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Abstract
Existing studies show that drinking high-iodine or low-iodine groundwater on a long-term basis may cause goiter and other 
health problems. However, currently there is a lack of systematic research on the distribution, formation and health effects of 
iodine in groundwater at the basin scale. Taking the Wei River Basin in the Loess Plateau as a typical study area, this paper 
used hydrogeological surveys, sample collection, multivariate statistical analysis, health effect evaluations, and other meth-
ods, and found that iodine content in groundwater in 60.3% of the region poses potential risks to human health. Groundwater 
recharge areas were iodine-deficient, mainly located on the upstream Loess Plateau of the Wei River Basin in the vicinity of 
the Liupan Mountain watershed, and at the piedmont of the Qinling Mountains. Groundwater was low mineralization, neutral, 
and low-F bicarbonate, and was controlled by the weathering and dissolution of silicate minerals and evaporites, the dissolu-
tion and precipitation of carbonates, and active water circulation conditions. Iodine-deficient endemic goiter had a potential 
incidence of 5–38% in these areas. Groundwater runoff areas had suitable groundwater iodine content, and the groundwater 
hydrochemical type was dominated by  HCO3–Ca,  HCO3–Na, and  HCO3·SO4–Na type water. The mineralization degree was 
modest and the  I− content distribution of suitable iodine content areas was controlled by relatively active water circulation 
conditions. Groundwater discharge areas were high-iodine groundwater areas, where the groundwater hydrochemical type 
was dominated by meta-alkaline and alkaline  HCO3·SO4,  SO4·Cl, and Cl·SO4 type water, and controlled by the evapora-
tion–concentration of shallow groundwater, the biodegradation of enriched organic matter, and the competitive adsorption 
of  HCO3

− and  I−. Here iodine-excess endemic goiter had a potential incidence of 5–100%. Considering the results from the 
study area, this paper recommends that the groundwater iodine safety range for endemic goiter be set to 10.0–300.0 μg/L.

Keywords Iodine · Endemic goiter · Health effects · Hydrogeochemistry · The Wei River Basin

Introduction

Iodine is an essential trace element for human growth and 
development and a principal component in the synthesis of 
thyroid hormones. According to existing research, the effects 
of iodine on human health are bilateral, that is, both a defi-
ciency and an excess of iodine can cause diseases, the most 
common of which is goiter (commonly known as “big neck 
disease”) (Chen et al. 2004; Laurberg et al. 2010; Andersen 
et al. 2012). Iodine deficiency is a problem in 130 countries 
worldwide, and about 1/3 of the population live in iodine-
deficient areas and is exposed to goiter risk (Hu et al. 2005; 
de Benoist et al. 2008; Xue et al. 2019a, b). Meanwhile, 
goiter caused by high iodine has also been reported in coun-
tries such as Japan, Argentina, and Denmark (Harada et al. 
1994; Andersen et al. 2002; Watts et al. 2010; Voutchkova 
et al. 2014a, b). Water-sourced iodine is absorbed by the 
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human body and goiter caused by high or low water-sourced 
iodine has become a worldwide public health problem.

Groundwater is one of the main water supply sources and 
its quality directly affects the health of residents (Li and Wu 
2019a, b; Li et al. 2019a; He and Wu 2019; He et al. 2019a, 
b; de Moraes et al. 2019). The iodine content in groundwater 
is closely related to iodine deficiency disorders (IDDs) and 
iodine-excess disorders (IEDs). Goiter caused by ground-
water iodine deficiency mainly occurs in mountainous and 
hilly regions (Lin et al. 1991, 2004; Cao et al. 2004; Ren 
et al. 2008). High-iodine groundwater has also been reported 
around the world. For instance, in Skagen, Denmark, the 
iodine content in drinking water can be as high as 140 μ/L 
(Andersen et al. 2012); in La Pampa of Argentina, it ranges 
from 52 to 395 μg/L (Watts et al. 2010); in the Horonobe 
area, northern Hokkaido, Japan, it is up to 270 m mol/L 
(Togo et al. 2016). In China, groundwater iodine deficiency 
is a prominent problem. With the implementation of the 
“universal salt iodization (USI)” program and more research 
on IDD prevention and control, iodine deficiency has been 
well controlled. However, since the discovery of iodine-
excess goiter in Hebei Province in the late 1970s, many simi-
lar cases have been reported in other regions (Yu et al. 1980; 
Farebrother et al. 2018). So far, high-iodine groundwater has 
been discovered in the Datong Basin, the Guanzhong Basin, 
the Taiyuan Basin, the Hetao Plain, the North China Plain, 
and many other regions (Li et al. 2017a; Duan et al. 2016; 
Tang et al. 2013; Xu et al. 2013).

According to existing research, high-iodine water is 
mainly distributed in arid and semi-arid regions, allu-
vial–proluvial plains, and coastal regions (basically follow-
ing a platy distribution, and supplemented by a small platy 
distribution and focal distribution) (Shen et al. 2007). The 
formation, migration, and enrichment of iodine in ground-
water are mainly controlled by factors such as temperature, 
pH value, redox potential, and organic matter content (Oto-
saka et al. 2011; Li et al. 2013, 2014a; Lemieux et al. 2019; 
Xue et al. 2019a, b). Shallow high-iodine groundwater is 
mainly controlled by evaporation–concentration, while deep 
high-iodine groundwater is restricted by organic matter-rich 
reducing environments (Xu et al. 2013; Voutchkova et al. 
2014a, b; Lu et al. 2015; Pi et al. 2015; Qian et al. 2017). 
Agricultural irrigation is also a key factor in the formation 
of shallow high-iodine groundwater (Li et al. 2016a).

However, at the large basin scale, differences in geomor-
phology, hydrogeological conditions, and climatic condi-
tions have complicated the hydrogeochemical characteris-
tics of iodine in groundwater, making it difficult to interpret 
the distribution and health effects of iodine. Some scholars 
have explored the distribution and factors controlling iodine 
in groundwater in the North China Plain, but they mainly 
focused on high-iodine groundwater (Zhang et al. 2013; 
Gao et al. 2014; Li et al. 2017a; Xue et al. 2018) and rarely 

considered the formation and health effects of iodine defi-
ciencies or suitable iodine content in groundwater. For this 
reason, the Wei River Basin (the largest basin in the Loess 
Plateau in China) was selected as the study area. This paper 
studied the hydrogeochemical characteristics of iodine in 
groundwater, extracted the controlling factors and forma-
tion of iodine-deficient, enriched, and suitable content areas, 
and evaluated the health effects of iodine in groundwater to 
provide a scientific basis for the development and utilization 
of groundwater at the basin scale while protecting human 
health.

Study Area

Originating in the Niaoshushan Mountains, in Weiyuan 
County of Gansu Province, the Wei River is the largest trib-
utary of the Yellow River (Li et al. 2014b). It runs through 
the southeast of the Loess Plateau and has a total length of 
818 km. The Wei River Basin (104°–110° 20′ E, 33° 50′–37° 
18′ N) extends over an area of 135,000  km2 (Fig. 1). This is 
an important area for the development of the new Silk Road 
under the Belt and Road Initiative (Li et al. 2015, 2017b).

The water system of the Wei River Basin has an asym-
metric distribution. There are more branches on the south 
bank, which originated from the Qinling Mountains and 
are characterized by clean water, short headwaters, and fast 
flow. Aside from having a larger basin area, there are fewer 
branches on the north bank, which originated from the Loess 
Plateau and hilly regions and have high sediment concentra-
tions (Li and Qian 2018a, b). Within a semi-humid to semi-
arid warm temperate climate zone, the climate type here is 
a continental monsoon climate with mean annual tempera-
tures ranging from 7.8 to 13.5 °C, mean annual precipitation 
of 350–700 mm (mainly in the south and west), and mean 
annual evaporation of 1000–2000 mm. The study area is 
high in the west and low in the east, occupied by the Loess 
Plateau in the north and the Qinling Mountains in the south.

After considering topography and geomorphology, sur-
face and underground watersheds, and other conditions, 
this paper divided the groundwater system of the Wei River 
Basin as follows: Western Gansu Loess Plateau Subsystem 
(I), Eastern Gansu Loess Plateau Subsystem (II), Northern 
Shaanxi Loess Plateau Subsystem (III), Guanzhong Basin 
Subsystem (IV), and North Qinling Mountains Piedmont 
Subsystem (V) (Sun et al. 2016).

Western Gansu Loess Plateau Subsystem (I) is located 
upstream of the Wei River Basin and its main aquifers are 
alluvial–pluvial rubble, gravel layers, and loess layers. 
Atmospheric precipitation is the primary recharge source for 
groundwater in this subsystem, and groundwater is mainly 
discharged to the Wei River and the gullies on both sides of 
the valley.
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Eastern Gansu Loess Plateau Subsystem (II) is located 
midstream of the Wei River Basin and its main aquifers are 
alluvial sand and pluvial sand layers distributed zonally in 
the Jinghe River Valley and piedmont alluvial–pluvial fans. 
Groundwater here is mainly laterally recharged by atmos-
pheric precipitation and river water, then discharged to gul-
lies in the form of springs.

Northern Shaanxi Loess Plateau Subsystem (III) is 
dominated by the Loess Plateau and its terrain is high in 
the northwest and low in the southeast. Groundwater types 
include fissure water in clastic rocks, pore water in loose 
rocks, and pore-fissure water widely distributed within loess 
layers (Li and Qian 2018a, b). Atmospheric precipitation is 
the primary recharge source for groundwater in this sub-
system, which is mainly discharged to gullies in the form 
of springs.

Guanzhong Basin Subsystem (IV) is located in the west 
part of the Fen-Wei fault-depression zone and its aquifers are 
alluvial–proluvial coarse rubble and gravel layers. Ground-
water here is mainly recharged by atmospheric precipitation 
and discharged through evaporation, horizontal discharge 
to rivers, springs, and artificial exploitation (Wang et al. 
2018; Li et al. 2016b, c, 2019a). North Qinling Mountains 

Piedmont Subsystem (V) is mainly weathering fissure water 
in a near-surface distribution, with poor water yield.

Materials and Methods

Water samples were collected twice from the study area. 
In the first campaign (2011–2013), we collected 404 water 
samples, including 365 groundwater samples, 16 spring 
water samples, eight cellar water samples, and 15 river water 
samples. In the second campaign (2017), we collected 24 
supplementary water samples from high-iodine groundwater 
regions, including 21 groundwater samples, two river water 
samples, and one canal water sample.

In this study, all groundwater samples were collected 
from domestic drinking water wells approximately 30 min 
after pumping and river water samples were collected from 
the main stream and branches of the Wei River. GPS was 
used to record the geographic coordinates and groundwater 
burial depth, and a portable multiparameter water quality 
monitor was used to test T, pH, Ec, and Eh on site. When 
water samples were to be used for major element and trace 
element analysis, 500 mL polyethylene bottles were used 

Fig. 1  Geographical location map of Wei River Basin
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for sampling. During collection, water samples were rinsed 
2–3 times and the bottles were filled with water. After 
sampling, a simple filter unit with a 0.45 μm filter mem-
brane was used for filtration and removal of suspended 
impurities. Three water sample bottles were collected from 
each sampling point. Several drops of  HNO3 were added 
to one bottle until the pH was less than 2, which was used 
for testing cations. The other two bottles were used to test 
anions and other trace elements. All water samples were 
stored at a low temperature in an incubator.

K+ and  Na+ were tested using flame atomic absorp-
tion spectrophotometry (WFX-110B).  SO4

2−,  Cl−,  NO3
−, 

 NO2
−,  F−, and  I− were tested using ion chromatography 

(HLC-601).  Ca2+ and  Mg2+ were tested using EDTA titra-
tion.  HCO3

− and  CO3
2− were tested using acid–base titra-

tion. Al, As, Cr, Se, Mn, Hg, and other trace elements were 
tested using ICP-MS. During sample testing, duplicate 
analyses were conducted on 5% of the samples for quality 
control. The error was < 5% for all duplicates.

Results and Discussion

Iodine Ion Content in Groundwater

The statistical results of hydrogeochemical composition 
indexes of shallow groundwater in Wei River Basin are 
shown in Table 1. Iodine in groundwater is found in three 
main forms, that is,  IO3

−,  I−, and organic iodine. In northern 
China, the dominant form is  I− (Xue et al. 2018). According 
to the results of the 386 groundwater samples collected from 
the Wei River Basin, iodine ion content in groundwater var-
ied between 2 and 28,620 μg/L, with a mean of 764.17 μg/L, 
a median of 91.0 μg/L, and a variation coefficient (Cv) of 
3.73. In the study area, iodine ion content in river water 
varied between 2 and 420 μg/L, with a mean of 110.0 μg/L, a 
median of 50.0 μg/L, and a variation coefficient (Cv) of 1.28. 
This suggests that the mean iodine ion content in river water 
was less than that in groundwater. From the perspective of 
water supply, river water can be used as a drinking water 
source in high-iodine groundwater areas.

Table 1  Hydrogeochemical indexes of shallow groundwater in Wei River Basin

Indexes Unit Minimum value Maximum value Average value Standard deviation Coefficient 
of variation

Groundwater depth m 1.11 180 27.67 34.85 1.259
Temperature °C 11.3 20.3 14.99 2.04 0.136
pH 6.51 9.67 7.78 0.61 0.078
TDS mg/L 88.02 22,490 1100.99 1825.6 1.658
TH mg/L 55.84 3822 477.61 445.64 0.933
Soluble  SiO2 mg/L 0.04 31.12 14.52 4.67 0.322
COD mg/L 0.02 117.60 1.58 5.928 3.752
CO2 mg/L 0.00 43.50 11.42 7.52 0.658
K+ mg/L 0.17 88.17 3.33 6.58 1.976
Na+ mg/L 2.26 5724.8 207.78 490.74 2.362
Ca2+ mg/L 5.46 385.37 86.16 60.75 0.705
Mg2+ mg/L 1.51 800.18 63.74 86.80 1.362
Cl− mg/L 3.23 5398.25 171.29 434.24 2.535
SO4

2− mg/L 2.80 9182.50 316.65 799.92 2.526
HCO3

− mg/L 18.42 1140.36 419.85 173.31 0.413
NO3

− mg/L < 0.03 612 36.14 65.49 1.812
F− mg/L 0.01 4.90 0.62 0.655 1.056
As µg/L < 0.04 24.94 1.672 2.476 1.481
Hg µg/L < 0.01 0.817 0.245 0.224 0.914
Cr mg/L < 0.004 0.373 0.034 0.054 1.588
I− µg/L 2 28,620 764.17 2850.35 3.73
Mn mg/L < 0.001 1.39 0.432 0.168 0.389
Se µg/L < 0.04 0.72 0.14 0.12 0.857
Al mg/L < 0.02 2.54 0.180 0.307 1.706
Fe mg/L < 0.002 2.706 0.060 0.186 3.1
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According to the national standards put forward by the 
Chinese Ministry of Health (GB/T 19380-2003, and GB 
16005-2009), iodine content in groundwater in the study 
area was divided into five intervals. Table 2 presents the 
percentages of groundwater samples at different intervals 
based on testing results. As can be seen in Table 1, 22.2% 
of groundwater samples had an iodine content of less 
than 10 μg/L and were termed iodine-deficient, whereas 
38.1% of groundwater samples had an iodine content of 
above 150 μg/L and were termed high-iodine water that 
may induce goiter. This suggests that iodine content in 
groundwater poses potential risks to human health in about 
60.3% of the Wei River Basin.

Spatial Distribution of Iodine in Groundwater

The iodine spatial distribution map of the groundwater in the 
Wei River Basin (Fig. 2) was drawn using MAPGIS. As can 
be seen from Fig. 2, that iodine content in groundwater in 
the study area had clear zonality in the horizontal direction. 
From the piedmont (the Loess Plateau) to the center of the 
Guanzhong Basin, and from upstream to downstream Wei 
River, iodine content in groundwater gradually declined, 
which was basically consistent with the groundwater flow 
direction.

The zoning map of iodine content (Fig. 2) shows that 
iodine content in groundwater was generally low (< 10 μg/L) 
upstream of the Wei River and in the piedmont alluvial fan of 
the Qinling Mountains. These regions are the main recharge 
areas for groundwater in the Wei River Basin where ground-
water runoff was relatively smooth and 95% of groundwater 
had a TDS value of less than 1.0 g/L. Suitable groundwa-
ter iodine content areas with groundwater iodine contents 
of 10~150 μg/L were mainly distributed in Eastern Gansu 
Loess Plateau Subsystem and over the majority of Northern 
Shaanxi Loess Plateau Subsystem. The suitable groundwater 
iodine content areas were also found in the loess tableland, 

Table 2  Statistics of percentages of groundwater samples with differ-
ent iodine content intervals

Iodine concentration 
(μg/L)

< 10 10–150 150–300 300–1000  > 1000

Percentage (%) 22.2 39.7 12.1 15.0 11.0

Fig. 2  Zoning map of iodine contents of groundwater in Wei River Basin
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valley terrace, and some alluvial-proluvial fans to the west 
of the Jing River in the Guanzhong Basin Subsystem. These 
regions are groundwater runoff areas, where runoff was rela-
tively smooth and 91% of groundwater had a TDS value 
of less than 1.0 g/L. High-iodine areas (not iodine-excess 
endemic goiter areas) with groundwater iodine contents 
of 150–300 μg/L were mainly distributed in the alluvial 
plains of the Guanzhong Basin, such as Xi’an, Xianyang, 
Xingping, Weinan, Huaxian County, and Huayin, and also 
scattered in Gangu County, Zhuanglang County, Pingliang, 
Lingtai County, and Huanxian County of Gansu Province. 
In these regions, 95% of groundwater had a TDS value of 
less than 1.5 g/L. Iodine-excess endemic goiter areas with 
groundwater iodine contents of 300–1000 μg/L were mainly 
distributed in the regions to the north of the Wei River and 
to the east of Liquan County in the Guanzhong Basin, par-
tially distributed in the Wei River terrace of Weinan, Huax-
ian County, and Huayin and in some parts of Huxian County, 
and also scattered in Gangu County, Zhuanglang County, 
Pingliang, Lingtai County, and Huanxian County of Gansu 
Province. Ultra-iodine-excess endemic goiter areas with 
groundwater iodine contents above 1000 μg/L were mainly 
distributed in the majority of Pucheng County and Dali 
County, in Huaxian County in the Guanzhong Basin, and 
also scattered in Pingliang of Gansu Province and Jingyang 
County of Shaanxi Province. High-iodine groundwater areas 
were groundwater runoff discharge areas or groundwater dis-
charge areas, where runoff is stagnant, groundwater move-
ment shifts from horizontal to vertical, and evaporation is 
intense.

The environmental conditions of aquifers at different 
depths influenced the iodine content and form in groundwa-
ter. Given that the groundwater samples used in this study 
were from domestic drinking water wells, the environmen-
tal conditions of groundwater had already been disturbed 
by groundwater exploitation. In this case, changes in iodine 
content in groundwater would not fully reflect the natural 
aquifer conditions, but they can provide some valuable 
information for discussion about iodine content change in 
groundwater at different depths. As can be seen from Fig. 3, 
in aquifers with a burial depth of less than 100 m, iodine-
deficient groundwater, medium-iodine groundwater, and 
high-iodine groundwater were detected. In deep aquifers 
with a burial depth greater than 100 m, medium-iodine 
groundwater and high-iodine groundwater coexisted, but 
iodine content in high-iodine groundwater was clearly lower 
than in shallow groundwater. This finding was consistent 
with the vertical distribution characteristics of iodine con-
tent in groundwater in the Datong, Taiyuan, and Guanzhong 
Basins, but differed greatly from iodine content distributions 
in groundwater in the North China Plain (Tang et al. 2013; 
Duan et al. 2016; Li et al. 2017a). This is mainly because the 
climatic and geographic conditions of the Wei River basin 

are similar to the Datong, Taiyuan, and Guanzhong Basins, 
while the North China Plain has a warm temperate humid 
monsoon climate and a smaller topographic slope.

Hydrochemical Characteristics of Iodine 
in Groundwater

Based on the above intervals of iodine content in ground-
water, the hydrochemical Piper trilinear nomographs of dif-
ferent iodine content in groundwater were plotted (Fig. 4). 
As can be seen from Fig. 4, in iodine-deficient areas with 
groundwater iodine contents of less than 10 μg/L, cations 
were dominated by  Ca2+, anions were dominated by  HCO3

−, 
and hydrochemical type was dominated by  HCO3–Ca and 
 HCO3–Ca·Mg type water (Fig. 4a). In suitable groundwater 
iodine content areas with iodine contents of 10–150 μg/L, 
cations were dominated by  Ca2+ and  Na+, anions were domi-
nated by  HCO3

− and  SO4
2−, and hydrochemical type was rel-

atively complicated and dominated by  HCO3–Ca,  HCO3–Na, 
and  HCO3·SO4–Na type water (Fig. 4b). In high-iodine areas 
(not iodine-excess endemic goiter areas) with iodine con-
tents of 150–300 μg/L, cations were dominated by  Ca2+ and 
 Na+, anions were dominated by  HCO3

−, and hydrochemical 
type was relatively singular and dominated by  HCO3–Ca and 
 HCO3–Na type water (Fig. 4c). In iodine-excess endemic 
goiter areas with iodine contents of 300–1000 μg/L, cati-
ons were dominated by  Ca2+ and  Na+, anions were domi-
nated by  HCO3

− and  SO4
2−, and hydrochemical type was 

complicated and dominated by  HCO3–Ca,  HCO3–Na, 
 HCO3·SO4–Ca,  HCO3·SO4–Na,  SO4·Cl–Na, and  SO4–Na 
type water (Fig. 4d). In ultra-high-iodine areas with iodine 
contents above 1000 μg/L, cations were dominated by  Na+, 
anions were dominated by  SO4

2− and  HCO3
−, and hydro-

chemical type was dominated by  SO4–Na,  HCO3·SO4–Na, 

Fig. 3  Distribution of iodine content in groundwater in depth direc-
tion
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Fig. 4  Chemical types of iodine contents in groundwater
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and  SO4·HCO3–Na type water (Fig. 4e). In summary, the 
hydrochemical evolution of different iodine content intervals 
in the study area were consistent with the hydrochemical 
evolution of groundwater (Liu et al. 2018; Xu et al. 2019), 

as well as iodine in groundwater in other regions (Xue et al. 
2018).

There was a clear positive correlation between iodine 
content and  HCO3

−, and iodine content increased with 

Fig. 5  Relationship between iodine and TDS and the ions
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increasing  HCO3
−. However, iodine content had no clear 

correlation with TDS,  Na+,  Mg2+,  SO4
2−, or  Cl− (Fig. 5). 

Average local hydrochemical component values (Table 3) 
showed that as iodine content increased, TDS,  Na+,  Mg2+, 
 SO4

2−,  Cl−, and  F− in groundwater also increased. That is 
to say, iodine content in groundwater was closely related to 
pH, mainly occurred in meta-alkaline environments, and had 
a strong positive correlation with  HCO3

−. Existing studies 
indicate that as pH increases, iron and clay minerals produce 
more negative charges that reduce the adsorption of  I− or 
the competitive adsorption of  HCO3

−,  OH−, and  I− caused 
by high  HCO3

−, consequently enhancing the desorption of 
iodine (Dai et al. 2009; Nagata et al. 2009). This indicates 
that, in a high-pH environment, the iodine adsorbed by sedi-
ments is released to groundwater.

Redox potential (Eh) is a sensitive groundwater quality 
index that controls the speciation, migration, and transfor-
mation of iodine in groundwater (Hou et al. 2009; Li et al. 
2014a). In the groundwater of the study area, Eh varied 
between − 150 and 252 mV, and had a median of 152 mV, 

which indicates that aquifers were dominated by a sub-
oxidation–reduction state. The statistics showed no obvious 
linear relationship between iodine content in groundwater 
and Eh. This is because Eh is a highly variable index that 
changes constantly in field testing, making it impossible 
measure accurately (Duan et al. 2016).

Differential Formation of Iodine Content 
in Groundwater

To discuss the formation of iodine in groundwater in the Wei 
River Basin, this paper selected  Na+,  Ca2+,  Mg2+,  SO4

2−, 
 Cl−,  HCO3

−,  F−,  I−, TDS, and pH as key indices (Table 4), 
and used Principal Component Analysis (PCA) to extract 
the main factors influencing iodine formation, migration, 
and enrichment (Li et al. 2019b; Wu et al. 2014, 2019a). 
The hydrogeochemical processes contributing to the forma-
tion of iodine-deficient, suitable, and high-iodine areas were 
discussed.

Table 3  Statistics of groundwater chemistry characteristics between different iodine content intervals

Projects pH TDS (g/L) Ion content (mg/L)

Na+ Ca2+ Mg2+ SO4
2− Cl− HCO3

− F−

Iodine deficiency areas (lower than 10 μg/L) 7.65 0.52 55.54 76.69 35.19 68.73 29.76 374.62 0.43
Iodine appropriation areas (higher than 10 μg/L and lower than 

150 μg/L)
7.86 0.51 45.37 78.01 34.59 62.27 37.32 371.45 0.36

Areas of iodine-excess and non-iodine-excess disorders (higher than 
150 μg/L and lower than 300 μg/L)

7.89 0.49 52.55 58.55 33.33 52.63 35.49 395.44 0.35

Areas of iodine-excess disorders (higher than 300 μg/L and lower than 
1000 μg/L)

7.65 0.80 147.5 85.05 46.6 181.8 92.76 484.35 0.39

Iodine-ultra-excess areas (higher than 1000 μg/L) 7.83 1.18 343.1 43.81 60.02 319.0 223.8 588.13 0.81

Table 4  Factor loadings of 
hydrogeochemical parameters in 
different iodine content areas

Parameters Iodine deficiency area Iodine appropriation 
area

Iodine-excess area

F1 F2 F3 F1 F2 F3 F1 F2 F3

Na+ 0.96 0.11 0.15 0.96 0.14 0.07 0.96 0.22 0.04
Ca2+ 0.41 − 0.77 − 0.07 0.57 − 0.73 0.10 0.36 − 0.54 0.53
Mg2+ 0.92 − 0.15 0.19 0.92 0.01 0.08 0.92 0.10 0.20
SO4

2− 0.92 − 0.07 − 0.18 0.97 − 0.04 0.05 0.98 0.10 0.05
Cl− 0.83 − 0.14 0.14 0.97 − 0.06 0.03 0.99 0.08 0.08
HCO3

− 0.28 − 0.25 0.70 0.03 0.15 0.91 0.25 0.65 0.50
F− 0.72 0.43 0.27 0.54 0.71 0.17 0.07 0.81 − 0.18
I− − 0.03 0.20 0.73 − 0.06 0.02 − 0.02 0.41 0.63 − 0.08
TDS 0.97 − 0.20 0.07 0.99 − 0.04 0.05 0.98 0.13 0.08
pH 0.12 0.86 − 0.04 − 0.05 0.53 − 0.70 − 0.01 0.11 − 0.91
Eigenvalue 5.17 1.72 1.07 5.30 1.55 1.20 5.38 1.89 1.10
Variance contribution rate % 51.73 17.19 10.70 53.04 15.47 11.99 53.85 18.86 11.0
Cumulative contribution rate % 51.73 68.92 79.62 53.04 68.51 80.50 53.85 72.71 83.71
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In groundwater iodine-deficient areas, there were three 
main controlling factors that influenced the hydrochemical 
composition of groundwater: factors  F1,  F2, and  F3. To be 
specific, the  F1 factor contributed 51.73% and was closely 
related to TDS,  Na+,  SO4

2−,  Mg2+,  Cl−, and  F−.  F2 contrib-
uted 17.19% and had a positive correlation with pH, but 
was negatively correlated with  Ca2+.  F3 contributed 10.70% 
and was positively correlated with  I− and  HCO3

−.  F1 indi-
cated that in the study area, the weathering and dissolution 
of silicate minerals and evaporites had a direct influence 
on TDS,  Na+,  SO4

2−,  Mg2+,  Cl−, and  F− content, and con-
trolled groundwater salinity (Li et al. 2019b).  F2 showed 
that the dissolution and precipitation of calcium minerals 
were controlled by groundwater pH, but had a low corre-
lation with  I− (0.2).  F3 identified  HCO3

− as the primary 
factor controlling iodine content in groundwater. In sum-
mary, the weathering and dissolution of silicate minerals 
and evaporites, and the dissolution and precipitation of car-
bonates, were key hydrogeochemical processes influencing 
groundwater iodine-deficient areas. In addition, these areas 
were mainly distributed in the piedmont proluvial fan of the 
Qinling Mountains and the upstream Loess Plateau of the 
Wei River Basin. In these regions, the aquifers were com-
posed of highly permeable pebble gravels, medium sand, 
and find sand, the hydraulic slope was relatively high, and 
the groundwater runoff was smooth. The easy loss of  I− to 
rapid groundwater flows was an important contributor to I 
deficiency in groundwater in these regions.

Seen from Table 3, in suitable groundwater iodine content 
areas, there were also three main factors that influenced the 
hydrochemical composition of groundwater:  F1,  F2, and  F3. 
 F1 contributed 53.04% and was positively correlated with 
TDS,  SO4

2−,  Cl−,  Na+ and  Mg2+. This indicates that, in the 
study area, the weathering, dissolution, and evaporation of 
evaporite minerals had a direct influence on of  Na+,  SO4

2−, 
 Mg2+, and  Cl− content and controlled groundwater TDS (Li 
et al. 2018a, b).  F2 contributed 15.47% and was positively 
correlated with  F− and pH, but negatively correlated with 
 Ca2+. This suggests that the dissolution and precipitation of 
fluorites were controlled by the pH and further determined 
the  Ca2+ and  F− content.  F3 contributed 11.99% and was 
positively correlated with  HCO3

−, but negatively correlated 
with pH. In addition, in these regions, groundwater runoff 
was relatively active and the loss of iodine in groundwater 
was non-significant. Together, these results suggest that the 
distribution of iodine content in suitable groundwater iodine 
content areas was controlled by the dissolution of evaporites, 
the dissolution and precipitation of fluorites, and relatively 
active hydrodynamic conditions.

In groundwater discharge areas, the hydrogeochemical 
characteristics of iodine enrichment were related to three 
main controlling factors, as well.  F1 contributed 53.85% and 

was closely related to TDS,  Na+,  Mg2+,  SO4
2−, and  Cl−. 

 F2 contributed 18.86%, and was positively correlated with 
 HCO3

−,  F−, and  I−, but had an obvious negative correlation 
with  Ca2+.  F3 contributed 11.0% and was positively corre-
lated with  Ca2+ and  HCO3

−, but negatively correlated with 
pH.  F1 indicated that the dissolution and evaporation–con-
centration of evaporites had a direct influence on TDS,  Na+, 
 SO4

2−,  Mg2+, and  Cl− content.  F2 identified  HCO3
− as the 

primary factor controlling iodine content in groundwater, 
and  F− and  I− as coexisting elements (Pi et al. 2015).  F3 
showed that the dissolution and precipitation of minerals 
containing carbonates were also important factors influenc-
ing the distribution of iodine in groundwater, and that pH 
limited the distribution. In high-iodine groundwater areas, 
aquifers were dominated by lacustrine, eolian, and alluvial 
deposits, and, in terms of lithology, were mainly composed 
of clay, loam, sandy loam, etc. With the disappearance of 
ancient lakes, biochemical actions caused enrichment of 
iodine in plankton, hydrophytes, and other organisms (Xue 
et al. 2019a, b). In an enclosed and anaerobic environment, 
driven by the microbial metabolism and decomposition of 
organic matter, the iodine adsorbed on organic matter sur-
face was released into groundwater. The competitive adsorp-
tion of  HCO3

− and  I− in groundwater further indirectly pro-
moted the iodine enrichment (Wang et al. 2009; Xu et al. 
2013).

Relationship Between Iodine Content 
in Groundwater and Human Health

Because of the dual thresholds for the effects of iodine 
on human health, both low and high iodine can cause 
endemic goiter (Cao et al. 2004; Voutchkova et al. 2014a, 
b; Voutchkova et al. 2017). There have been lots of studies 
on health risk quantification of various contaminants in 
groundwater (Li et al. 2016d, 2019c; Wu et al. 2019b; Wu 
and Sun 2016; Zhang et al. 2018a, b). These studies are 
deterministic interpretation of the health risk. However, to 
accurately measure the relationship between iodine con-
tent in groundwater and the endemic goiter prevalence, 
Wang et al. (1983) used a parabolic equation to prepare 
statistics on iodine content (natural logarithm taken, x) and 
prevalence (y), as shown below:

If a 5% prevalence of endemic goiter were selected as 
the classification criterion for endemic areas, the most 
suitable range of iodine content in groundwater was 
determined to be 10–100 μg/L according to Formula (1). 
When iodine content in groundwater is less than 10 μg/L, 
as iodine content in drinking water drops, the preva-
lence would increase, so there is a negative correlation 

(1)ŷ = 114.23 − 37.09x + 2.92x
2
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between them. When iodine content in groundwater is 
above 100 μg/L, as iodine content increases, the preva-
lence would increase, so there is a positive correlation 
between them.

The above method was used to obtain the relation-
ships between iodine content in groundwater and endemic 
goiter prevalence for different groundwater subsystems of 
the Wei River Basin (Fig. 6). There was no potential for 
endemic goiter in the Northern Shaanxi Loess Plateau 
Subsystem. The Western Gansu Loess Plateau Subsystem 
was dominated by iodine-deficient endemic goiter, which 
mainly occurred in mountainous and hilly regions and 
at the piedmont of the West Qinling Mountains with a 
potential incidence of 5–30%. The Eastern Gansu Loess 
Plateau Subsystem was exposed to the health risks of 
both iodine-deficient and iodine-excess endemic goiter. 
Iodine-deficient endemic goiter mainly occurred in the 
vicinity of the Liupan Mountain watershed, with a poten-
tial incidence of 5–38%. Iodine-excess endemic goiter 
mainly occurred in Chongxin County of Pingliang, with a 
potential incidence of 5–25%. The Guanzhong Basin Sub-
system was dominated by iodine-excess endemic goiter, 
which mainly occurred in Pucheng and Dali of the Guan-
zhong Basin with a potential incidence of 5–100%. The 
North Qinling Mountains Piedmont Subsystem faced the 
health risk of iodine-deficient endemic goiter, which had 
a potential incidence of 15–50%.

To sum up, potential iodine-deficient endemic goiter 
mainly occurred in groundwater recharge areas character-
ized by high terrain, strong hydrodynamic erosion and 
cutting, fine surface runoff conditions, intense ground-
water circulation, dominant weathering and leaching 
in hydrogeochemical processes, and easy loss of iodine 
in groundwater. Iodine-excess endemic goiter mainly 
occurred in groundwater discharge areas characterized 
by low terrain, poor hydrodynamic conditions, shallow 
burial depth, strong evaporation–concentration, alkaline 
and reducing environments, and easy iodine enrichment. 
In groundwater runoff areas, iodine content in ground-
water was suitable, so these were the most suitable areas 
for mankind.

Consensus has now been reached about the relation-
ship between groundwater iodine and endemic goiter, as 
well as the upper and lower thresholds. However, due 
to differences in prevalence among various classifica-
tion criteria for endemic areas, the safety ranges differ 
as well (Wang et al. 1983; Lin 1991; Farebrother et al. 
2018). Based on existing research results, considering 

water shortages in the study area and the national stand-
ards set by the Ministry of Health for the determination 
and classification of iodine-excess goiter endemic areas, 
this paper recommends that the groundwater iodine safety 
range for endemic goiter should be set at 10.0–300.0 μg/L 
for this area.

Conclusion

In the study area, iodine content in groundwater varied 
between 2 and 28,620 μg/L with a mean of 764.17 μg/L. 
Low-iodine water  (I− ≤ 10 μg/L) was mainly distributed in 
groundwater recharge areas, i.e., the upstream Loess Pla-
teau of the Wei River Basin and the piedmont alluvial fan 
of the Qinling Mountains, where hydrochemical type was 
dominated by  HCO3–Ca and  HCO3–Ca·Mg type water. 
High-iodine water  (I− > 300 μg/L) was mainly distributed 
in groundwater runoff discharge areas or groundwater dis-
charge areas, and the majority of the loess tableland and 
valley terrace to the east of the Qishui River in the Guan-
zhong Basin where hydrochemical type was dominated by 
 HCO3–Na,  HCO3·SO4–Na,  SO4·Cl–Na, and  SO4–Na type 
water. Iodine content in groundwater posed potential risks 
to human health in 60.3% of regions.

The  I− content distribution of groundwater iodine-
deficient areas were mainly controlled by weathering and 
dissolution of silicate minerals and evaporites, dissolution 
and precipitation of carbonates, and active water cycling 
conditions. Suitable groundwater iodine content areas were 
controlled by relatively active water cycling conditions. 
High-iodine groundwater areas were mainly controlled by 
shallow groundwater evaporation–concentration, enriched 
organic matter biodegradation, the competitive adsorption 
of  HCO3

− and  I−, and stagnant groundwater flow.
The study area was exposed to the health risks of both 

iodine-deficient and iodine-excess endemic goiter. Iodine-
deficient endemic goiter mainly occurred in groundwater 
recharge areas, i.e., the upstream Loess Plateau of the Wei 
River Basin, around the Liupan Mountain watershed, and 
the piedmont of the Qinling Mountains, with potential 
incidence of 5–50%. Iodine-excess endemic goiter mainly 
occurred in groundwater discharge areas, i.e., Pucheng and 
Dali of the Guanzhong Basin, with potential incidence 
of 5–100%. Based on the above results, this paper rec-
ommends that the groundwater iodine safety range for 
endemic goiter should be set as 10.0–300.0 μg/L for the 
study area.



380 L. Duan et al.

1 3

Fig. 6  Relationship between the disease prevalence and iodine content of groundwater in Wei River Basin
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