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Abstract

Fruits and vegetables (F&V) are living tissues that continue to respire after picking, and while this can be controlled by
freezing, for the conservation of its components, maintaining its sensory quality. This review aims (i) to review the use of
novel combined technologies used in the F&V freezing process, (ii) to evaluate its unconventional variants to obtain high-
quality frozen products, including different aspects that influence this thermal process. The basic principles and uses of
new technologies (i.e., ultrasound, magnetic fields, high pressure, microwaves, osmotic dehydration, isochoric freezing and
cryogenic freezing and unconventional processes) are described. Moreover, was evaluated the impact of each technology on
the control of the formation and growth of ice crystals, and its impact on the microstructure and quality characteristics of
F&YV, as well as their proposed mathematical models. It is concluded that new technologies combined with freezing have a
positive and promising effect on process optimization, since their application can minimize the negative effects of traditional
freezing methods.

Keywords Emerging technologies - Food processing - Fruit and vegetables preservation - Non-thermal technologies -
Numerical models - Quick-freezing technologies

Introduction

>4 Raul Comettant-Rabanal
raul.comettant@upsjb.edu.pe; raulttant@gmail.com Fruits and vegetables (F&V) are living organisms, metaboli-
cally active and perishable foods with a soft and delicate tex-
ture that contain high amounts of water in their composition
(from 70 to 90%), characteristics that make them susceptible
to mechanical damage, microbial attack and, consequently,

loss of its organoleptic [1] and bioactive quality [2]. Like-
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wise, its intense rate of respiration (generation of heat and
carbon dioxide (CO,) by oxidation of its stored nutrients)
and transpiration (elimination of water vapor for the regula-
tion of internal thermal balance) lead to deterioration, senes-
cence, and reduction of its useful life [3, 4].

Freezing process is a conventional preservation method
widely used to extend the shelf life of highly perishable
foods after harvest. It consists of subjecting the food to
temperatures below 0 °C, causing a reduction in the mobility
and water activity (a,,) and, producing a decrease in chemi-
cal and enzymatic reactions and proliferation of microbial
growth [5, 6]. In this context, freezing represents a common
and viable method for prolonging the shelf life and also is
non-invasive process, that preserves the intrinsic properties
of the food with it the nutritional and organoleptic qualities,
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maintaining food safety and security [7]. However, the
nucleation and formation of ice crystals inside the tissues
is associated with various factors of the food (size, shape,
structure, and composition) and the freezing method [8, 9].
During freezing process, heat and mass transfer phenomena
are strongly linked to properties such as surface area, com-
position, density, and porosity of the food. These properties
have a significant impact on the cost and efficiency of the
finished product process and its nutritional and organo-
leptic characteristics. For this reason, the numerical mod-
els established for the freezing process are based on said
transport phenomena, which will allow predicting, calcu-
lating freezing times and temperatures that are essential
to maintain effective control of the process [10, 11].

There are efforts to optimize the freezing process in terms
of speed that lead to reducing the structural damage pro-
duced in conventional freezing [12]. However, optimizing
the process is complicated due to the ionic composition of
the F&V, which causes high osmotic stress, consequently, an
increase in the diffusion coefficient of cellular water, result-
ing in smaller ice crystals, which would solve the problem of
cellular microstructure degradation [13]. Among the novel
technologies, ultrasound-assisted freezing has shown excellent
results due to the acoustic cavitation effect, which promotes
ice nucleation by microbubbles and generating very small
ice crystals [14]. Magnetic field assisted freezing has gained
quite a lot of popularity, which through vibrating movements
in the water molecule causes the water to remain liquid in
a subcooled state and, furthermore, suppresses the nuclea-
tion of large ice crystals, favoring the formation of fine and
microscopic crystals [15]. High pressure freezing is also an
interesting technology with a great potential, its effects on the
chemical and microbiological aspects of food are governed
by Le Chatelier’s principle [16]. The high pressure allows
accelerating the nucleation stage, giving rise to the formation
of a homogeneous matrix composed of numbers of ice crys-
tals of microscopic size that will preserve the textural quality.
Electromagnetic wave-assisted freezing is considered a tech-
nology with great potential, which causes friction between
water molecules to produce a heating effect, thus, the energy
is dissipated by the microwave, inducing the partial melting
of the ice crystals [17, 18], since it allows control of the stage
of formation of ice crystals during the process [19]. Osmotic
dehydration as a pretreatment to the freezing process is based
on the elimination of a large part of the water present in food
by means of osmotic solutions with a high concentration of
solutes for a period of time and a determined temperature,
favoring the least amount of ice crystals, thus avoiding micro-
structural damage and preserving the organoleptic attributes,
mainly in the color of the product [20].

There are other types of unconventional freezing such
as cryogenic freezing, which consists of a very fast reduction
of the temperature below the freezing threshold of the food,
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achieving beneficial effects such as reducing thawing losses,
improving the appearance of F&V and maintaining the com-
plete cell structure [21, 22]. Likewise, isochoric freezing is
capable of completely preserving the cellular microstructure
of the food, reduces microbial attack and allows considerable
energy savings [23-25]. For all the above-mentioned, the
aims of this review are to consolidate the knowledge related
to fundamentals of the freezing process, the numerical mod-
els that explain this unit operation, the transport phenomena
that occur, and the novel technologies combined with the
freezing process.

Fundamentals of Freezing in Fruits
and Vegetables (F&V)

Although freezing consists of subjecting the food to temper-
atures below 0 °C, internationally the reference temperature
for freezing is -18 °C; at this temperature a large percentage
of water contained in the food has been transformed into
ice crystals [26]. However, since water contains dissolved
solids, and as it freezes, the solutions that remain in a liquid
state become more concentrated in solutes. This increase
in concentration produces a phenomenon called cryoscopic
descent, that is, as solutions are concentrated in dissolved
solids, the temperature at which freezing occurs decreases,
this explains why freezing occurs at temperatures below 0
°C[11, 27]. After the freezing process it is possible to notice
three significant changes in the plant tissue, (1) dehydra-
tion of the cell due to the location of the ice nucleation, (2)
solute damage induced by the increase in intracellular fluid
concentration during freezing and (3) mechanical damage
through stress imparted by the expansion of the ice phase
[28] closely related to the location of nucleation, within cells
(intracellular nucleation) or outside of cells (extracellular
nucleation). Extracellular nucleation is more convenient for
the optimal conservation of plant tissue because it has het-
erogeneous nucleation sites [29].

A homogeneous nucleation in the intercellular space with
formation of smaller ice crystals than the size of the cell, is
favorable. This would avoid perforation of the vacuole mem-
brane, maintaining its structure and cellular integrity. On the
contrary, if this does not happen, the formation of large ice
crystals would cause the release of simple sugars, minerals,
vitamins, polysaccharides, bioactive compounds, pigments,
among others, from the vacuole into the extracellular space.
This would negatively affect the osmotic balance, the tur-
gidity of the cell and the functionality of the plant tissue,
thus leading to the detriment of the organoleptic properties
of texture, aroma and flavor of the F&V. In addition, the
stability of bioactives would be altered, compromising the
effectiveness of their antioxidant capacity and other chem-
oprotective properties favorable to human health [30-34].
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Thus, the faster the extracellular ice formation occurs, the
less damage to the cell walls of the food, whereas the oppo-
site effect would occur if the process is done slowly [5, 35].

On the other hand, during the freezing process synchronous
mass and heat transfer phenomena occur in non-steady state.
The food loses heat by convection through its surface and by
conduction from its interior [36]. Three stages can be distin-
guished in this process: a) pre-cooling, b) phase change and c)
post-cooling [37, 38] indicate that Plank, in 1913, proposed a
numerical model to predict the freezing time, being one of the
most used mathematical models due to its ease. Based on this
model, new numerical models have been developed. For exam-
ple, Ede in 1949 adapted this equation for use in food (Eq. 1):

= prf P_’a +R/a2 1
= Tf—T h kf (D

a

where: #; is the freezing time, p; is the density of the frozen
material, L, is the latent heat of the food (kJ/kg), Ty is the
freezing temperature (°C), T, is the freezing air temperature
(°C), h is the convection heat transfer coefficient for the
material (w/m2 °C), a is the thickness or diameter of the
object (m), k is the thermal conductivity of the frozen mate-
rial (w/m°C), and the constants P’ y R’ whose values are
according to the form of the product: P’ =%2, R> =1/8 for the
infinite plate; P’ =%, R’ =1/16 for infinite cylinder; and P
‘=1/6 y R’ =1/24 for the sphere or cube.

The F&V represent a group of highly perishable foods due
to their high-water content, up to 90%, which makes them sus-
ceptible to attack by microorganisms such as bacteria, fungi
and enzymes [3, 4]. The freezing of F&V has become one
of the most favorable technologies in the food industry, due
to this process it is possible to store F&V seasonal, in order
to extend its consumption time [39]. However, the freezing
of F&V is very complex and different from the freezing of a
drop of water due to the solutes present. In F&V the only thing
that changes phase is pure water, the extracellular solution is
concentrated in solids and the system becomes unbalanced,
then, to try to restore the equilibrium of concentrations, water
begins to migrate from inside the cell, that is, from the vacu-
ole through the tonoplast into the cytoplasm and then into the
intercellular space through the cell membrane and cell wall,
and into the extracellular space through mechanisms called
osmotic [11].

Novel Freezing Technologies
Ultrasound-Assisted Freezing
Otero et al. [40] described ultrasound as acoustic waves which

are of low frequency (20 — 100000Hz) and high intensity (gen-
erally < 1W /cm?). Ultrasound is generated by the attraction

of polarized molecules in the high-frequency electric field,
which causes elastic deformation of ferroelectric materials.
Zhang et al. [41] mention that these waves induce a series of
compression and rarefaction cycles during their propagation.
On the other hand, the ultrasonic effect is linked to the cavita-
tion phenomenon that occurs when a high ultrasonic power
is reached during ultrasound transmission [42]. The attractive
forces cause the formation of bubbles or cavities in two ways:
(a) stable, when this phenomenon occurs gradually in a way
that the bubbles do not reach the critical size to implode, or (b)
transient, when the bubbles reach a critical size and implode
violently [41]. The application of power ultrasound in the
food freezing process, both solid and liquid, has shown to
have relevant effects in optimizing this process. During freez-
ing, ultrasonic irradiation triggers cavitation and micro-flow
effects, which increase the rate of heat and mass transfer. It also
increases the nucleation rate, which promotes the formation of
ice crystals to occur microscopically and uniformly distributed
in the microstructure of the food, thus considerably reducing
structural damage (Fig. 1).

However, for its application to result in beneficial and non-
adverse effects, the different ultrasonic parameters that influ-
ence the efficiency of the freezing process must be considered.
One of them, the ultrasonic intensity, if this also increases the
efficiency of the process, but also increases the thermal effect,
which impairs said efficiency. For this reason, it is essential
to maintain a balance between the ultrasonic intensity and the
thermal effect in such a way that the efficiency of the freezing
process is preserved [41, 43, 44]. Likewise, in the freezing of
F&V it is important to take into account the percentage of void
that the plant tissues present; the greater the vacuum, the less
effective the ultrasound treatment [45]. Figure 2A represents
the way in which ultrasound influences ice crystals, and how
the cavitation phenomenon develops. The effects of ultrasonic
irradiation on the freezing and quality of strawberries, blueber-
ries, apple, pear, Hami melon, broccoli, and red radish frozen by
ultrasound-assisted immersion have been evaluated (Table 1).
From these studies, it has been verified that the increase in the
ultrasonic intensity decreases the time necessary to reach the
supercooling stage, thus reducing the freezing time. Likewise, it
improves the nucleation rate and the growth rate of the crystals,
therefore, the application of this technology allows to improve
the quality of frozen F&V and reduces the loss due to dripping
and nutrients [46—48].

On the other hand, Zhang et al. [41] mention that the ultra-
sonic parameters depend on the nature of the food that will be
subjected to said procedure, because their intrinsic character-
istics and also influence the efficiency of the process. Cong
et al. [79] established a mathematical model for the quantita-
tive analysis of the heat and mass transfer of the drops in the
ultrasonic-assisted freezing process, a model that allows know-
ing the influence of the ultrasonic effect on the performance of
the heat and mass transfer (Eq. 2):
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Fig.1 Freezing stages of pure
water (continuous line) and that
of a solid food (dashed line).
Adapted from [37]
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where: R, is the bubble radius, R, is the initial bubble
radius, P, is the constant hydrostatic pressure, P, is the
liquid vapor pressure, u is the dynamic viscosity of water,
P, is the ultrasonic pressure, d represents the droplet, p
is the density.

Alternatives are currently being studied to improve
the effect of cavitation, since it plays an important role
in optimizing the freezing process. It has been shown
that cavitation affects the efficiency of the freezing rate
and the acceleration of the formation of ice crystals [80].
A research carried out by Jiang et al. [81], evaluated
the effect of pre-injection of pressurized CO, combined
with ultrasound-assisted immersion freezing on the
microstructure of sweet melon, obtaining significantly
positive effects. It was determined that the application
of pressurized CO, contributes to the improvement of the
ultrasonic cavitation effect, consequently, it improves the
formation and growth of ice crystals, allowing to reduce
the microstructural damage of the product more effec-
tively. However, despite being a remarkable technology
for the optimization of the freezing process, it has only
been used on a laboratory scale because considerable
funding is required for the development of equipment
that operates on an industrial scale [49].

@ Springer

Magnetic Field-Assisted Freezing

Magnetic fields are created by passing an electric current through
a coil, which acts as an electromagnetic field. To create the mag-
netic field in an electromagnet, a coil of wire is wound around
the magnetic core and when an electric current is passed through
the wire, the magnetic field from all the turns of the wire passes
through and penetrates the iron coil. This causes the domains to
rotate and small magnetic fields to form from the core, creating the
geomagnetic field effect [82]. Magnetic fields cause changes in the
physical and chemical properties of liquid water molecules that are
frozen through mechanisms of vibration, orientation, and rotation
of their dipoles. This results in the magnetisation of water and alters
its properties, including specific heat capacity, surface tension, con-
ductivity, viscosity, and diffusion coefficient [52]. They also influ-
ence the distribution of electron clouds within water molecules
(charge), the network of hydrogen bonds between molecules and
the interactions/clusters between molecules and ions in aqueous
solutions, which influences the kinetics of freezing.

During the freezing process, this technology strengthens the
hydrogen bonds between water molecules, which enhances stability
and order. This leads to a high level of supercooling, creating micro-
scopic, fine, and evenly dispersed ice crystals in the food [83]. This
protects the cell membranes of the F&V tissue, thereby enhancing
the texture, taste and appearance of frozen foods [15, 84]. However,



Food Engineering Reviews (2024) 16:371-395

375

A)
Cavitation bubble
(serve as ice nucleus)
Temperature
controlled for
freezing

. Y
Ultrasonic Wave

.)) il

Primary nucleation
(producing bubbles

A

B) C

Water molecule

pa?
a3

Q(Q
== T
al 3 gi(

Magnetic Field Action

T

/— Water molecule

n"p ul

Vibration Orientation Rota

hrn\l\i‘ \Aj i 2

Micro Cluster

Macromolecular Group

Electric Field

Electric Field

to

Fig.2 Novel technologies. A Diagram of ultrasonic effect on ice
crystals. B Hypothetical physical mechanisms of the magnetic field
in changes in dipole rotation and clustering of water molecules. C
Possibilities for high-pressure freezing processes based on the water

it is important to acknowledge that the impact of the magnetic field
is contingent on its intensity, as well as the length and temperature
of exposure during the procedure [82]. Figure 2B shows the action
mechanisms of magnetic fields on water molecule clusters.

A study was conducted to compare the impact of perma-
nent magnetic field (PMF) and alternating magnetic field
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978-1-5225-2136-5.ch003

(AMF) assisted freezing on the microstructure of blueberries
showed that applying AMF at 0.05 mT led to a 55.8% reduc-
tion in ice crystals. However, as AMF intensity increased,
the phase change time also escalated, promoting the growth
of ice crystals in food freezing, hence conveying an unde-
sirable outcome. While in PMF significantly reduced the
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Table 1 (continued)

References
[22]

Results

Parameters

Fruits

Type of technology

The freezing rate was increased,

Temperature: —120 °C

Myrtle

and the structure of the product

was preserved.

[21]

The structural quality of the

Temperature: —110 °C

Durian

product was guaranteed, which
ensures its durability during

storage.

[12]

Drip loss was reduced, and firm

Temperature: —196 °C

Cucumber

retention was improved.

[39]

Drip losses were reduced, and

Temperature: —4 and —7 °C

Cherry

Isochoric freezing

the organoleptic characteristics

were preserved, mainly color

and texture.

(23]

The color and structure of the

Temperature: —2,5 °C

Grenade

product were preserved.

(78]

Structural damage was minimized,

Temperature: — 2,5 oC

Tomato

and it retains nutritional

properties similar to that of the

product in its fresh state.

size of crystals, as the intensity was increased. An optimal
PMF intensity for blueberries in terms of freezing param-
eters and microstructure was found to be 10 mT, resulting
in a 33.6% reduction in crystal size [55]. Similar research
was conducted on cherries, indicating that PMF-assisted
freezing requires less energy than AMF-assisted freezing.
In cherry, as well as blueberry, the optimal PMF intensity
was 10mT, resulting in a reduction of approximately 67%
in ice crystals. The use of both types of magnetic fields led
to a decrease in nutrient loss, with PMF resulting in lower
losses than AMF [56].

Similarly, the effects of applying AMF to freeze mini-
mally processed guava were evaluated, and positive results
were obtained when 7.02 mT of AMF was used. Both phase
change time and drip losses were reduced, and texture prop-
erties were better preserved. However, the precise effects
could not be described as there is still insufficient study
material on real food matrices with a wide range of magnetic
parameters [15]. The effects of static magnetic field (SMF)
application have been investigated in several F&V including
apple, peach, cucumber, Indian jujube, broccoli, and cauli-
flower. The results showed that the optimal SMF intensity
varied depending on the F&V studied. Furthermore, SMF
application led to a decrease in respiratory intensity, mem-
brane permeability y ice crystal size, which had a positive
effect the preservation of the quality and microstructure of
the Fruits and delicate vegetables such as spinach [31, 58,
85, 86]. However, in cherry tomatoes, SMF and AMF were
found to increase the enzymatic activity of catalase, which is
an enzyme that delays ripening. Therefore, these techniques
can be used to control ripening during postharvest of fruit
[57].

High-Pressure-Assisted Freezing

The use of pressure in the freezing process has great
potential, as the pressure exerted (150 to 760 MPa) plays
a key role in the transition from water to ice (Fig. 2C). Its
application can improve the characteristics of the ice crys-
tals formed during the process, as well as the freezing and
thawing kinetics [83]. Acording to Sanz and Otero [87],
three different high-pressure freezing processes can be dis-
tinguished (Fig. 2C), depending on how the phase transi-
tion occurs: 1. High-pressure-assisted freezing (HPAF), 2.
High-pressure-induced freezing (HPIF), and 3. High-pres-
sure-shift freezing (HPSF). In HPAF, the phase transition
occurs at a constant pressure above atmospheric pressure,
as the temperature drops below the corresponding freezing
point, ice I known as ice polymorphs are obtained. Under
HPAF conditions (200 MPa), the point of freezing of water
will be very low (-22 °C), which reduces the water crystal-
lisation but increases its vitrification upon freezing. Con-
sequently, the formation and configuration of crystals is

@ Springer
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different, increasing the density of water molecules and
preventing the expansion of their volume. Ice crystals
formed under HAPF can be produced by two pathways,
which lead to the formation of ice I (Fig. 2C—green line A
to E) and ice V (Fig. 2C—dashed green line—a to ). Such
thermodynamic water conditions can prevent mechanical
damage caused by ice crystals in the F&V tissue.

Samples subjected to HPIF undergo a phase transition
during the freezing process, which begins with a gradual
increase in pressure (300 MPa), then the sample temperature
decreases at a constant pressure, at which point the pressure
gradually increases (up to 600 MPa), initiating the transition
phase, leading to nucleation and formation of ice V (at -20
°C and 600 MPa) (Fig. 2C — red line A”’ to D*’) [51]. For
the desired ice polymorph, compression can be performed
directly at the target pressure (770 MPa) where ice VI is
obtained (Fig. 2C red dashed line - a’” to b’’). In the case of
an HPSF, there is a slight increase in sample temperature due
to pressurisation (210 MPa). Then, when the system pressure
is released (fully or partially), the phase transition begins,
increasing the freezing point and, suddenly and instantane-
ously, supercooling and expansion occurs, where the water
at this point is still liquid (Fig. 2C, blue line C’-D’). Subse-
quently, a rapid nucleation starts after a slight heating (blue
line D’-E’) and an immediate subsequent cooling (blue line
E’-F), forming fine and uniform crystals of ice I. These pres-
sure changes reduce the phase transition time and prevent
sample heating, which is especially suitable for samples of
large size or low thermal conductivity [87, 88].

It is important to note that the effects of high pressure
on food chemistry and microbiology are based on the Le
Chatelier’s principle. When the equilibrium of a system is
disturbed, phenomena such as phase transitions, chemical
reactivity, changes in molecular configuration and chemical
reactions occur, which are accompanied by a decrease in
volume, but which are counteracted by reactions involving
an increase in volume. In that regard, all cellular components
are affected by the resulting high pressure, including the cell
membrane and its proteins (denaturation), enzymes (inhibi-
tion) and ribosomes, as well as the entire cell metabolism
[16, 89]. For the mathematical modelling of high-pressure
freezing processes, Sanz and Otero [87] mention that it
is essential to take into account the temperature variation
caused by pressure changes and the thermophysical proper-
ties of the products inside the pressure vessel, which cause
different temperature increases after a pressure change. This
variation can be determined using the following numerical

Eq. (3):
dT T XVXa
P 3)

14

@ Springer

where: T is the temperature (K), P is the pressure (Pa), V is

the specific volume (m3 /kg), a is the thermal expansion

Eoieifilc(ijant (K™') and ¢, is the specific heat capacity
kg :

High-pressure freezing has been demonstrated to have
favorable effects on the preservation of cell structure in food
due to its ability to cause rapid nucleation leading to the uni-
form formation of microscopic ice crystals. This ensures that
textural deteriorations to food products are minimized [90].
In peach and mango, high-pressure exchange freezing has
been assessed for its microstructural effects. The product’s
original structure was effectively preserved, and its textural
quality remained almost intact. This technology consider-
ably reduces the issues of freeze cracking or the creation of
large ice crystals, which are frequently seen in conventional
freezing [59]. The results are similar to those obtained in
previous studies using this technology on vegetables such
as carrots and Chinese cabbage (Table 2) [91, 92].

Microwave-Assisted Freezing

The use of microwave technology is a method that relies on
an alternating electromagnetic field that produces thermal
energy through the rotational movement of water molecules
and ionic species. Since the frequency of microwaves typi-
cally ranges from 300 to 3000 MHz, this field causes rapid
dipole movement in water and ionic/polar molecules [105].
In addition, heating occurs due to the deformation and fric-
tion of the water molecules, while the energy dissipated by
the microwaves promotes the partial melting of formed ice
crystals [18]. Two hypotheses have been proposed to explain
this beneficial effect: (i) the microwave-induced (constant
or pulsed) rotation of water molecules around crystals could
disrupt ice crystal growth, as it impacts on hydrogen bonds
between water molecules and water clusters during freezing
and (ii) temperature oscillations due to increased microwave
power could cause partial melting of crystals and lead to
increased secondary nucleation. In both cases, this would
lead to an increased number of smaller crystals, which were
demonstrated by [106, 107], where a reduction of crystal
size in food matrices in the order of 15-20% was evidenced.
Figure 2D shows the heating mechanisms of water mol-
ecules by (1) dipolar polarization and (2) ionic conduction
triggered by microwave irradiation. Sadot, Curet, Le-Bail,
Rouaud, and Havet [108] propose a mathematical model that
is founded on an enthalpy formulation of the heat Eq. (4),
incorporating terms deriving from Maxwell’s Eq. (5):

dH
It

p -V kVT=0 )
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where: w is the pulsation (rad-s -, g is the vacuum per-
mittivity (F-m ~'), €” is the relative dielectric loss factor,
Q is the heat source term, (W-m _3), E is the local electric
field, (V-m ~1), p is the density (kg-m =), H is the specific
enthalpy, (kJ/kg), ¢ is the time (), k is the thermal conductiv-
ity, (W-m ~! .K ~!) and T is the temperature (K).

In freezing, the use of microwave technology enables
efficient regulation of ice crystal formation within the cel-
lular structure of food. This addresses a significant challenge
often encountered during traditional freezing practices, posi-
tioning this method as a viable alternative for enhancing the
freezing process [19]. The diminishment of crystal size is
believed to arise from the rotation of water molecules caused
by the alternating electric field produced by microwaves,
which interferes with hydrogen bonds and may lead to the
formation of the crystalline structure [109]. This is con-
firmed by a study that evaluated the effects of microwave-
assisted freezing on potatoes and apples (Table 1). It was
observed that freezing parameters including characteristic
freezing time, overall freezing time and freezing rate, were
not impacted in either of the products. The freezing curves
of microwave-assisted freezing were very similar to those of
conventional freezing. However, microwave-assisted freez-
ing has less drip loss and consequently foods retain their
firmness and texture [60].

Osmotic Dehydration-Assisted Freezing

The aim of dehydration is to produce foods with low moisture
levels (a,, below 0.70) or intermediate moisture (a,, from 0.70
to 0.85) [50]. Osmotic processing consists of treating the food
product with a hypertonic solution (low a,,) to remove water
from the food by an osmotic mechanism. Osmotic solutes of
high and low molecular weight such as sugars (sucrose, honey,
glucose, fructose, sorbitol, corn syrup), salts (sodium chloride,
potassium chloride, calcium chloride), polyols (glycerol, sorbi-
tol, erythritol), organic acids (lactate and ascorbic acid), con-
centrated fruit juices and combinations thereof are often used
in an oxygen-free environment to avoid oxidative reactions
[50]. Under these conditions, there is a bidirectional transfer
of mass taking place: (i) water moves from the product to the
osmotic solution and (ii) the osmotic solute is transferred from
the solution to the product [110]. This mass transfer phenom-
enon is explained by selective osmotic transport through semi-
permeable cell membranes [111], where water loss is greater
than solute gain. Solutes enter the area between the cell mem-
brane and the cell wall once they cross the membrane [112].

@ Springer

In addition, the leaching of soluble products (such as sug-
ars, acids, minerals, and vitamins) has a significant impact on
the sensory and nutritional properties of the product [113].
A combination of water and solute is then transported from
the surface of the food product towards the center due to the
osmotic pressure created between the osmotic solution and the
food matrix. The process concludes when osmotic equilibrium
is attained [114]. Mass transfer during the osmotic dehydra-
tion process of F&V is schematically presented in Fig. 2E. In
general, this method is typically used as a pre-treatment before
freezing food to reduce the amount of water present and, con-
sequently, minimize crystal formation during the process.
This process promotes an even distribution of crystals, which
reduces damage to cell membranes [20] and results in signifi-
cant benefits in the final product [115]. Such favorable out-
comes are associated with the enhancement and maintenance
of the inherent features of the food matrix, including sensory,
nutritional, and functional attributes [116]. Additionally, this
method is cost-effective as it employs basic equipment and
consumes relatively low energy [70].

Goula and Lazarides [117] conducted numerical modelling
to calculate water loss, solute gain, and the eventual equilib-
rium point following the process of osmotic dehydration. They
obtained the Eqs. 6y 7:

WL = sy XtX WL,

T l4s Xt ©)
SG = 5, Xt XSG,

T l+s, Xt @)

where: WL is the water loss, SG is the solid gain, s, and s,
are parameters that can be defined as relative rate constants
for water loss and solids gain, respectively, 7 is the time, WL,
is the water loss at equilibrium and SG, is the solid gain at
equilibrium. Eqgs. 6 and 7 can be linearized to obtain the
Egs. 8 and 9 comprise the Azuara Model.

t 1 t

—_— e+

WL~ 5, x WL, = WL, ®)
t 1 t

G ®

a

_ =}
SG ~ 5,%xSG,

A study was conducted to examine the impact of osmotic
pre-treatment and freezing on the volatile fraction of straw-
berries (Table 1). It was determined that using osmotic
pre-treatment before freezing was advantageous, as it aug-
mented the production of crucial aroma compounds in the
fruit, thereby avoiding loss of quality [64]. Similarly, in the
volatile fraction of kiwifruit, osmotic dehydration resulted
in the creation of esters whilst decreasing the presence of
aldehydes and alcohol [73]. A study investigated the effects
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of osmotic dehydration and freezing on papaya pieces. The
findings were positive, as the brightness of the yellow color
increased with the prolongation of osmotic dehydration.
Recent studies have shown that this technology applied to
the araz4 fruit improved the freezing rate, avoided drip loss,
which resulted in enhanced bioaccessibility of polyphenols
with higher antioxidant capacity [71]. However, it is crucial
to monitor the time factor as it could have an impact on
the sweetness [65]. In a study conducted on apple cubes, it
was noted that greater concentration of the osmotic medium
resulted in higher firmness [74]. This observation was also
supported by a similar study that found dehydro-freezing to
effectively enhance the firmness of frozen products under
examination, including peppers, carrots, and cucumber,
while considerably reducing drip losses (Table 2) [12].

Unconventional Freezing Variants
Cryogenic Freezing

Ultra-rapid freezing, facilitated by cryogenic fluids, provides
exceptionally high freezing rates. This process generates
numerous small ice crystals in both intercellular and intra-
cellular cavities and reduces water dislocation, thus avoid-
ing detrimental effects caused by dehydration and shrinkage
of the microstructure. As a result, the overall quality of the
frozen food is effectively preserved. In addition, during cryo-
genic freezing, an outer layer or crust of ice forms on the sur-
face of the product. This outer layer of ice gives the product
mechanical strength and acts as a moisture barrier. The opera-
tional advantages of products frozen by this method are non-
agglomeration and adherence to mechanical conveyor belts
compared to other conventional freezing methods [75, 118].

This is based on the use of cryogenic liquids that allows
a temperature reduction to occur quickly, the most used are
CO, and nitrogen gases [119]. Tangtua et al. [76] mention
that these cryogenic liquids are responsible for the rapid
absorption of heat, thus reducing the temperature of the
food below its freezing point. Consequently, great benefits
are obtained, among which we can mention the conserva-
tion of nutrients, organoleptic characteristics, and cellular
structure, since the leakage of intracellular liquid produced
after the defrosting of the food is reduced. In Fig. 3A, a
cryogenic food freezer is graphically represented, in which
nitrogen is being used as a cryogenic liquid.

Likewise, Tangtua et al. [76] evaluated the methodology
to stop the activity of the polyphenol oxidase (PPO) and
the peroxidase (POD) enzymes in ripe mango pulp before
cryogenic freezing after storage, where the immersion of
mango pulp in a citric acid/Calcium chloride solution and
the immersion of litchi pulp in a calcium chloride solu-
tion improved fruit firmness, moreover, cryogenic freezing

with liquid nitrogen were effective treatments to control
enzymes and minimized changes in fruit quality during
frozen storage at -24 °C for six months. On the other hand,
Alhamdan et al. [77] mention that the liquid nitrogen cryo-
genic freezing (LNCF) method is superior to the conven-
tional slow freezing method using the deep freezer (CSF)
method during frozen storage in preserving the basic color
parameters of fresh Barhi fruit and the deterioration of its
texture, this due to the reduction of the harmful effects of
crystallization and recrystallization in the microstructure of
the F&V tissues during quick freezing method. Numerical
model to analyze the heat transfer process in the freezing of
myrtle, which will allow the establishment of a theoretical
basis for subsequent experiments of this type of freezing
in blueberries, having the Eq. (10):

1 2 oo \ 1
Nu=2 <O.4R = +0.06R —)P 04 =)=
u=2+ e+ e )Pr 0 )3 (10)

0.71 < Pr<380,1.0 < 1= <32
N

where: “Re” is the Reynolds number, Nu is the Nusselt num-
ber, Pr is the Prandtl number, and 1 is the viscosity.

Supporting that, the quality of a frozen product depends
on the temperature and speed of operation since they deter-
mine the distribution and size of ice crystals formed in the
tissues. On the other hand, Razali et al. [21] observed that
cryogenic freezing is indeed a promising method to preserve
the quality of export fruits such as durian, since it positively
prolongs storage life and also prevents durian dehiscence
compared to conventional freezing (Table 1).

Isochoric Freezing

In isochoric freezing, food is submerged in an isotonic solu-
tion and then subjected to temperatures below 0°C. This
freezing technique is characterized by being carried out
under constant volume conditions. It is based on the princi-
ple of Le Chatelier also known as “The law of equilibrium”,
which describes that as the formation of ice occurs and it
expands, the pressure increases and, consequently, hinder the
formation of ice inside the food matrix, which explains why
part of the volume remains thawed or, in other words, in the
liquid phase. The isochoric freezing sample represented in
a phase diagram of pure water follows the trajectory of the
liquid state curve, which lies at the interface between ice I,
ice III and liquid water. This sample reaches an equilibrium
pressure up to the triple point of 209.9 MPa at a sub-zero
temperature of -21.985 °C, where a considerable part of the
water contained in the sample remains liquid (45%). These
process conditions restrict any further ice development and
also prevent damage caused by the expansion of ice crystals

@ Springer
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Bayberry Freezer door

LN, tank
~

Thermometer

Control box
J

LN, distributor
Cryogenic food freezer (-196 °C ~ 20 °C )

Domestic freezer(-18 °C)

B)

Fig.3 Unconventional technologies. A Schematic diagram of cryogenic a food freezer. B Scheme of the isochoric chamber and generalized

freezing process. Adapted from [22, 39]

during the transition phase of the water state [120].This
increase in pressure will cease once a thermodynamic equi-
librium is established between ice and water at the given
freezing temperature [121]. Figure 3B graphically represents
what was previously described.

Due to the above, this technique is currently gaining pre-
ponderance, being classified as an emerging technology with
remarkable efficiency capable of completely preserving the
cellular microstructure of the food. Likewise, its application
does not imply damage due to the formation of ice since the
ice crystals are distributed evenly and are also capable of
minimizing microbial growth. For several years, this tech-
nique has been developed by Rubinsky and his group [23,
122, 123].

In addition to being an efficient freezing technique, it
is economical due to it allows significant energy savings
where approximately 35% less energy is needed compared
to traditional freezing [124, 125]. The authors, in turn, intro-
duced a numerical model that represents the freezing process
in isochoric thermodynamic systems, having the following
numerical equations that establish the relationship between
the energy required to freeze a volume (V) and a certain
temperature in an isochoric system concerning an isobaric
system is given to the Stefan number (11):

T.. —T,
Ste = Cl( init l) (11)
L
and the isochoric frozen fraction IF =1P/100, for (12):
¢y  Ste
R=IF+(1-IF)=——
=10 T se (12)

where: Ste is the number of de Stefan, c is the specific heat
(kj—g.K ), T is the temperature (K), init means initial, L repre-

@ Springer

sents the change of de enthalpy between frozen and thawed
phases (kJ/kg), R is the relation of energy (V—HZ.K), IF repre-
sents the isochoric frozen fraction, subscripts 1 and 2 repre-
sent the frozen and liquid domain respectively.

Regarding fruits, this technique has been applied in sweet
cherry freezing performed by Bilbao-Sainz et al. [39] where
it was observed that in an isochoric system under a tem-
perature of -4 °C, the physical, nutritional, and organoleptic
characteristics of the fruit were preserved, being these very
similar to fresh cherries. Similarly, Bilbao-Sainz et al. [78]
studied the effects on tomato conservation by applying this
technique, where it was observed, that the preservation of the
physical, nutritional, and organoleptic characteristics of the
fruit, being very similar to the product in a fresh state. On
the other hand, Bilbao-Sainz et al. [23] carried out a com-
parative study on the conservation of pomegranate through
isochoric freezing and isochoric supercooling, the latter dif-
fers because during this process the food is brought well
below its freezing point without the formation of ice crystals
inside the food container. As a result, it was observed that in
isochoric supercooling the physical, nutritional, and organo-
leptic properties of the product were maintained, likewise,
the contents of ascorbic acid and anthocyanins increased.
However, in isochoric freezing, although the physical and
nutritional properties were preserved, in terms of organo-
leptic properties, the texture of the pomegranate arils was
affected. In this sense, the isochoric supercooling technique
turns out to have a greater efficiency for the preservation of
the properties of freshly cut arils.

On the other hand, positive effects have also been
found in potatoes and spinach, where isochoric freezing
effectively leads to less loss due to dripping and volume
contraction, as well as a better-preserved texture and
microstructure [24, 104]. Even though this technique has
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been studied for several years, there is still not enough
information to fully understand the mechanisms involved
in conservation processes under isochoric conditions,
which is why it is important to continue carrying out stud-
ies and research on this topic [126, 127].

Trends And Future Prospects

Over the years, new study approaches have emerged
in the frozen F&V industry, as shown in Fig. 4, where
the main studies that have been carried out for periods
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between 1955 and the present are observed. Initially from
the years 1955-2000, the main approaches were sen-
sory, instrumental analysis, and frozen storage, having the
papaya greater research field. From 2001 to 2010, empha-
sis was placed on increasing the freezing speed and pre-
serving the nutraceutical value of F&V, emerging rapid
freezing methods (cryogenic freezing), and incorporating
assisted technologies such as microwave. In the last dec-
ade, from 2011 to 2022, the studies had more emphasis on
quality, frozen storage, microstructure, antioxidant activ-
ity/capacity, enzymatic activity, and optimization of the
freezing process. Studies began on emerging combined
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Fig.5 Scientific production by country (Source: Scopus; TITLE
(freezing) AND TITLE-ABS-KEY (fruits AND quality). a Num-
ber of documents per country. b Co-occurrence map generated with

technologies, such as ultrasound, osmotic dehydration,
and dehydrofreezing.

On the other hand, it is important to mention that China
is the country with the highest scientific production in food
freezing with around 72 papers published in high impact
journals (Fig. 5a). In addition, this country together with
Thailand (8), India (7) and Japan (6) are the Asian territories
that focus their research efforts on food freezing with a total
number of 93 scientific publications, and it is this continent
that leads the world. In addition, China has established direct
collaborative networks with Russia and Canada (Fig. 5b),
thereby increasing its scientific research and contributing
to that of other countries in this regard. Similarly collabora-
tive networks are established by countries such as France
with India and Ukraine, as well as Thailand with Japan
and the United States with Canada. In the Americas, the
United States was the leading country in terms of number
of publications (17), followed by Brazil (12) and Canada
(8), and together they represented the American continent
with a total of 37 scientific productions. Among the Euro-
pean countries, Spain had the highest number of scientific
publications (14), followed by France (11) and Ukraine (8),
for a total of 33 European scientific publications. It is hoped
that the countries with the most research will establish col-
laborative networks with countries in the Caribbean, South

@ Springer

VosViewer (https://www.vosviewer.com/) (Unit of analysis: Coun-
tries; Visualization: Documents)

America and Africa, which have a high potential for F&V
production due to their tropical climates, and thus carry out
in-depth studies on the main export and native crops, which
are the axis of development in these continents, and at the
same time, with the help of these new technologies, large
F&V wastes can be avoided.

This review provides new approaches related to new
technologies related to the freezing of F&V that have not
been addressed in the course of the last 20 years, but that are
being incorporated at an industrial level in the area of frozen
foods, standing out among them the freezing assisted by mag-
netic field, high pressures, and unconventional technologies
such as isochoric freezing. These technologies have shown
promise for the optimization of the freezing process and the
preservation of food quality (Table 3), however, according to
the literature on emerging technologies such as ultrasound,
further research is required to optimize the operating condi-
tions and parameters for its application at an industrial scale.

Conclusions

Overall, novel freezing assisted technologies and uncon-
ventional freezing variants have been shown to have great
potential in the frozen F&V industry in terms of mitigating
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structural damage (dripping and loss of firmness) caused du-
ing the conventional freezing process, as they allow to reduce
the freezing rate and promote the formation of microscopic ice
crystals with uniform distribution. They also contribute to pre-
serve the morphological integrity of cellular tissues, thus main-
taining the organoleptic, functional and/or nutraceutical quality
of F&V. They can also inhibit enzyme activity (peroxidase and
polyphenoloxidase) and cause the destruction of potentially
pathogenic micro-organisms. Among the novel technologies,
ultrasound, high pressure, and microwaves allow obtaining high
quality frozen products through various mechanisms related to
the distribution of water in the food matrix, without transferring
foreign components to the food. However, they are expensive
technologies, and their scale of operation is limited. Meanwhile,
osmotic dehydration or dehydrofreezing and magnetic field
freezing are the most accessible and economical technologies,
as they do not require sophisticated equipment and expensive
refrigerants to carry out the freezing process.

Regarding unconventional processes, isochoric freezing by
volume-invariant mechanisms retains 45% of the water in liquid
state, avoiding tissue damage caused by the ice crystals expan-
sion and can reduce the energy required to freeze a food product
by up to 65-70% compared to conventional isobaric freezing.
In cryogenic freezing, due to its very high freezing rate, it pre-
vents dehydration and shrinkage of tissue microstructure, and
also forms a crust that protects against mechanical damage and
acts as a moisture barrier, thus maintaining the texture, col-
our, flavours and microbiological safety of food frozen by this
method. On the other hand, the numerical models presented in
this article allow a mathematical understanding of each revised
technology and important parameters to control in the freezing
process such as temperature, freezing time, heat transfer, and
mass. Undoubtedly, these new combined technologies mean a
significant advance in the frozen food industry, however, it is
important to continue research on these technologies to better
understand their mechanisms of action and their relationship
with the optimization of the F&V freezing process.
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