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Abstract Cryptosporidium spp. are an emerging patho-

gen responsible for a large number of diarrhea outbreaks in

humans throughout the world. However, the occurrence of

epidemic outbreaks caused by this agent in Brazil is poorly

known and still needs more attention mainly in the Central-

West Region of Brazil, where yet are not studied. Fur-

thermore, there is a need for cheaper or faster methods for

detecting Cryptosporidium spp. (given the cost of Envi-

rocheck� filters and IMS kits). Thus, the implementation of

standard techniques that enable the identification and

quantification of this agent for further study of environ-

mental samples is important. This study aimed at evaluat-

ing and comparing immunological techniques for detection

of antigen and a real-time PCR for detection and differ-

entiation of Cryptosporidium spp. in samples of treated

water. Samples were collected directly from the taps at the

entrance of residences and concentrated by a positively

charged membrane filter. Oocysts of Cryptosporidium spp.

were detected by direct immunofluorescence, ELISA and

real-time PCR techniques, and the results were positive in

56.3 % (18/32), 28.1 % (9/32) and 50.0 % (16/32),

respectively. The survey results showed for the first time

the presence of Cryptosporidium spp. in treated water in

the Central-West Region of Brazil. Although real-time

PCR showed less positive, it is the one that enables the

identification of the species and less expensive when pro-

cessing a large number of samples. Probably, it would be

better to use both techniques, due to their own virtues.
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Introduction

Contamination of water resources due to sanitary condi-

tions has been a risk factor for population health. Water

plays an important role in the route of transmission of

biological agents such as protozoa, bacteria and viruses,

with emphasis on Cryptosporidium spp., causing diarrhea

worldwide (Hlavasa et al. 2005; King et al. 2015). Even in

countries with high standards of sanitation, river flooding

can cause epidemics of gastroenteritis, when sewage sys-

tems overflow and pollute water ways used by humans

(Gertler et al. 2015).

Cryptosporidium spp. are a genus of protozoa whose

transmission occurs mainly through water, including trea-

ted water (Tzipori and Ward 2002; Sunderlanda et al. 2007;

Xiao 2010).

The first description of the genus Cryptosporidium spp.

and the identification of species of Cryptosporidium muris

were made from samples obtained from gastric glands of
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mice, in 1907 (Tyzzer 1907). In 1912, the second species

was described through an observation of the intestine of

laboratory mice and this was identified as Cryptosporidium

parvum (Tyzzer 1912).

Phylogenetic studies were carried out by several groups of

researchers (Tzipori and Griffiths 1998; Morgan and

Thompson 1998; Xiao et al. 1998, 1999; Adl et al. 2005) in

order to standardize the taxonomy of Cryptosporidium, but

there are still disagreements about some species that cause

serious health problems. Among these species, C. hominis,

C. parvum are related to clinical events in the infected

individuals and, occasionally, a few other species, such asC.

muris, C. suis, C. andersoni and some different genotypes of

Cryptosporidium coming from deer and monkeys (Xiao and

Feng 2008), which differ significantly in their molecular

sequences but, as yet, have not been ascribed species status

(Plutzer and Karanis 2009). Literature also shows that

domestic and wild mammals can be sources for human

infection and water contamination (Feng et al. 2008).

Lake et al. (2007) showed that C. parvum and C.

hominis differ in their epidemiology, being C. hominis

mostly associated with areas with high socioeconomic

status individuals, children under the age of four and urban

areas, while C. parvum risk factors were rural areas and

association with water reservoirs, watersheds and ground-

water sources. Thus, it is important removal of Cryp-

tosporidium and Giardia by treatment process.

Detection of C. parvum and C. hominis in environmental

samples is a very important step to reduce and/or prevent

the presence of these pathogens in drinking or recreation

water. The presence of oocysts from these coccidia in the

environment suggests that humans and animals can acquire

the infection through different transmission routes (Xiao

et al. 2001; Guy et al. 2003; Franco et al. 2012). These

pathogens can be transmitted by ingesting contaminated

food and/or water with infected animal or human feces

(Gomes et al. 2004; Appelbee et al. 2005).

In 1984, the first cryptosporidiosis outbreak in Texas

(USA) occurred and killed 79 people. Later there were

others: one in 1987, in Georgia (USA), affecting 13,000

people; and the largest outbreak that infected 403,000

people in Milwaukee (USA), in the year of 1993, caused by

the presence of Cryptosporidium in the icy water of the

region. In 1996, reports showed that 8705 individuals were

affected in Saitama (Japan), where Cryptosporidium was

detected in treated and untreated water (Mark and John

1994; Mackenzie et al. 1994; Karanis et al. 2007).

The most employed technique used for staining fecal

smears for the general detection of parasites in feces is

those of staining, which can be used to detect other coc-

cidia, such as Isospora and Cyclospora. However, this

technique can present limiting factors, such as the size of

oocysts (4–8 lm), which may be confused with colored

organic matter, thus demonstrating the importance of a

well-trained technician (Fahey 2003; Gonzáles-Ruiz and

Bendall 1985). This technique was used in combination

with morphometry for Cryptosporidium detection in

untreated water by Santos et al. (2010).

Immunological methods may offer some advantages

over optical microscopy for detection of Cryptosporidium

spp. oocysts. For example, direct immunofluorescence

technique (DIF), which uses monoclonal antibodies con-

jugated with fluorescein isothiocyanate, which recognize

specific epitopes present on the oocysts’ surface, has been

widely used. This technique has high specificity

(96–100 %) and sensitivity (98.5–100 %) in Cryp-

tosporidium spp. oocysts detection on environmental

samples (Jex et al. 2008), but it has the same disadvantage

of leading to a large number of false negatives, depending

on the number of oocysts in the sample.

The enzyme-linked immunosorbent assay (ELISA) is an

indirect test used for qualitative determination of Cryp-

tosporidium spp. antigens in feces. It is simple to perform

and does not require direct observation (Ungar 1990;

Anusz et al. 1990). In this technique, antibodies are used,

which are not species-specific, being unable to distinguish

between Cryptosporidium spp. species. Furthermore, it has

low sensitivity and needs sample concentration.

Because of this, a variety of molecular techniques based

on the polymerase chain reaction (PCR) has been devel-

oped for Cryptosporidium spp. detection in environmental

samples (Soba et al. 2006; Soldan et al. 2006; Trotz-Wil-

liams et al. 2006; Santos et al. 2010).

Real-time PCR is a new technique that uses fluorescence

to allow amplicon continuous monitoring throughout the

reaction (Monis et al. 2005). It has been shown to be very

useful in Cryptosporidium spp. detection and monitoring

(Araújo et al. 2005; Carvalho-Almeida et al. 2005;

Meireles et al. 2006; Francino et al. 2006; Huber et al.

2007; Souza et al. 2007; Thomaz et al. 2007; Volotão et al.

2007; Araújo et al. 2007; Gonçalves et al. 2006).

The aim of this study was to evaluate and compare

immunological techniques of antigen detection and real-

time PCR for the detection and differentiation of Cryp-

tosporidium spp. in treated water samples of an area of the

Central-West Region of Brazil.

Materials and Methods

Place of Study and Sample Collection

The treated water samples were collected in previously

sterilized bottles, with a volume of 5 L. Samples were

collected directly from the taps, at the entrance of the

residences, in four points of the city of Goiânia. A total of
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32 samples were collected during the second semester of

2013 (August–November). The first point was to the north,

located at latitude 16�35007.8200S and longitude

49�16050.2800O; the second point was to the south, latitude

16842014.4300S and longitude 49�16017.3200O; the third

point was to the east, with latitude 16�39043.0200S and

longitude 49�13039.9500O, and the fourth point was to the

west, longitude 16�41000.9100S and latitude 49�18025.0200W
(Fig. 1).

Sample Concentration

The samples were sent for analysis to the Protozoology Unit

of the Institute of Tropical Pathology and Public Health

(IPTSP/UFG) and the Laboratory of Molecular and Genetic

Diagnosis (LDGM-ICB/UFG). Samples were concentrated

through the 0.45-lm porosity nylon membrane technique,

with 47 mm in diameter and positively charged, according to

Silva et al. (2010). The concentrate was transferred to 1.5-

mL microcentrifuge tubes and stored at -80 �C for later

analysis (immunological and molecular) (Fig. 2).

Detection of Cryptosporidium spp. Antigen by DIF

and ELISA

For the Cryptosporidium spp. investigation, the DIF tech-

nique was employed (kit MeriFluor� anti-Cryptosporid-

ium/Giardia—Meridian Bioscience, Cincinnati, OH, USA)

and, simultaneously, the quantification of oocysts was

made (DIF quantitative) from 10 lL of the concentrate,

according to the protocol developed by Palmateer et al.

(1999).

As a comparative measurement, ELISA assay (kit

RIDASCREEN�—Cryptosporidium) was performed using

10 lL of the concentrate. The DIF and ELISA tests were

performed according to manufacturer instructions.

Detection and Differentiation of Cryptosporidium

spp. by Real-Time PCR

DNA extraction was performed by MagMAXTM commer-

cial kit (Ambion) and following the manufacturer’s

Fig. 1 First point was to the

north (P1), located at latitude

16�35007.8200S and longitude

49�16050.2800O; south (P2),

latitude 16�42014.4300S and

longitude 49�16017.3200O; east
(P3), with latitude

16�39043.0200S and longitude

49�13039.9500O; and west (P4),

longitude 16�41000.9100S and

latitude 49�18025.0200W

Fig. 2 Immunological and molecular methods used for the detection

of Cryptosporidium spp. in treated water in the Central-West Region

of Brazil
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recommendations. The extracted DNA and in natura

samples were sent for molecular diagnosis by real-time

PCR at the Institute of Microbiology Paulo de Góes in the

Federal University of Rio de Janeiro (UFRJ). When

appropriate, a new DNA extraction was performed using

the FastDNA� kit (MP Biomedicals).

The systematic approach to performing the real-time

PCR assay consisted of a combination of a duplex assay for

the detection of Cryptosporidium spp. and C. parvum and a

singleplex one for the detection of C. hominis (Jothikumar

et al. 2008). In the duplex assay, target sequences were

amplified using a specific pair of primers, based on the

gene sequence that encodes the small subunit of the ribo-

somal RNA, JVAF (50-ATGACGGGTAACGGGGAAT-
30) and JVAR (50-CCAATTACAAAACCAAAAAGTCC-
30), and genus-specific probe with fluorescent dye and

suppressor JVAP18S (CY5—50-CGCGCCTGCTGCCTTC
CTTAGATG-30—BHQ2). In this same assay, the primers

and probe used for C. parvum were, respectively, JVAGF

(50-ACTTTTTGTTTGTTTTACGCCG-30), JVAGR (50-A
ATGTGGTAGTTGCGGTTGAA-30) and JVAGP2 (FAM—

50-ATTTATCTCTTCGTAGCGGCG-30—BHQ1). In the

singleplex assay, the primers used were JVAGF and JVAGR

and the JVAGP1 probe (FAM—50-ATTTATTAATTTATC
TCTTACTTCGT-30—BHQ3). The total volume of each

reaction was 20 lL.
For each duplex reaction, we used 0.5 lL of the solution to

10 pmoL/lL of each primer, 1 lL of 2 pmoL/lL solution of

each probe, 1 lL of ultrapure water and 10 lL of Platinum�

Quantitative PCR SuperMix-UDG with ROX (Invitrogen).

DNA samples were diluted 1:20 to avoid inhibition, and all

reactions were run in triplicate, using at 5 lL of DNA and

ultrapure water as nontarget control (NTC).

For the singleplex reaction, we used 0.5 lL of the

solution to 10 pmoL/lL of each primer, 2 lL solution of

2 pmoL/lL probe, 1.2 lL of ultrapure water, 0.8 lL of

MgCl2, 10 lL of Platinum� Quantitative PCR SuperMix-

UDG with ROX (Invitrogen) and 5 lL of purified DNA

solution at dilution of 1:20.

At the DNA amplification, using the thermocycler 7500

System (Applied Biosystems), there was an initial activa-

tion step at 50 �C for 2 min and pre-denaturation at 95 �C
for 2 min, followed by 45 cycles that included a denatu-

ration step for 10 s at 94 �C, hybridization for 33 s at

55 �C and extension for 20 s at 72 �C (Jothikumar et al.

2008).

Microbiological Diagnosis

An aliquot of the sample collected (100 mL) was used to

qualitative detection of total/fecal coliforms, in accordance

with the kit Alfakit-Tecnobac recommendations, which has

a minimum detection limit of 60 CFU/100 mL. These data

were compared with that obtained from the detection of

Cryptosporidium spp. oocysts using the techniques

described above.

Statistical Analysis

The positivity results were presented by f (absolute fre-

quency) and % (percentage). The Spearman correlation test

was used to analyze the correlation between the used

techniques, sensitivity and specificity values, positive and

negative predictive values and concordance tests. We also

calculated the cost/benefit for each technique. All analyses

were fixed at 95 % confidence, considering p\ 0.05.

Results and Discussion

The methodologies used in this study enabled the observa-

tion of a high positivity for Cryptosporidium, demonstrating

that these are useful tools in monitoring treated water, since

the treatment processes are not able to completely eliminate

the parasite (Pereira et al. 2008). Thus, Cryptosporidium

monitoring in treated water could reduce the risks of con-

tamination and outbreaks like those that occurred in devel-

oped countries. Therefore, researches with the goal of

discovering new removal indicators ofCryptosporidium spp.

oocysts have been carried out, examples of which are the use

of polystyrene beads and algae (Le Chevallier and Norton

1992; Huck et al. 2002).

Table 1 Comparison of DIF and ELISA test results (positive and

negative)

DIF Elisa Total

Positive Negative

f % f % f %

Positive 9 100.0 9 39.1 18 56.3

Negative – 0.0 14 60.9 14 43.8

Total 9 28.1 23 71.9 32 100.0

Spearman correlation p = 0.001

Table 2 Comparison of DIF and PCR test results (positive and

negative)

DIF PCR Total

Positive Negative

f % f % f %

Positive 9 60.0 9 52.9 18 56.3

Negative 6 40.0 8 47.1 14 43.8

Total 15 46.9 17 53.1 32 100.0

Spearman correlation p = 0.699
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The standard method known to the detection of Cryp-

tosporidium spp. in water is the method 1623 of the

Environmental Protection Agency (EPA—USA), that used

indirect immunofluorescence (DIF) as diagnostic. So, we

used DIF in comparison with other tests, as ELISA and

real-time PCR.

Of the 32 analyzed samples, 50.0 % (16/32) were pos-

itive for Cryptosporidium using real-time PCR technique,

28.1 % (9/32) using ELISA technique and 56.3 % (18/32)

using the DIF technique.

In comparison between tests, it is observed in Table 1

that there is a correlation between the DIF and ELISA tests

(p = 0.001), with 23 (71.9 %) concordant samples and 9

(28.1 %) discordant ones, for these techniques.

It can be observed in Table 2 that there is no correlation

of results between PCR and DIF tests (p = 0.699), because

there were 17 (53.1 %) concordant samples and 15

(46.9 %) discordant ones.

DIF and real-time PCR showed higher positivity than

the enzyme-linked immunosorbent assay (ELISA). This

result is due to the fact that ELISA, although standardized

by researchers and technicians and used for oocysts control

in water, has a disadvantage of being slower and having

low sensitivity (Stancari 2013; Ungar 1990). Thus, the DIF

has the advantage of high sensitivity and specificity, and it

is simple to perform, being effective for the detection of

Cryptosporidium spp. in treated water (Jex et al. 2008).

PCR detected the specific species C. hominis, reinforc-

ing that correct identification of the protozoan species,

especially in this water, is of great importance to assess the

risk of human infection, suggesting contamination of

source waters by human sewage (or contamination after

water treatment depending on the integrity of the distri-

bution system).

In samples in which PCR was negative and DIF was

positive, interfering action on the DIF could also have

occurred, such as organic and inorganic substances capable

of binding to antibodies and promoting a false-positive

result (Rodgers et al. 1995).

Although DIF is recommended as the gold standard, it

has some limitations, such as the use of antibodies that are

not species-specific. The variations of PCR have been

developed and standardized to detect species of

Cryptosporidium in water (Soba et al. 2006; Soldan et al.

2006; Trotz-Williams et al. 2006; Hashimoto et al. 2006,

Keshavarz et al. 2009; Doi 2009; Pilai 2009).

In all, 5.6 % of the samples were positive for bacterial

indicators: 25 % (2/8) of samples were positive to the point

P1, 75 % (6/8) for P2, 75 % (6/8) for P3 and 50 % (4/8) for

P4. Correlation of microbiological indicators with the

presence of Cryptosporidium spp. in analyzed samples is

shown in Table 3. On the association of detection of

Cryptosporidium spp. according to each used technique

and the presence of fecal and/or total coliforms as indica-

tors, it was observed that they are not correlated with the

presence of Cryptosporidium spp. in the analyzed samples

corroborating data (Ahmed et al. 2014). The largest dis-

crepancy between the tests for the detection of Cryp-

tosporidium and coliforms was observed with ELISA

(40.63 %), and the higher concordance was observed

between the results of real-time PCR, with 68.75 %

agreement. The coliform presence in treated water is of

concern, because it indicated a high percentage of samples

outside the standards recommended by the Ordinance MS

(Ordinance No. 2,914), which could expose consumers of

this water to health problem risks.

Conclusions

There was no statistically significant difference between

the techniques analyzed (DIF or RT-PCR) for the detection

of Cryptosporidium spp. in environmental samples. From

the methodology applied in this study, it was found that

treated water that supplies the city of Goiânia (four

regions) is contaminated with Cryptosporidium spp.,

denoting the importance of implementing techniques for

protozoa detection, in the assessment of water quality for

human consumption.
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Gertler M, Dürr M, Renner P, Poppert S, Askar M, Breidenbach J,

Frank C, Preußel K, Schielke A, Werber D, Chalmers R,

Robinson G, Feuerpfeil I, Tannich E, Gröger C, Stark K,
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