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Abstract
Dietary intake to trace elements may represent the most relevant source of exposure for the general, non-occupationally 
population, but some of them have been rarely evaluated. We measured content of fifteen trace elements (antimony, barium, 
beryllium, boron, cobalt, lithium, molybdenum, nickel, silver, strontium, tellurium, thallium, titanium, uranium, and vana-
dium) in 908 food and beverage samples through inductively coupled plasma mass spectrometry. We estimated their dietary 
intake using a validated semi-quantitative food frequency questionnaire collected from a population of the Emilia-Romagna 
Region in Northern Italy. We compared our estimates with tolerable upper intake levels reported by international agencies 
and we assessed the non-carcinogenic risk through calculation of total hazard quotient for each trace element according to 
the US-EPA approach. Overall, estimates of their dietary intake were substantially similar to those reported from other coun-
tries, and they fell below the tolerable upper intake levels provided by international agencies. The total hazard quotient for 
each trace element was below 1. Our findings provide updated estimates of food levels and dietary intake of trace elements 
far frequently evaluated in a sample of Italian adult consumers. They also suggest that any non-carcinogenic risk associated 
with intake of investigated trace elements may be ruled out in our population.
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Introduction

A comprehensive assessment of dietary intake of chemi-
cal contaminants is needed to evaluate the long-term risk 
for public health and food risk assessment (European Food 
Safety Authority 2006; US-EPA; WHO 1996), considering 
that diet represents the most relevant source of majority of 

trace elements for non-occupationally exposed populations 
(Reilly 2002). In order to assess the possible health risk to 
the consumers, it seems necessary to evaluate trace element 
content in foods and beverages that are consumed by the 
general population and to estimate their actual dietary intake 
for comparison with tolerable levels (European Food Safety 
Authority 2006). In recent years, a few studies assessed the 
levels of rare or ‘neglected’ trace elements, especially in 
the Italian population (Filippini et al. 2018a; Turconi et al. 
2009), and for some elements results are lacking also for 
Europe and other Western population (European Food Safety 
Authority 2011; Reilly 2002). In addition, the relevance of 
trace elements in human health and disease is well docu-
mented. Depending also of their role within the metabolism, 
they present an intriguing relation with human health, show-
ing either nutritional and toxicological effects (Nordberg 
and Nordberg 2016; WHO 1996). Being diet most relevant 
source of exposure to the above-mentioned trace elements, 
a periodic and updated evaluation of their content in foods 
represents a key element for a comprehensive assessment of 
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their intake levels and of possible consequent health risks 
(Kim et al. 2015).

To do this, in this study, we aimed to estimate the dietary 
intake of a large number of trace elements (namely anti-
mony, barium, beryllium, boron, cobalt, lithium, molybde-
num, nickel, silver, strontium, tellurium, thallium, titanium, 
uranium, and vanadium) in a Northern Italy population, in 
order to assess their exposure level through diet and evaluate 
whether these levels are safe for human health.

Methods

Food Collection and Analysis

We determined the content of trace elements in food sam-
ples available and collected in the area of the study. Food 
collection lasted from October 2016 to February 2017. We 
purchased a total of 908 food and beverage samples in local 
markets, large supermarkets, and grocery stores as well as 
in community canteens from Reggio Emilia and Modena 
provinces. Relevant food items characterizing the diet of 
this community were selected from previous population-
based studies addressing the dietary habits of subjects from 
Northern Italy, with particular reference of Emilia-Romagna 
Region (Filippini et al. 2018a). In order to avoid cross con-
tamination with metals and trace element under investiga-
tion, we used plastic food containers (i.e. 50 ml volume plas-
tic tubes or jars) as well as plastic cutlery or stainless knives 
when handling and collecting food samples. Using a clean 
stainless-steel knife, we cut solid foods by collecting sam-
ples from six different points in the plate. Then, we homog-
enized the samples using a food blender equipped with a 
stainless-steel blade and we placed a portion of 0.5 g in 
quartz containers previously washed with MilliQ water (Mil-
liQPlus, Millipore, MA, USA) and HNO3. We liquid-ashed 
the samples with 10 ml solution (5 ml HNO3 + 5 ml·H2O) 
in a microwave digestion system (Discover SP-D, CEM 
Corporation, NC, USA) and we finally stored them in plas-
tic tubes, and diluted to 50 ml with deionized water before 
analysis. Using an inductively coupled plasma mass spec-
trometer (Agilent 7500ce, Agilent Technologies, CA, USA), 
we performed trace element determination. All the analyses 
were performed in duplicate, implementing quality controls 
including both blanks (solution of MilliQ water) and a con-
trol solution of tap water additionally enriched with 22 ppb 
of each element under investigation (Filippini et al. 2018b, 
2019b). Limits of detection (LOD) are presented in Table 1 
and values below the LOD were set equal to LOD/2.

We report the contamination levels of selected trace ele-
ments according to the food consumption patterns and food 
categories typical of this Italian population, as assessed 
through the European Prospective Investigation into Cancer 

and Nutrition-EPIC food frequency questionnaire imple-
mented for dietary habits evaluation (Filippini et al. 2017a, 
2017b; Turrini et al. 2001). The final list of main food cat-
egories includes cereals and cereal products, meat and meat 
products, milk and dairy products, eggs, fish and seafood, 
vegetables, legumes, potatoes, fresh fruits, dry fruits, sweets, 
and beverages.

Study Population and Assessment of Dietary Habits

We assessed dietary habits in sample population in Emilia-
Romagna Region, Northern Italy. Detailed information of 
participant identification and recruitment has been previ-
ously reported in detail (Malavolti et al. 2013; Malavolti 
et al. 2017). To sum up, after the approval of the provincial 
ethical committee, and through the access to the National 
Health Service directory including all residents of the 
Emilia-Romagna Region, namely from the provinces of 
Bologna, Ferrara, Modena, Parma, and Reggio Emilia, we 
invited to participate to the study 2825 subjects, and even-
tually 747 (26.4%) agreed to participate and provided their 
written consent. The participants returned both a lifestyle 
questionnaire and the EPIC food frequency questionnaire 
(FFQ) which we had mailed to them. The EPIC FFQ is a val-
idated semi-quantitative FFQ specifically developed for the 
Central-Northern Italy population (Pala et al. 2003; Pasanisi 
et al. 2002) within the ‘European Prospective Investigation 
into Cancer and Nutrition’ project. This FFQ was designed 
to estimate frequency and amount of consumption of 188 
food items over the previous year, also using photos of serv-
ing sizes to help proper completion by participants.

Table 1   Limit of quantification (LOQ) and limit of detection (LOD) 
of investigated elements

All values are in µg/kg

Element LOQ LOD

Antimony (Sb) 0.00390 0.00130
Barium (Ba) 0.79092 0.26364
Beryllium (Be) 0.00012 0.00004
Boron (B) 0.95640 0.31880
Cobalt (Cb) 0.04956 0.01652
Lithium (Lt) 0.02322 0.00774
Molybdenum (Mo) 0.05424 0.01808
Nickel (Ni) 0.31800 0.10600
Silver (Ag) 0.00012 0.00004
Strontium (Sr) 0.54096 0.18032
Tellurium (Te) 0.00210 0.00070
Thallium (Tl) 0.00300 0.00100
Titanium (Ti) 0.43914 0.14638
Uranium (U) 0.00096 0.00032
Vanadium (V) 0.05298 0.01766



643Dietary Estimated Intake of Trace Elements: Risk Assessment in an Italian Population﻿	

1 3

Out of those who returned study materials, we excluded 
twenty-eight subjects from subsequent analysis because of 
incomplete data or extreme and implausible values of energy 
intake derived from the FFQ (assessed though the ratio of 
total energy intake:calculated basal metabolic rate lower than 
the 0.5th percentile or higher than the 99.5th percentile). The 
final population sample comprised 719 (men/women 319/400) 
adult subjects, with age ranging from 18 to 87 years, with 
499 subjects (male/female 190/309) aged < 65 years and 220 
(male/female 129/91) aged ≥ 65 years. Mean age was 55.2 
(standard deviation 14.5) years in overall sample with slightly 
higher values in men than women with mean age of 59.1 
(14.0) year and 52.3 (14.1) years, respectively. (Filippini et al. 
2019a; Malagoli et al. 2019). The median energy intake was 
1906 kcal/day (interquartile range-IQR 1538–2364 kcal/day) 
in all subjects, 2024 kcal/day (IQR 1649–2462 kcal/day) in 
men and 1800 kcal/day (IQR 1455–2296 kcal/day) in women, 
respectively.

Dietary Intake Estimates of Trace Elements

We combined data from the determination of contamination 
levels of trace elements in foods and the dietary habits assessed 
using the FFQ to compute trace element daily intake, by using 
the equation presented below.

We multiplied the element contents measured in food (µg/
kg) with the intake as estimated by the FFQ (g/day). Accord-
ingly, we estimated the daily dietary intake of the rare trace 
elements for the diet as a whole and for each food category, 
by reporting median and interquartile ranges (IQR). We also 
estimated the dietary intake by kilogram (kg) of body weight 
(bw), by dividing for weight of participants.

Finally, we implemented the human health risk assess-
ment method as suggested by the US-Environmental Protec-
tion Agency (US-EPA) in order to evaluate the probability 
of adverse health effects in humans exposed to selected trace 
element through diet (Adel et al. 2016; Bonsignore et al. 2018; 
Copat et al. 2018; Ferrante et al. 2018). In particular, the safety 
risk assessment using target hazard quotient (THQ) promoted 
by US-EPA describes the non-cancer risk of contaminants 
by the ratio between exposure dose (i.e. dietary intake) and 
the reference dose (RfD) (US-EPA). Detailed expression is 
as follows:

Daily dietary estimate
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)

=

∑

level in food
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1000

∑
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where THQ is the target hazard quotient, DI is the dietary 
daily intake in µg/kg bw/day, and RfD is the reference dose 
in µg/kg bw/day. A THQ < 1 indicates that the trace element 
exposure level is no harmful, while a THQ > 1 indicates that 
it has potential harm to the human body (US-EPA).

Results and Discussion

Only a few elements show values below the LOD of a large 
amount of food (Supplemental Table S1), in particular silver 
(48.6%), thallium (35.8%), tellurium (22.2%), and partially 
beryllium (14.1%) and antimony (11.0%). Tables 2 and 3 
present the levels of trace element contamination in foods 
and the estimates of their dietary intake according to the 
main food categories, respectively, showing their median 
and interquartile range. Corresponding figures according to 
subcategories are presented in Supplemental Tables S2-S3, 
and dietary estimates in subjects aged < 65 and ≥ 65 years 
are presented in Supplemental Tables S4 and S5, respec-
tively. Table 4 compares the estimated median and the high-
est level we estimated in study population with the toler-
able intake suggested by international regulatory agencies. 
Detailed results are presented for each trace element sepa-
rately. Overall, our findings are similar compared to data on 
dietary intake reported in other countries when available.   

Antimony

Antimony occurs mainly in a trivalent (as antimony trioxide) 
or pentavalent state (antimony potassium tartrate) (WHO 
2003b). Antimony trioxide is considered a food contami-
nant due to its use as additive and initiator in the manu-
facture of polyethylene terephthalate and other polymers. 
Food contamination follows migration from food contact 
materials in which they are used (ECHA 2008; European 
Food Safety Authority 2004b). Antimony is also a naturally 
occurring element, therefore, its presence in the environ-
ment, and thereby also indirectly in water and in foods and 
beverages produced from agricultural goods, may also be 
attributed to natural sources (WHO 2003b). Antimony 
shows higher concentration in sweets products, followed by 
meat and fish (Table 2). Foods showing the highest anti-
mony content are biscuits, dry cakes, chocolate, and candy 
bars among sweet products, but also mushrooms, processed 
meat, crustaceans, molluscs, and preserved and tinned fish 
demonstrated concentration above 2 µg/kg (Supplemental 
Table S2). The antimony daily dietary intake is 3.471 µg/day 
(IQR 2.801–4.395 µg/day) (Table 3), with main contribution 
from fresh fruits (particularly citrus fruits), cereal products 
(mainly bread), and meat (red and processed ones) (Supple-
mental Table S3). Our results are consistent with previous 
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Table 2   Trace element concentrations in main food categories

Food category Antimony (µg/kg) Barium (mg/kg) Beryllium (µg/kg)
50th (IQR) 50th (IQR) 50th (IQR)

Cereals and cereal products 1.361 (0.263–3.438) 1.034 (0.724–1.400) 0.135 (0.033–0.269)
Meat and meat products 2.025 (0.836–4.284) 0.038 (0.022–0.072) 0.042 (0.007–0.106)
Milk and dairy products 1.031 (0.294–2.800) 0.539 (0.125–0.801) 0.048 (0.005–0.113)
Eggs 0.756 (0.158–0.941) 0.214 (0.031–1.096) 0.001 (0.000–0.048)
Fish and seafood 1.838 (0.551–3.783) 0.056 (0.026–0.165) 0.077 (0.024–0.226)
All vegetables 1.179 (0.276–3.897) 0.217 (0.081–0.532) 0.082 (0.020–0.220)
Legumes 1.185 (0.001–2.698) 0.893 (0.519–2.010) 0.342 (0.146–0.578)
Potatoes 1.489 (0.170–3.468) 0.088 (0.065–0.174) 0.109 (0.019–0.376)
Fresh fruits 0.526 (0.097–2.070) 0.169 (0.081–0.344) 0.059 (0.006–0.174)
Dry fruits, nuts, and seeds 1.535 (0.634–4.403) 0.927 (0.568–2.445) 0.277 (0.037–0.355)
Sweets, chocolate, cakes, etc. 2.101 (1.086–5.842) 0.693 (0.269–2.145) 0.145 (0.031–0.333)
Oils and fats 0.352 (0.150–1.285) 0.007 (0.002–0.015) 0.003 (0.000–0.022)
Beverages 0.363 (0.124–0.745) 0.039 (0.014–0.087) 0.067 (0.013–0.280)

Boron (mg/kg) Cobalt (µg/kg) Lithium (µg/kg)
50th (IQR) 50th (IQR) 50th (IQR)

Cereals and cereal products 0.368 (0.188–0.751) 7.08 (4.03–13.11) 14.83 (7.16–29.15)
Meat and meat products 0.143 (0.059–0.256) 2.87 (2.01–5.52) 3.41 (2.01–6.05)
Milk and dairy products 0.164 (0.081–0.266) 6.88 (3.60–12.24) 4.78 (2.75–9.43)
Eggs 0.202 (0.181–0.331) 2.49 (0.94–5.48) 3.87 (1.50–6.51)
Fish and seafood 0.306 (0.097–0.554) 4.91 (2.98–7.45) 19.10 (10.49–38.80)
All vegetables 1.415 (0.956–2.427) 6.05 (3.71–13.92) 8.23 (2.37–23.26)
Legumes 7.756 (3.537–11.090) 72.84 (39.28–104.29) 15.43 (6.19–35.66)
Potatoes 0.796 (0.616–1.077) 9.72 (5.07–12.80) 8.99 (5.21–11.92)
Fresh fruits 2.009 (0.982–4.198) 3.45 (1.97–6.43) 1.87 (0.95–4.73)
Dry fruits, nuts, and seeds 11.131 (7.548–17.035) 38.07 (16.64–89.51) 4.48 (1.29–11.53)
Sweets, chocolate, cakes, etc. 0.696 (0.212–3.805) 6.99 (3.32–69.53) 7.08 (5.16–13.94)
Oils and fats 0.022 (0.000–0.123) 0.43 (0.01–1.77) 0.35 (0.004–1.48)
Beverages 0.671 (0.077–3.491) 1.29 (0.52–3.06) 2.36 (0.66–9.58)

Molybdenum (µg/kg) Nickel (µg/kg) Silver (ng/kg)
50th (IQR) 50th (IQR) 50th (IQR)

Cereals and cereal products 421.06 (289.66–639.36) 109.06 (67.03–183.42) 374.85 (0.02–1026.00)
Meat and meat products 22.14 (12.70–41.98) 27.07 (12.78–46.73) 0.02 (0.02–234.00)
Milk and dairy products 77.10 (50.22–147.73) 30.22 (16.27–95.61) 0.02 (0.02–39.54)
Eggs 81.22 (34.81–203.03) 4.90 (3.30–7.21) 0.02 (0.02–0.02)
Fish and seafood 9.82 (3.91–26.09) 23.27 (13.06–50.22) 376.00 (0.02–2319.00)
All vegetables 48.56 (20.29–101.79) 64.75 (39.22–159.63) 87.62 (0.02–550.00)
Legumes 2531.86 (1022.62–5399.85) 896.13 (347.66–1660.21) 3.00 (0.02–1778.00)
Potatoes 44.67 (40.48–199.30) 97.14 (75.89–194.37) 282.00 (92.93–494.00)
Fresh fruits 9.19 (5.19–26.41) 31.53 (13.39–59.45) 0.02 (0.02–224.82)
Dry fruits, nuts, and seeds 163.32 (90.95–394.09) 1096.59 (486.95–2087.37) 734.00 (0.02–1881.00)
Sweets, chocolate, cakes, etc. 177.75 (79.66–244.11) 98.45 (39.39–695.49) 116.47 (0.02–537.32)
Oils and fats 1.87 (1.14–16.56) 7.13 (2.67–16.82) 0.02 (0.02–32.00)
Beverages 1.53 (0.70–3.76) 14.31 (6.16–24.83) 0.02 (0.02–0.15)
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results showing similar main sources of antimony content 
in food categories as well as our results show comparable 
(ANSES 2011; Arnich et al. 2012; Iyengar et al. 2000; Noel 
et al. 2003; Ysart et al. 1999) or slightly higher (Gibson 
and Scythes 1984; Gimou et al. 2014; Leblanc et al. 2005; 
Marcussen et al. 2013; Rose et al. 2010; Wappelhorst et al. 
2002) or lower (Domingo et al. 2012) dietary intake respect 
to other European and non-European populations.

Barium

Barium compounds are present in nature due to leaching 
and erosion of natural deposits and subsequent contamina-
tion of groundwater sources. Foods showing higher barium 
content are cereals products, followed by legumes and dry 
fruits (Table 2). Particularly, among cereals, rice presents 
negligible content compared with pasta, bread, and other 
cereals products, while nuts and seeds, chocolate products, 

and other confectioneries show high concentration above 
1 mg/kg (Supplemental Table S2). The estimated median 
dietary barium intake is 0.84 mg/day (IQR 0.62–1.12 mg/
day) (Table 3) due to higher contribution from milk and 
dairy products (mainly aged cheese), cereal products, fol-
lowed by vegetables (particularly leafy ones), and fruits 
(Supplemental Table S3). We found comparable intake 
(Gonzalez-Weller et al. 2013; Marcussen et al. 2013), or 
little higher than previous studies (ANSES 2011; Rose et al. 
2010; Turconi et al. 2009; Ysart et al. 1999) and in one case 
lower (Gimou et al. 2014).

Beryllium

Main sources of beryllium and beryllium compounds are 
industrial processing and fossil fuel combustion (espe-
cially coal) resulting in emission of beryllium to the atmos-
phere, surface waters, and soil. In non-occupationally 

Table 2   (continued)

Strontium (mg/kg) Tellurium (µg/kg) Thallium (µg/kg)
50th (IQR) 50th (IQR) 50th (IQR)

Cereals and cereal products 1.262 (0.867–1.810) 0.168 (0.000–1.022) 0.055 (0.001–0.494)
Meat and meat products 0.222 (0.083–0.580) 0.686 (0.292–1.605) 0.052 (0.001–0.374)
Milk and dairy products 2.459 (0.851–3.975) 0.937 (0.354–2.009) 0.044 (0.001–0.210)
Eggs 0.317 (0.178–0.825) 0.399 (0.142–0.482) 0.442 (0.001–0.516)
Fish and seafood 1.286 (0.659–4.294) 0.803 (0.283–1.631) 0.006 (0.001–0.217)
All vegetables 1.846 (0.564–3.644) 0.246 (0.000–0.674) 0.256 (0.001–1.542)
Legumes 2.338 (1.477–3.669) 0.382 (0.000–0.989) 0.001 (0.001–0.343)
Potatoes 0.280 (0.208–0.630) 0.189 (0.049–0.955) 0.046 (0.001–0.509)
Fresh fruits 0.453 (0.197–1.722) 0.185 (0.000–0.652) 0.001 (0.001–0.134)
Dry fruits, nuts, and seeds 4.078 (1.797–7.432) 1.072 (0.500–1.983) 0.648 (0.054–2.002)
Sweets, chocolate, cakes, etc. 1.145 (0.472–4.363) 0.435 (0.082–1.040) 0.300 (0.031–1.478)
Oils and fats 0.017 (0.000–0.141) 0.304 (0.000–1.451) 0.001 (0.001–0.135)
Beverages 0.193 (0.046–0.580) 0.048 (0.010–0.094) 0.077 (0.020–0.230)

Titanium (µg/kg) Uranium (µg/kg) Vanadium (µg/kg)
50th (IQR) 50th (IQR) 50th (IQR)

Cereals and cereal products 395.84 (258.44–1109.75) 0.470 (0.197–0.901) 7.00 (3.28–12.92)
Meat and meat products 550.60 (333.29–2225.50) 0.220 (0.068–0.429) 3.46 (1.81–7.65)
Milk and dairy products 1100.75 (667.31–4800.02) 0.340 (0.113–0.746) 2.92 (1.59–7.44)
Eggs 450.00 (26.31–973.21) 0.043 (0.039–0.178) 1.41 (0.97–3.50)
Fish and seafood 453.96 (286.80–1342.46) 0.790 (0.226–2.367) 6.28 (3.05–17.67)
All vegetables 163.73 (65.93–471.55) 0.185 (0.051–0.944) 2.78 (1.12–9.12)
Legumes 790.47 (490.35–1031.42) 0.301 (0.188–0.627) 12.20 (3.22–26.60)
Potatoes 207.16 (85.09–447.81) 0.133 (0.048–0.437) 1.32 (0.97–2.37)
Fresh fruits 56.87 (30.32–152.52) 0.051 (0.017–0.088) 1.04 (0.59–1.72)
Dry fruits, nuts, and seeds 1222.86 (711.37–6671.81) 0.170 (0.050–1.122) 4.45 (1.91–9.80)
Sweets, chocolate, cakes, etc. 941.98 (414.39–1922.09) 0.594 (0.262–1.383) 8.62 (4.37–23.75)
Oils and fats 35.26 (10.87–111.97) 0.003 (0.000–0.110) 2.84 (1.07–3.79)
Beverages 76.67 (41.95–132.50) 0.132 (0.050–0.304) 1.90 (0.61–7.76)



646	 T. Filippini et al.

1 3

Table 3   Daily estimated trace element intake by food category

Antimony (µg/day) Barium (µg/day) Beryllium (ng/day)
50th (IQR) 50th (IQR) 50th (IQR)

Total intake (µg/day) 3.471 (2.801–4.395) 844.96 (618.13–1123.00) 237.74 (179.06–319.22)
Cereals and cereal products 0.523 (0.303–0.765) 177.52 (117.78–259.18) 37.98 (23.07–56.11)
Meat and meat products 0.496 (0.319–0.678) 11.06 (7.44–17.50) 8.94 (5.93–12.54)
Milk and dairy products 0.358 (0.213–0.579) 251.11 (131.14–432.29) 9.46 (5.36–13.95)
Eggs 0.010 (0.005–0.015) 7.22 (3.90–11.34) 0.37 (0.20–0.59)
Fish and seafood 0.081 (0.042–0.134) 3.00 (1.57–5.03) 4.42 (2.03–9.59)
All vegetables 0.396 (0.259–0.574) 65.18 (42.06–100.70) 49.78 (32.32–77.62)
Legumes 0.029 (0.013–0.054) 18.89 (8.75–35.14) 7.00 (3.24–13.03)
Potatoes 0.033 (0.020–0.060) 2.78 (1.65–4.94) 3.69 (2.19–6.56)
Fresh fruits 0.607 (0.387–0.870) 78.55 (51.15–110.81) 28.26 (17.81–40.82)
Dry fruits, nuts, and seeds 0.001 (0.001–0.006) 13.38 (13.32–86.62) 0.13 (0.08–0.69)
Sweets, chocolate, cakes, etc. 0.323 (0.179–0.581) 44.42 (20.87–84.86) 8.68 (3.92–15.22)
Oils and fats 0.162 (0.072–0.335) 0.18 (0.13–0.25) 0.47 (0.35–0.65)
Beverages 0.096 (0.042–0.191) 28.46 (15.66–47.58) 37.14 (7.66–103.82)

Boron (µg/day) Cobalt (µg/day) Lithium (µg/day)
50th (IQR) 50th (IQR) 50th (IQR)

Total intake (µg/day) 2037.18 (1511.17–2760.72) 19.680 (14.822–25.170) 18.151 (14.638–22.868)
Cereals and cereal products 112.99 (76.37–156.77) 1.729 (1.122–2.527) 3.651 (2.445–5.289)
Meat and meat products 40.56 (27.15–56.36) 0.516 (0.334–0.730) 0.750 (0.496–1.071)
Milk and dairy products 45.18 (25.16–70.42) 1.115 (0.694–1.735) 1.079 (0.617–1.605)
Eggs 3.44 (1.86–5.41) 0.043 (0.023–0.068) 0.087 (0.047–0.137)
Fish and seafood 11.55 (5.56–19.57) 0.271 (0.129–0.537) 0.792 (0.382–1.475)
All vegetables 238.99 (162.30–344.08) 5.889 (3.593–9.684) 4.912 (3.263–6.951)
Legumes 115.51 (53.51–214.89) 1.253 (0.580–2.330) 0.669 (0.310–1.245)
Potatoes 19.44 (11.56–34.56) 0.285 (0.169–0.506) 0.164 (0.097–0.291)
Fresh fruits 676.60 (428.84–973.63) 1.437 (0.918–2.053) 1.723 (1.098–2.456)
Dry fruits, nuts, and seeds 3.70 (2.75–20.20) 0.022 (0.018–0.130) 0.033 (0.006–0.091)
Sweets, chocolate, cakes, etc. 86.66 (40.56–149.54) 1.832 (0.913–3.534) 0.714 (0.398–1.192)
Oils and fats 4.36 (3.19–6.00) 0.018 (0.012–0.026) 0.008 (0.004–0.014)
Beverages 326.13 (83.81–934.67) 1.806 (1.002–3.336) 1.677 (0.715–3.330)

Molybdenum (µg/day) Nickel (µg/day) Silver (ng/day)
50th (IQR) 50th (IQR) 50th (IQR)

Total intake (µg/day) 196.28 (150.31–260.36) 130.92 (102.80–168.94) 908.14 (679.09–1146.63)
Cereals and cereal products 74.36 (50.38–104.76) 24.53 (16.04–34.99) 226.10 (140.84–325.60)
Meat and meat products 4.07 (2.56–6.06) 3.92 (2.55–5.34) 43.70 (23.87–87.08)
Milk and dairy products 12.70 (7.31–18.71) 8.03 (4.49–11.75) 11.41 (6.55–18.98)
Eggs 2.15 (1.16–3.38) 0.08 (0.04–0.12) 0.01 (0.01–0.01)
Fish and seafood 0.58 (0.28–1.03) 2.10 (1.15–3.57) 86.65 (39.07–208.52)
All vegetables 12.91 (8.73–18.87) 13.62 (8.94–20.21) 73.95 (48.68–113.36)
Legumes 51.99 (24.09–96.72) 16.61 (7.70–30.90) 18.18 (8.42–33.82)
Potatoes 2.48 (1.48–4.41) 2.50 (1.49–4.45) 8.00 (4.76–14.22)
Fresh fruits 5.91 (3.77–8.49) 14.15 (9.04–19.96) 173.03 (107.74–251.37)
Dry fruits, nuts, and seeds 0.18 (0.17–1.17) 0.43 (0.41–2.69) 1.37 (0.53–5.09)
Sweets, chocolate, cakes, etc. 9.31 (3.44–15.99) 13.82 (5.64–30.39) 36.23 (16.52–72.89)
Oils and fats 0.30 (0.16–0.58) 1.23 (0.91–1.68) 38.13 (12.26–85.62)
Beverages 1.78 (0.96–3.39) 9.29 (5.36–15.32) 3.04 (2.00–4.67)
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exposed population, ingestion through foods and bev-
erages is the main route of exposure (WHO 2009). We 
found higher beryllium concentration in legumes, dry 
fruits, and sweet products (Table 2), with also substantial 
content in all cereal products but rice, leafy vegetables, 
red wine, and chocolate and biscuits/dry cakes (Supple-
mental Table S2). Beryllium daily intake is of 0.24 µg/day 
(IQR 0.18–0.32 µg/day) (Table 3) with main contribution 
from leafy vegetables, cereals (pasta and bread), bever-
ages (particularly wine), and citrus fruits (Supplemental 
Table S3). We found comparable intake (ATSDR 2007; 
Domingo et al. 2012; Marcussen et al. 2013) or in such 
cases little higher (Llobet et al. 1998; Turconi et al. 2009) 
than previous studies.

Boron

The collective body of evidence has yet to establish a clear 
biological function for boron in humans, since no specific 
biochemical function has been identified (Institute of Medi-
cine 2001). Adverse health effects due to low boron intake 
have been consistently accompanied with deficiency of other 
elements such as calcium, copper, or magnesium (Nielsen 
2014; WHO 2003d). The greatest amount of boron expo-
sure in the general population occurs through food intake 
in the form of borate and boric acid (European Food Safety 
Authority 2004c). We found higher boron concentration in 
dry fruits/seeds, legumes, and fruits (Table 2), with also 
high content among all vegetables from leafy and other 
vegetables, cabbage, chocolate and candy bars, and wine 

Table 3   (continued)

Strontium (µg/day) Tellurium (ng/day) Thallium (ng/day)
50th (IQR) 50th (IQR) 50th (IQR)

Total intake (µg/day) 1931.99 (1543.32–2390.35) 2698.06 (1921.86–3752.08) 533.69 (414.58–676.04)
Cereals and cereal products 248.66 (162.64–361.39) 177.77 (111.81–255.98) 65.87 (39.14–99.96)
Meat and meat products 43.72 (28.49–65.50) 339.40 (217.28–499.84) 73.64 (46.41–109.50)
Milk and dairy products 212.45 (132.59–323.31) 1089.56 (605.00–1863.86) 28.58 (12.89–44.78)
Eggs 6.38 (3.45–10.02) 6.91 (3.73–10.84) 6.53 (3.53–10.25)
Fish and seafood 70.68 (34.05–129.31) 36.17 (18.63–64.91) 4.83 (2.03–9.87)
All vegetables 405.23 (259.54–612.72) 106.63 (72.36–151.16) 123.22 (67.33–200.73)
Legumes 37.51 (17.38–69.78) 9.03 (4.18–16.80) 4.92 (2.28–9.16)
Potatoes 9.70 (5.77–17.25) 11.01 (6.55–19.58) 9.49 (5.64–16.87)
Fresh fruits 400.95 (251.58–562.46) 245.29 (155.58–354.65) 51.86 (33.03–73.21)
Dry fruits, nuts, and seeds 3.13 (2.65–19.03) 0.54 (0.42–3.09) 1.13 (0.63–5.70)
Sweets, chocolate, cakes, etc. 93.08 (46.63–159.51) 48.00 (27.39–76.21) 42.75 (20.27–77.95)
Oils and fats 1.31 (0.67–2.39) 309.04 (123.69–626.20) 0.56 (0.38–0.86)
Beverages 155.96 (77.35–292.84) 42.38 (26.89–61.84) 48.25 (23.53–87.42)

Titanium (µg/day) Uranium (ng/day) Vanadium (µg/day)
50th (IQR) 50th (IQR) 50th (IQR)

Total intake (µg/day) 881.90 (705.58–1135.53) 790.18 (600.52–1121.22) 10.363 (7.822–13.426)
Cereals and cereal products 140.37 (93.06–198.58) 154.95 (98.57–224.00) 1.646 (1.010–2.463)
Meat and meat products 155.74 (107.32–219.56) 31.67 (20.58–44.52) 0.645 (0.425–0.925)
Milk and dairy products 283.99 (167.35–407.48) 59.46 (35.03–96.26) 0.370 (0.229–0.528)
Eggs 7.64 (4.13–12.00) 3.30 (1.79–5.19) 0.032 (0.017–0.050)
Fish and seafood 33.13 (18.73–52.28) 48.97 (20.37–116.35) 0.560 (0.270–1.081)
All vegetables 51.81 (36.36–77.02) 117.53 (77.26–175.57) 2.025 (1.330–3.131)
Legumes 11.02 (5.10–20.49) 7.31 (3.39–13.61) 0.255 (0.118–0.474)
Potatoes 4.94 (2.94–8.78) 6.57 (3.91–11.68) 0.188 (0.112–0.335)
Fresh fruits 32.05 (20.45–44.86) 19.51 (12.29–28.19) 0.355 (0.226–0.510)
Dry fruits, nuts, and seeds 0.91 (0.80–5.63) 0.46 (0.25–2.23) 0.005 (0.002–0.015)
Sweets, chocolate, cakes, etc. 57.30 (29.02–108.07) 71.74 (39.63–128.74) 0.860 (0.474–1.515)
Oils and fats 5.19 (0.00–19.75) 1.33 (0.83–2.25) 0.064 (0.042–0.097)
Beverages 2.23 (1.34–3.57) 135.17 (53.23–332.62) 1.516 (0.479–3.681)
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Table 4   Dietary daily intake (DI) and tolerable upper intake levels (UI) of trace elements reported by this study compared with data reported by 
international agencies

Data for target hazard quotient (THQ) calculation reported in bold
bw body weight, DI estimated dietary intake, EFSA European Food Safety Authority, UI upper intake daily intake, US-EPA US-Environmental 
Protection Agency, RfD reference dose, THQ target hazard quotient, WHO World Health Organization
a Reference dose (RfD) provided by US-Environmental Protection Agency (US-EPA) (US-EPA)

Element This study EU WHO US-EPA THQ
DI (µg or mg/day) DI (µg or 

mg/kg bw/
day)

DI (µg or 
mg/kg bw/
week)

UI (µg or mg/kg bw/
week)

UI (µg or mg/kg bw/
week

RfDa (µg or 
mg/kg bw/
day)

Antimony (Sb) (µg) 3.47 0.050 0.352 6 (European Food 
Safety Authority 
2004b)

6 (WHO 2003b) 4 0.013

Barium (Ba) (mg) 0.84 0.012 0.084 0.2 (SCHER 2012) 0.21 (WHO 2016) 0.2 0.060
Beryllium (Be) (µg) 0.24 0.003 0.024 Not assessed 2 (Bruce et al. 2001; 

WHO 2009)
3 0.001

Boron (B) (mg) 2.05 0.029 0.206 0.14 (European Food 
Safety Authority 
2004c)b

0.19 (WHO 1996)b 0.2 0.150

Cobalt (Co) (µg) 19.68 0.277 1.938 1.6 (European Food 
Safety Authority 
2012)

Not derived (Kim 
et al. 2006)

5c 0.560e

Lithium (Li) (µg) 18.15 0.258 1.807 Not derived (European 
Food Safety Author-
ity 2009a)

Not derived (WHO 
1996)

2d 0.130

Molybdenum (Mo) 
(mg)

0.20 0.003 0.020 0.009 (European Food 
Safety Authority 
2013)b

0.029 (Institute of 
Medicine 2001; 
WHO 2003a)b

0.005 0.560

Nickel (Ni) (µg) 130.92 1.844 12.906 2.8 (European Food 
Safety Authority 
2015)

22 (WHO 2005) 20 0.092

Silver (Ag) (µg) 0.91 0.013 0.089 Not derived (European 
Food Safety Author-
ity 2016b)

Not derived (WHO 
2003c)

5 0.003

Strontium (Sr) (mg) 1.93 0.027 0.191 Not derived (European 
Food Safety Author-
ity 2009c)

0.13 (WHO 2010) 0.6 0.045

Tellurium (Te) (µg) 2.70 0.039 0.271 Not derived (ANSES 
2011)

Not assessed 210 0.0002

Thallium (Tl) (µg) 0.53 0.007 0.052 0.14 (German Federal 
Institute for Risk 
Assessment (BfR) 
2004)b

Not derived (WHO 
and International 
Programme for 
Chemical Safety 
1996)

0.01e 0.744

Titanium (Ti) (mg) 0.88 0.126 0.885 Not derived (European 
Food Safety Authority 
2016a; European Food 
Safety Authority 2018; 
European Food Safety 
Authority 2019)f

Not derived (FAO/
WHO 1969)

Not assessed –

Uranium (U) (µg) 0.79 0.012 0.081 0.6 (European Food 
Safety Authority 
2009b)

0.6 (WHO 2004) 3 0.004

Vanadium (V) (µg) 10.36 0.146 1.021 Not derived (European 
Food Safety Authority 
2004a; Tiesjema and 
Baars 2009)g

Not derived (Institute 
of Medicine 2001; 
WHO 1996; WHO 
2000)g

9 0.017
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(Supplemental Table S2). Estimated dietary boron intake is 
2.05 mg/day (IQR 1.51–2–76 mg/day) that is comparable 
or little higher compared to the data reported in previous 
studies (Biego et al. 1998; Hunt and Meacham 2001; Iyengar 
et al. 2000; Meacham and Hunt 1998; Rainey and Nyquist 
1998; Shimbo et al. 1996; Turconi et al. 2009; Ysart et al. 
1999).

Cobalt

Cobalt owes its essentiality as central bonding atom for the 
vitamin B12 (also called cobalamin), which is necessary 
for the metabolism of folates and fatty acids. In the general 
population, the largest source of cobalt exposure is through 
diet, ingested in its inorganic form by plants, while only 
a small fraction of total cobalt intake occurs in the form 
of cobalamin from foods of animal origin (Gambelli et al. 
1999; Kim et al. 2006). In our study, foods showing the high-
est cobalt content are legumes, dry fruits/seeds, and pota-
toes (Table 2), with also high levels in sweets (particularly 
chocolate products), leafy vegetables, offal, and cheese (Sup-
plemental Table S2). The daily cobalt intake is 19 µg/day 
(IQR 14.82–25.17 µg/day), driven by vegetables, with also 
substantial contribution from sweets, beverages, cereals, but 
also fresh fruits, legumes, and dairy products. Dietary intake 
was similar (Domingo et al. 2012; Reilly 2002) or slightly 
higher than other populations (ANSES 2011; Arnich et al. 
2012; Marcussen et al. 2013; Ysart et al. 1999), but alterna-
tively higher (Leblanc et al. 2005; Noel et al. 2003; Shimbo 
et al. 1996) and lower intake (Biego et al. 1998; Turconi 
et al. 2009) are also reported.

Lithium

Lithium is the lightest alkali metal, naturally present in 
soil and water. Due to its similarity to sodium and potas-
sium and to a lesser extent to magnesium and calcium, 
it can compete with their intracellular targets and bind-
ing sites, although with different affinity (WHO 1996). In 
spite of lithium not yet considered an essential element 

(Schrauzer 2002), it has been demonstrated that lithium 
plays a role within the nervous system, and lithium salts 
are used in the treatment of psychiatric diseases, espe-
cially bipolar affective disorder (Mitchell and Hadzi-
Pavlovic 2000). According to main categories, we found 
the highest lithium content in fish (especially crustaceans 
and molluscs), legumes, cereal products (all but rice), and 
potatoes (Table 2), with also high concentration in dry 
fruits, leafy vegetables and cabbage, sweet confectionery 
not chocolate, red wine, and fresh cheese (Supplemental 
Table S2). Our results show an estimated dietary lithium 
intake of 18.15 µg/day (IQR 7.16–29.15 µg/day) compa-
rable or slightly higher to previous studies (Evans et al. 
1985; Leblanc et al. 2005; Marcussen et al. 2013; Noel 
et al. 2003; Ysart et al. 1999), though also higher intake 
was reported (Gimou et al. 2014; Gonzalez-Weller et al. 
2013; Iyengar et al. 2000; Turconi et al. 2009).

Molybdenum

Molybdenum is considered an essential trace element as 
it enters in a cofactor (molybdopterin) of certain enzymes 
that catalyse redox reactions (European Food Safety 
Authority 2013). Legumes, cereals (particularly rice), 
and offal are foods generally containing high concentra-
tion of molybdenum, similarly to what we found in our 
study (Table 2), and also chocolate, biscuits, dry cakes, 
and dry fruits/seeds present high content (Supplemental 
Table S2). Dietary daily intake is 196.28 µg/day (IQR 
150.31–260.36 µg/day) due to substantial contribution 
from legumes, cereals (Table 3), particularly pasta and 
bread, but also vegetables, milk, and dairy products (Sup-
plemental Table S3). Our estimates are similar (Gimou 
et al. 2014; Hunt and Meacham 2001; Leblanc et al. 2005; 
Shimbo et al. 1996) or slightly higher compared to other 
studies (ANSES 2011; Evans et al. 1985; Noel et al. 2003; 
Turconi et al. 2009; Ysart et al. 1999), while lower than 
other findings (Biego et al. 1998; Marcussen et al. 2013).

b 70 kg of body weight considered for the comparison. Original values for boron were 10 mg/day (European Food Safety Authority 2004c) and 
13 mg/day (WHO 1996), for molybdenum 0.6 mg/day (European Food Safety Authority 2013) and 2 mg/day (Institute of Medicine 2001; WHO 
2003a) and for thallium 10 mg/day (German Federal Institute for Risk Assessment (BfR) 2004)
c Using the subchronic p-RfD of 3 mg/kg/day, the THQ is 0.093 (Finley et al. 2012)
d For lithium, we used the subchronic and chronic p-RfD of 2 μg/kg-day since RfD is not available
e Since RfD was not derived, we used the value of 0.01 µg/kg bw/day for thallium salts, observed for hair follicle atrophy
f Upper limit not derived for elemental titanium, but for titanium dioxide (TiO2) a No Observed Adverse Effect Level (NOAEL) of 2250 mg 
TiO2/kg bw/day was reported
g Upper limit not derived, although the lowest intake with reported adverse effects was 200 µg/kg bw/day. The Institute of Medicine proposed a 
values of 1.8 mg/day as upper limit for elemental vanadium (Institute of Medicine 2001), approximately corresponding to 0.18 mg/kg bw/week 
for an adult of 70 kg of body weight

Table 4   (continued)
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Nickel

Nickel is not essential for humans despite it plays an 
essential role in methionine metabolism in other animal 
species (WHO 2005). Conversely, nickel compounds are 
considered human carcinogens following exposure by 
inhalation (IARC 1990). However, there are no studies 
indicating any carcinogenic effects following oral exposure 
(IARC 1990). Beside raw foods, nickel levels in processed 
foods can be increased by pick-up from cooking materials 
and containers (Reilly 2002). Foods showing high nickel 
concentrations are mainly dry fruits/seeds and legumes 
(Table 2), with also very high levels in chocolate products, 
and partially also mushrooms, rice, and bread (Supplemen-
tal Table S2). The main foods contributing to the nickel 
daily intake of 130.92 µg/day (IQR 102.80–168–94 µg/
day) are cereals, legumes, vegetables, fresh fruits, and 
sweets (Table 3), particularly leafy vegetables, other veg-
etables and tomatoes, citrus fruits, chocolate products, and 
coffee and tea (Supplemental Table S3). Similar intake is 
reported in previous studies (Alberti-Fidanza et al. 2002; 
Bocio et al. 2005; Pennington and Jones 1987; Shimbo 
et al. 1996; Ysart et al. 1999), while little lower (ANSES 
2011; Arnich et al. 2012; Gimou et al. 2014; Larsen et al. 
2002; Marcussen et al. 2013; Turconi et al. 2009), and 
alternatively higher was reported in other ones (Domingo 
et al. 2012; Leblanc et al. 2005; Santos et al. 2004).

Silver

Silver is a white metal generally having only trace amounts 
in foods, apart from its possible use as food additive (i.e. 
colouring agent) in cake decorations and confectionery 
(European Food Safety Authority 2016b). We found higher 
silver concentration in dry fruits, nuts, and seeds, followed 
by fish and seafood, cereals products, and eventually 
potatoes and sweets (Table 2). In particular, we found the 
highest values in crustaceans and molluscs, mushrooms, 
rice, and dry fruits. The estimated daily dietary intake is 
0.908 µg/day (IQR 0.679–1.147 µg/day) with main con-
tribution from cereals, fruits, and vegetables (mainly 
leafy ones), and fish, particularly crustaceans and mol-
luscs (Table 3 and Supplemental Table S3). It should be 
pointed out that approximately half of the samples showed 
values below the LOD for silver (Supplemental Table S1), 
thus estimated could have been influenced by this large 
number of low results. Though limited dietary intake data 
are reported for silver (European Food Safety Authority 
2011; Reilly 2002), our results show lower intake com-
pared with other populations (ANSES 2011; Arnich et al. 
2012; Dolara 2014; Evans et al. 1985; Gibson and Scythes 
1984; Marcussen et al. 2013).

Strontium

Strontium occurs naturally in Earth’s crust in the form of 
minerals such as celestite and strontianite and for humans 
non-occupationally exposed major sources are drinking 
water and foods (WHO 2010). Strontium can interfere 
with bone mineralization in the developing skeleton (WHO 
2010), and a relationship between strontium exposure and 
childhood rickets has been suggested (Ozgur et al. 1996). We 
found the greater strontium content in dry fruits/seeds, dairy 
products, and legumes (Table 2) with the highest levels in 
crustaceans and molluscs, sweets products like confection-
ery made with and without chocolate, aged cheese, and some 
types of vegetables, particularly leafy, root, cabbage, and 
other types (Supplemental Table S2). The estimated dietary 
strontium intake was of 1.93 mg/day (IQR 1.54–2.39 mg/
day), mainly driven by vegetables and fruits, followed by 
cereals (mainly bread and pasta) and dairy products (par-
ticularly cheese) (Table 3 and Supplemental Table S3). We 
found generally comparable (ANSES 2011; Gimou et al. 
2014; Gonzalez-Weller et al. 2013; Iyengar et al. 2000; 
WHO 2010) or slightly higher estimated intake than previ-
ous studies (Evans et al. 1985; Marcussen et al. 2013; Tur-
coni et al. 2009; Ysart et al. 1999).

Tellurium

Tellurium is a rare trace element with no biological function 
in human and generally its importance as a food contami-
nant is minor (Reilly 2002), as confirmed in our study dem-
onstrating approximately 20% of samples below the LOD 
(Supplemental Table S1). In particular, we found higher 
tellurium concentrations in dry fruits, nuts and seeds, milk 
and dairy products, and fish (Table 2). Particularly in sub-
group categories, we found the highest tellurium levels in 
processed meat, aged cheese, and mushrooms (Supplemental 
Table S2). The estimated daily dietary intake is 2.70 µg/day 
(IQR 1.92–3.75 µg/day) driven by foods of animal origin, 
namely dairy products, red and processed meat, oils and fats, 
followed by citrus fruits and cereals (Table 3 and Supple-
mental Table S3). Despite the limited data available (Reilly 
2002), we found consistent findings with the most recent 
studies (ANSES 2011; Gimou et al. 2014), demonstrating a 
much lower intake than older data previously reported (Kron 
et al. 1991; Reilly 2002; Schroeder et al. 1967).

Thallium

Little information is available on levels of thallium in foods 
and diets. There is some evidence that thallium behaves 
like potassium in soil, thus it is readily absorbed by certain 
plants (Reilly 2002). In our study, we observed higher thal-
lium concentration in dry fruits/seeds, vegetables, and eggs 
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(Table 2), with the highest levels in root vegetables, cab-
bages, and particularly chocolate products (Supplemental 
Table S2). Thallium dietary intake was estimated in 0.53 µg/
day (IQR 0.41–0.68 µg/day), with main contribution from 
vegetables (mainly cabbages, root, and other vegetables), 
followed by meat (primarily white), cereal products (all but 
rice), and fresh fruits, particularly citrus ones (Table 3 and 
Supplemental Table S3). Also for thallium, we observed a 
consistent number (35.8%) of samples below the LOD (Sup-
plemental Table S1), and also limited data about intake are 
available in other population. Nevertheless, our findings 
suggest that a lower dietary intake seems to be experienced 
compared with previous studies (Domingo et al. 2012; Rose 
et al. 2010; Ysart et al. 1999).

Titanium

Titanium is the eighth most common element in Earth’s 
crust and is commonly found in foods. In addition, in food 
industry, titanium dioxide is used as food additive for whit-
ening and brightening purpose in flour, confection, and 
other sweets products, and non-dairy milk products (Euro-
pean Food Safety Authority 2016a; Reilly 2002) as well as 
in other personal care products, e.g. toothpaste, cosmetics, 
or sunscreens (Rompelberg et al. 2016; Weir et al. 2012; 
Winkler et al. 2018). Due to its wide-scale distribution in 
the environment, titanium is a frequent food contaminant, 
but at relatively low levels since it is poorly absorbed from 
soil (Reilly 2002). We found high metal concentrations in 
dry fruits/seeds, dairy products (particularly cheese), sweets, 
and also legumes (Table 2). In particular, we detected the 
highest titanium level in chocolate products and biscuits/dry 
cakes among sweets, and also white meat compared with 
overall content (Supplemental Table S2). We estimated a 
dietary intake of 0.88 mg/day (IQR 0.71–1.14 mg/day), with 
major contribution from milk and dietary products, meat, 
and cereals. In spite of its wide use, data on dietary intake 
of total titanium are scarce and not up-to-date. Our results 
showed more than double intake compared with a previous 
study carried out in Japan and US (Reilly 2002; Shimbo 
et al. 1996). Conversely, due to the large use in the most 
recent decades of titanium dioxide, many studies assessed 
its particular intake, showing intake levels approximately 
similar or slightly higher than our study (Bachler et al. 
2015; Heringa et al. 2016; Rompelberg et al. 2016; Weir 
et al. 2012; Winkler et al. 2018), also considering that most 
of them accounted the contribution from other sources like 
toothpaste that could not be considered in our study.

Uranium

Uranium exposure in the general population is only mar-
ginally assessed. Excluding contamination from dumping 

sites, uranium is naturally present in soil at different levels 
depending on the geological origin, thus affecting the nat-
ural content in waters and foods and consequently human 
dietary intake (Anke et al. 2009; European Food Safety 
Authority 2009b). We found high uranium levels in fish, 
sweets products, and cereals (Table 2), with the highest 
levels in crustaceans and molluscs, mushrooms, dry fruits, 
and also leafy vegetables (Supplemental Table S2). We 
estimated a daily intake of 0.79 µg/day (IQR 0.60–1.12 µg/
day) due to contribution by cereals (all but rice), beverages 
(particularly fruit juices, coffee/tea, and wine), and veg-
etables (leafy and other vegetables and tomatoes) (Table 3 
and Supplemental Table S3). We found comparable intake 
compared with one previous study (Marcussen et al. 2013) 
while notably lower than those found in one Spanish sur-
vey (Domingo et al. 2012).

Vanadium

In spite of some indication for symptoms of deficiency 
in animals, vanadium has not been shown to be essential 
for humans and thus it has no nutritional value (European 
Food Safety Authority 2004a). Nevertheless, in the general 
population diet is the major source of the metal (Institute 
of Medicine 2001). Our findings show that legumes and 
sweets, cereals, and also fish are foods showing high vana-
dium content (Table 2), with the highest values in choco-
late products, dry fruits, leafy vegetables, crustaceans and 
molluscs, and bread (Supplemental Table S2). The esti-
mated daily intake is 10.36 µg/day (IQR 7.82–13.43 µg/
day), due to major contribution from vegetables, cereals, 
and beverages (Table 3), particularly leafy vegetables, 
bread, and wine from subgroup analysis (Supplemental 
Table S3). Similar or slightly lower intake was found 
compared to previous studies (Arnich et al. 2012; Evans 
et  al. 1985; Gimou et  al. 2014; Pennington and Jones 
1987; Shimbo et al. 1996; Turconi et al. 2009), except 
when comparing with findings from two Spanish studies 
reporting much higher intake (Bocio et al. 2005; Domingo 
et al. 2012).

Risk Assessment

For the considered elements, the target hazard quotient 
(THQ) shows no substantial risk when comparing the 
median intake in the study population with the RfD provided 
by US-EPA (Table 4). It should be noted that for titanium we 
are unable to evaluate the THQ since RfD was not provided, 
as well as no upper limits are derived from international 
agencies, considering the use of titanium substantially safe 
(European Food Safety Authority 2019; FAO/WHO 1969).
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Conclusions

Overall, our study provides dietary estimated intake for 
a group of fifteen trace elements with generally scarce 
data and demonstrates that data from other countries, 
when available, are substantially similar. In addition, the 
estimated intakes are generally below the tolerable upper 
intake levels provided by international agencies. Thus, lev-
els of trace elements in diet of the investigated population 
could be considered safe.

One of the strengths of our study is the collection and 
analysis of a large number of samples of foods and bev-
erages that are actually purchased and consumed in the 
Emilia-Romagna Region. Secondly, we performed the esti-
mation of dietary habits in a large population sample with 
overall dietary characteristics similar to those observed 
in other Italian populations (Agnoli et al. 2011; Malagoli 
et al. 2015). In addition, we used a detailed and validated 
food frequency questionnaire developed for the Northern 
Italian population (Pala et al. 2003; Pasanisi et al. 2002).

Our study also has some limitations which need to be 
acknowledged. We did not assess the bioavailability of 
trace elements after food ingestion by determining bio-
logical indicators of exposure, although previous studies 
suggested that only a fraction of total element intake is 
absorbed, especially in the presence of malabsorption dis-
ease (Reilly 2002). In addition, we did not carry out any 
speciation analysis for the selected elements, in spite of 
the increasing evidence of the importance of speciation 
analysis in the exposure assessment of trace elements pos-
sibly characterized by either toxicological and nutritional 
properties/features (Michalke et al. 2009, 2018; Ruzik 
2012; Vinceti et al. 2017). Secondly, we did not differen-
tiate between local and imported samples, hampering the 
ability to assess such a difference due to geographic origin 
of products. Finally, our study was carried out in adult 
population only, thus we could not evaluate dietary intake 
and safety levels in vulnerable population like children 
or pregnant women. With regard to some trace elements 
investigated, we did not evaluate the influence of other 
dietary sources of the metal such as cooking material and 
food containers, as well as other possible ‘unconventional’ 
dietary intake, e.g. toothpaste for titanium (Heringa et al. 
2016; Perello et al. 2008; Ramos et al. 2016). Despite we 
limiting our assessment to dietary intake only, as the most 
relevant source in the general population (Reilly 2002), 
however, the evaluation of overall exposure in humans 
requires that additional sources be considered, particularly 
use of dietary supplements (which may represent the high-
est source of such trace elements in high consumers), der-
mal contact or air pollution (Rautiainen et al. 2016; Reilly 
2002; WHO 1996). Dietary supplements consumption, 

however, is unlikely to have induced any substantial expo-
sure misclassification in our investigation, since their use 
was very rare in the study population (Vinceti et al. 2011), 
as generally occurring in the Italian population.
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