solid wastes and/or wastewater, and cause 
the elevation of  Cr6+ concentration in the surrounding 
groundwater, while fertilizer use in agriculture has no 
apparent effect on  Cr6+ occurrence in groundwater.

(4) The non-carcinogenic risk caused by  Cr6+ is low for 
adults and children through drinking water ingestion. 
However, the carcinogenic risk is very high, and the 
carcinogenic risk of  Cr6+ for adults is significantly 
higher than that for children. Groundwater treatment is 
necessary to reduce the  Cr6+ concentration for drinking 
or other domestic purposes, especially in rural areas.
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