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Abstract There are general guidelines and standards for
measuring the microbial quality of water to prevent the inci-
dence of disease outbreaks. Many agencies have chosen the
95th percentile; one can assess the recreational water quality,
depending if the percentile value exceeds the guideline value
or not. It is well known that this kind of data do not display
a normal distribution and several alternatives have been pro-
posed and are in use for estimating the percentile. A review of
existing methods is given, that includes non parametric esti-
mators as Hazen, Blom, Tukey andWeibull.We also describe
transformations such as logarithmic and Box–Cox, that gen-
erate near normal data, after obtaining the normal percentile
the inverse transformation is applied to obtain estimators in
the original scale. A new methodology is proposed, consist-
ing in finding the Tweedie distribution that better fits the
observed data; this family has nonnegative support and can
have adiscretemass at zero,making it useful tomodel skewed
data that are a mixture of zeros and positive values. It allows
working with parametric models in the original scale. We
performed a Monte Carlo simulation to compare the perfor-
mance of all the percentiles described above. As a result we
noted that the percentile calculated fromTweedie distribution
has lower mean square error than the others, which makes it
themore precise estimator. All these techniques were applied
to four data sets and, in all cases the Tweedie estimator was
closer to the observed values than non parametric and anti
transformed estimators.
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Introduction

The recreational water quality is related to the presence of
microorganisms in the water such as fecal coliforms, strep-
tococci, total coliforms and enterococci. There are general
guidelines and standards for measuring the microbial quality
of water to prevent the incidence of disease outbreaks. These
values are derived from studies which link the exposure, the
water quality and the diseases related with the presence of
microorganisms.

Many agencies have chosen the 95th percentile to mea-
sure the quality of recreational waters. One can assess the
recreational water quality comparing the observed percentile
values with guideline values.

The theoretical 95th percentile is a value such that the
probability that the variable is less than it is equal to 0.95,
and the observed percentile is the value that leaves 95 % of
the observations below it.

As the distribution of the bacteria count has a marked
asymmetry, in practice, the percentiles are calculated using
log-normal method, that is, logarithmic transformation is
applied to the data so that they acquire approximate normal
distribution. Percentile obtained in this way is called para-
metric percentile. A limitation of this method is that we lose
the original scale of the data and the inverse transformation
has to be applied.

A broader approach consists in applying the Box and Cox
(1964) power transformation, that contains the logarithmic
one as a particular case. After a transformation, one is often
interested in inference on the original scale. Taylor (1985)
defines a measure of location on the original scale applying
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the inverse Box–Cox to the center of the transformed data to
symmetry.

A frequently applied alternative strategy, is to calculate
non-parametric percentiles. Some of them are due to Hazen,
Blom, Tukey and Weibull (Hunter 2002). The disadvantage
of non parametric methods is that they generally ignore rel-
evant information on data, obtaining less accurate estimates.

We propose in this article to apply a Tweedie model
(Tweedie 1984), that gives a parametrical percentile esti-
mate, and needs no transformations. This stochastic family
allows modeling positive data with skewed distributions, by
choosing optimal values for the parameter p from an infi-
nite range of possible values. Gamma, normal, Poisson and
inverse Gaussian distributions are particular cases. In this
way, we respected the original scale of the data and estimate
the 95th percentile from the Tweedie distribution, which bet-
ter fit the actual data.

We give a review of existing methods for calculating the
percentile estimate in “Methods for Calculating the 95th
Percentile of a Data-Set: Literature Review” section. In
“Proposed Methodology: Estimating the Percentile from a
Tweedie Model” section we introduce Tweedie models and
define the percentile estimator based on them. “Simulation
Study” section shows a simulation study that compares the
estimators described above and in “Application to Real Data”
section we obtain all these estimators, for real data sets from
the beaches ofMar del Plata. Finally a discussion is presented
in “Discussion and conclusions” section.

Methods for Calculating the 95th Percentile
of a Data-Set: Literature Review

Non-parametric Percentile

Several methods of estimating percentiles employ non-
parametric statistics (Ellis 1989), we will describe Hazen,
Blom, Tukey andWeibull methods. In all of them, percentile
estimators can be calculated by a two-step non-parametric
procedure: the first step consists in obtaining a number r ,
defined in each case by:

Hazen: rH = 0.5 + 0.95n (1)

Blom: rB = 3/8 + 0.95(n + 0.25) (2)

Tukey: rT = 1/3 + 0.95(n + 1/3) (3)

Weibull: rW = 0.95(n + 1) (4)

where n is the sample size.
Once the value of r is known, the corresponding percentile

is calculated as follows:

P∗ = (1 − r f∗) ∗ Xri∗ + r f∗ ∗ Xri∗+1 (5)

where X is the original variable, * is H , B, T or W , respec-
tively, the subscript ri indicates the integer portion of r and
r f indicates the fractional part of r .

Estimated Percentile from Anti-logarithmic Transformation

For normally distributed data, the 95th percentile can be eas-
ily calculated from the mean (m) and standard deviation (s)
of the data using the formula P = m + sz (P: parametric
percentile) where z = 1.6449 is the quantile corresponding
to the standard normal distribution.

But bacterial count does not follow a normal distribution
and logarithmic transformation is often used to approach nor-
mality. Thus,we estimate the percentile from the transformed
data with P ′ = m′ + s′z, wherem′ and s′ are mean and stan-
dard deviation of the logarithm of the data respectively, and
where z is the same as above. Then, the estimated percentile
back in the original scale is obtained via the inverse transfor-
mation: Plog = 10P

′
. This approach is outlined in Bartram

and Rees (2000).
An important limitation is that no always a logarithm

transformation gives normal data.

Estimated Percentile from Inverse Box–Cox
Transformation

A more general approach is given by Box–Cox transforma-
tions (see Box and Cox 1964) defined as:

Y =
{ (

Xλ−1
)

λ
when λ �= 0

ln (X) when λ = 0
(6)

being X a positive randomvariable. It can be proved that there
exists an optimal value λ such that the transformed variable
Y has the more accurate approximation to a normal distribu-
tion with mean μ and variance σ 2. Note that the logarithmic
transformation is a particular case, for λ = 0.

The distribution of the anti-transformed data belongs to
the power Normal (PN) family and a detailed description
of these variables can be found in Freeman and Modarres
(2006). These authors also consider the quantile functions
that can be applied in statistical modeling when interest
focuses particularly on the extreme observations in the tails
of the data (Modarres et al. 2002), as is in our case.

The quantile function of PN
(
λ,μ, σ 2

)
is given by

Pλ
BC (p) =

⎧⎪⎨
⎪⎩

(
λ

(
σΦ−1 (V (p)) + μ

) + 1
)1/λ

λ > 0
exp

(
μ + σΦ−1 (p)

)
λ = 0(

λ
(
σΦ−1 (p) + μ

) + 1
)1/λ

λ < 0

(7)

where Φ is the standard normal cumulative distribution
and V (p) = 1 − (1 − p) Φ (T ), for 0 < p < 1, being
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T = 1
λσ

+ μ
σ
the truncation point. It is well known that the

estimator P̂ λ
BC (p) has asymptotic normality, where μ̂ and

σ̂2, are the maximum likelihood estimators (MLEs) of the
mean and variance on the normal scale. When p is replaced
by 0.95, an estimator of the 95th percentile is obtained, and
in the particular case of λ = 0 we obtain the same estimator
as in “Estimated Percentile From Anti-logarithmic Transfor-
mation” section.

Proposed Methodology: Estimating the Percentile
from a Tweedie Model

Tweedie models form a subclass of the exponential dis-
persion models. They are defined as exponential disper-
sion models with unit variance functions of a certain sim-
ple form. More precisely, an exponential dispersion model
with unit variance functions V is called Tweedie model of
order p ∈ R − (0, 1) if V (μ) = μp, μ ∈ Ω being � the
parametric space.

Tweedie models include most of the usual distributions
such as normal (p = 0), Poisson (p = 1), gamma (p = 2)
and inverse Gaussian (p = 3). Their density is given by

pp (y, θ, λ) = cp (y, λ) exp
(
λ

(
yθ − κp (θ)

))
(8)

where y ∈ R+, θ ∈ R is the position parameter, λ > 0 the
dispersion parameter and the function κp (θ) is given by

κp (θ) =

⎧⎪⎨
⎪⎩

eθ for p = 1
−log (−θ) for p = 2

1
2−p ((1 − p) θ)

p−2
p−1 for p /∈ {1; 2}

(9)

The function cp (y, λ) is obtained using the Fourier inversion
formula (Feller 1978, p. 581). If p > 2, it is of the form

cp (y, λ) = 1

πλy

∑∞
k=1


 (1 + αk)

k! λkκk
p

(
− 1

λy

)
sin (−kπα) (10)

For a random variable Y with Tweedie distribution the nota-
tion Y ∼ Twp(θ, φ) will be used with

φ = 1/λ

The mean and variance are given by

E (Y ) = μ =
{

((1 − p) θ)
1

1−p p �= 1
eθ p = 1

and

Var (Y ) = μp

φ
= 1

φ
V (μ) .

A detailed discussion of these models can be found in (Jør-
gensen 1997). A fundamental property is their scale invari-
ance: if Y belongs to a given family then for any positive real
number c, cY also belongs to a family from this class. They
are also limiting distributions, in the sense that they have
domains of attraction. In practical applications such models
are often required for skewed positive continuous data.

However, it is clear that expression (8) is not simple,which
may be the main factor limiting the use of these models with
real data. A method of obtaining the density was developed
by Dunn and Smyth (2005) and it is implemented in the R
package (R Development Core Team 2006).

Outside the interval (0,1), each real value of p generates
a family. Given a set of observed data, the optimal value
for p can be determined via profile likelihood estimation
(Dunn 2004). This numerical method provides a selection of
representations that are closely “tailored” to data sets with
skewed distributions based on the chosen optimal value of p
parameter.

Given a data set, we propose the following strategy:

1. Obtain the optimal value of the p parameter via profile
likelihood estimation, so ∼ Twp(θ, φ) .

2. Calculate the theoretical 95th percentile, PTw such that
P

(
Y ≤ PTw

) = 0.95; with namely

0.95 =
PTw∫
0

cp (y, λ) exp
(
λ

(
yθ − κp (θ)

))
dy (11)

In this way, we preserve the original scale and estimate the
95th percentile from that Tweedie distribution which better
fit the actual data.

Simulation Study

We performed a Monte Carlo simulation to compare the per-
formance of the different percentile estimators. The routines
were written in R language and the package “TWEEDIE”
was used to generate data (RDevelopment Core Team 2006).
We ran 1,000 iterations generating a sample of 100 observa-
tions each time, following a Tweedie distribution with para-
meters p = 2.5, μ = 1, φ = 0.58. The theoretical 95th
percentile [see (11)] was calculated.

Table 1 The 95th percentile estimators obtained using the proposed
methods from a simulation study with parameters p = 2.5, μ = 1, φ =
0.58

PH PB PT PW Plog Pλ
BC PTW

Mean 2.476 2.491 2.496 2.537 3.104 2.424 2.465

MSE 0.0813 0.0836 0.0846 0.0962 0.5229 0.067 0.0538

123



230 M. L. Patat et al.

Fig. 1 Boxplots for each estimator for comparative purpose. The horizontal line indicates the theoretical percentile value (P = 2.5)

Table 2 Descriptive statistics of four groups of bacteria: fecal col-
iforms, streptococci, total coliforms and enterococci

Bacteria Min Median Mean Max SD Skew

Total coliform 2 460 1,467 13,000 2,315.38 2.50

Fecal coliform 2 220 1,014 13,000 2,077.52 3.30

Streptococci 2 80 652.4 13,000 1,600.24 3.96

Enterococci 2 43 552.5 11,000 1,374.94 3.96

Themean squared errors (MSE) were obtained to compare
the performance of the corresponding estimators. Table 1
shows the results and Fig. 1 illustrates with a box plot for
each percentile estimator, allowing the comparison of their
properties. As can be seen, the MSE corresponding to the
percentile obtained from Tweedie model is the smallest one.

Application to Real Data

The data were obtained from a study consisting of the mon-
itoring and sampling of microbial water from the beaches
of Mar del Plata, between 1999 and 2007, always in winter.
There were four groups of bacteria: fecal coliforms, strepto-
cocci, total coliforms and enterococci; in Table 2 descriptive
statistics are shown.

In a first step, we calculated for each bacteria the optimum
value for p, to find the most suitable Tweedie distribution to
fit the data. For total coliforms p = 2.21, for fecal coliforms
p = 2.071 and for streptococci and enterococci p = 2.5. In
Fig. 2 we show the histograms with the theoretical densities
for the corresponding p superposed, it can be seen that the
fit is more than acceptable.

Fig. 2 Histogram for bacteria
concentrations superposed with
density curve of a Tweedie
distribution with the
corresponding value for p
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Table 3 The 95th percentile
estimator obtained using the
proposed methods, from four
data sets of bacteriological
counts from beaches of Mar del
Plata

Bacteria Pobs PH PB PT PW Plog Pλ
BC PTw

Total Coliform 7,000 7,100 7,400 6,900 7,300 11,130 7,117 6,901

Fecal Coliform 5,000 5,400 5,500 5,450 5,500 6,634 5,706 5,113

Streptococci 3,500 3,725 3,781 3,800 3,940 3,199 4,201 3,531

Enterococci 3,000 2,900 3,100 3,220 3,950 2,436 4,100 2,973

Later, we calculated percentiles using all the above meth-
ods and compared them to the actual percentile value of the
data (Table 3). The percentile obtained from Tweedie distrib-
ution is the one that most closely fits the observed percentile
for all groups.

Discussion and Conclusions

It has been found that bacteria count is not normally nor log
normally distributed.

Among others, Chawla andHunter (2005), found that their
datasets “were not log normally distributed on at least 85 %
of occasions and these finding fatally undermine the validity
of using a parametric method for calculating 95th percentiles
to classify bathing water quality”.

Other percentile estimators frequently used have been
proposed in the literature (Hunter 2002), they are ‘non-
parametric and use a limited amount of information because
they only consider the order of each observation, not the
exact value. Crabtree et al. (1987) affirm that “the arbitrary
use of non-parametric techniques may fail to make the most
effective use of the information contained in the data”. On
the other hand, Beamonte et al. (2007) state that parametric
methods gave better results than non-parametric ones.

Another alternative is to antitransformpercentiles obtained
from data that has been transformed to approach normality.
(see Taylor 1985)

In this paper, we suggest estimating the percentile of bac-
teriological counts in water, from a probability density func-
tion that takes into account the asymmetric distribution of
this kind of data. We used the Tweedie family proposed by
Tweedie (1984) and characterized as an exponential disper-
sion model by Jørgensen (1992, 1997). This model is appro-
priate for fitting asymmetrical data sets and eliminates the
need to alter the original scale of the data by applying trans-
formations.

In comparing the MSE of different percentile estimates,
we found that the lowest mean square error was obtained
using the Tweedie family. So we can conclude that this is a
better estimator, in the sense that it is more precise.

It has also a more direct calculation. The numerical
method implemented in the R package, allows choosing opti-
mal values for the p parameter, as the one that maximizes
the profile likelihood curve. Then, the 95th percentile esti-
mator can easily been obtained from the optimal distribution
function.
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