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Abstract
Needleless electrospinning, an electrohydrodynamic process, is an emerging approach to producing nanofiber mats from 
an open liquid surface. Importantly, the approach offers 3–250 times higher production rates than needle-based electrospin-
ning systems and has the potential to develop biocompatible and biodegradable nanofibers that have numerous applications 
in the food industry. The electrospinning potential of various biomaterials (from plant and animal sources) in needleless 
configurations is highlighted in this review. Also, the factors influencing the production rate and quality of needleless elec-
trospun nanofibers are emphasized. Further, the reported uses of needleless electrospun nanofiber mats in food applications 
like packaging, filtration, bioactive encapsulation, enzyme immobilization, and food quality sensing are presented. Finally, 
challenges and areas to be explored further are summarized, considering prospects. Electrospun nanofibers are valued for 
their characteristics and unique capabilities. However, often, scale-up production is challenging, limiting its usage in mul-
tiple commercial applications. Overcoming this concern, needleless electrospinning is a viable approach for scaling up the 
production of nanofibers. Offering properties on par with conventional electrospinning, the needleless approach is finding 
expanding avenues in different sectors.

Keywords  Electrospinning · Nanofibers · Biomaterials · Needleless electrospinning · Technology scale-up · 
Electrohydrodynamic process

Introduction

Nanofibers are the non-woven filamentous mats produced at 
the nanoscale (below 100 nm) with unique functionality as 
a result of their higher surface area to volume ratios [1], and 
electrospinning is a popular approach for producing nanofibers 
[2]. Electrospinning is an electrohydrodynamic approach in 
which the electrostatic forces are used for the rapid (in milli-
seconds) production of nanofibers. The approach can be effec-
tively used to make complex assemblies like porous fibers, 
core-shell fibers, nano-nets, and sandwiched membranes [3].

During electrospinning, the polymer solution is exposed 
to an external electric field and electrical stress. As a result 
of the liquid’s subsequent surface tension, the spinneret 
(spinning nozzle through which the polymer solution flows 
to form fibers) tip develops a cone-jet configuration. Small 
droplet atomization takes place when the electrical stress 
overcomes the surface tension of the liquid. Also, as the 
atomized droplets travel toward the collector, the solvent 
evaporates, resulting in the production of submicron-sized 
solid particles or fibers [4].

The scalability of the conventional needle electrospinning 
process is a concern, with a typical output of 0.1 to 5 ml/h 
from a single capillary and produced fibers with a mass flow 
of one order smaller. This is because of the rate of solvent 
evaporation from the polymer solution, resulting in fiber 
productivity of typically less than 0.3 g/h per needle [5]. The 
fiber orientation in needle electrospinning is also inhomoge-
neous and random [6]. Needle electrospinning can also have 
clogging issues, which reduces the diameter of the formed 
fibers [7]. The use of multiple jet spinnerets is one viable 
solution for increasing productivity. However, this method 
may also result in needle clogging due to the inhomogeneity 

 *	 J. A. Moses 
	 moses.ja@iifpt.edu.in

 *	 C. Anandharamakrishnan 
	 anandh@niist.res.in
1	 Computational Modeling and Nanoscale Processing Unit, 

National Institute of Food Technology, Entrepreneurship 
and Management – Thanjavur 613005, Tamil Nadu, India

2	 CSIR-National Institute for Interdisciplinary Science 
and Technology, Thiruvananthapuram 695019, Kerala, India

3	 Department of Biotechnology, Faculty of Engineering 
and Technology, SRM Institute of Science and Technology, 
Tiruchirappalli 621105, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12393-023-09362-2&domain=pdf


253Food Engineering Reviews (2024) 16:252–269	

1 3

in the applied electric field across the needles and repulsion 
among jets, in turn, reducing fiber quality and enhancing the 
complexity of cleaning the spinnerets. Thus, it is suggested 
to produce nanofibers with less reliance on the number of 
fluidic channels that can improve fiber productivity.

Given this, needleless electrospinning (NE) has the poten-
tial to produce nanofibers on a large scale in a compact space 
from an open liquid surface. The needleless fiber genera-
tor produces numerous jets at the same time, without the 
requirement of capillary flow, which is normally associ-
ated with needle-based systems. As an emerging concept 
for food-based applications, this review presents the con-
cepts of NE and its role in the production of nanofibers at a 
higher production capacity with uniformly distributed fiber 
formation. The review also discusses the factors influencing 
nanofiber properties, food applications of nanofibers spun 
using needleless configurations, limitations in the challenges 
involved, and the future scope.

Principle of Needleless Electrospinning

NE, also known as free surface electrohydrodynamic jetting, 
is a self-organized process that produces nanofibers by trig-
gering liquid polymer solutions by destabilizing the polymer 
droplets under the applied electrostatic forces (electrohy-
drodynamic destabilization). As a result, the stretching and 
thinning of immersed droplets to form jets. A cone structure 
(Taylor cone) is produced at the tip of the polymer solu-
tion, from which charged particle jets are initiated. Needle 
electrospinning can only form one Taylor cone per needle; 
whereas, NE can result in the formation of multiple Taylor 
cones (Fig. 1A). This increases the number of formed poly-
mer jets, allowing scaled-up production of nanofibers [3]. In 
a typical NE system, nanofibers are generated in four steps:

1.	 When the spinneret (Fig. 2)  is partly immersed in the polymer  
solution and rotates, a thin layer of polymer solution is 
formed on the spinneret surface

2.	 The rotation also results in the formation of initial per-
turbations in the solution layer. This leads to a localized 
increase in solution concentration to generate active 
sites. It further roots the growth of perturbation causing 
the formation of conical spikes on the solution surface

3.	 Then, when high voltage is applied, the free surface of 
the polymer solution experiences instability in electric 
field distribution at irregular intervals, and the spikes 
concentrate electric charges. This causes the jets to turn 
transverse to the direction of the electric field and thus the 
jets are decelerated by the constantly increasing drag force 
of the gas which results in “Taylor cones” formation

4.	 Finally, polymer jets are expanded out from the “Tay-
lor cones”; a cloud of charges is expanded toward the 

collector during which solvent vaporization also takes 
place, solidifying the jet and the resultant fibrous cloud 
drifts onto the surface of collector (Fig. 3)

If the polymer concentration and molecular weight are 
lower, electrospraying takes place instead of spinning [8]. 
When the liquid possesses sufficient surface tension and 
relatively low viscosity, the efflux will disassemble down-
stream and subsequently split into numerous charged micro-
droplets. The lack of sufficient molecular cohesion for the 
polymer mixtures at low concentrations results in numer-
ous breaks and resultant droplet formation, which is defined 
as electrospraying [9]. As the solvent evaporates from the 
droplet, the droplet size decreases, causing an increase in 
charge density inside the droplet, resulting in the Coulombic 
explosion, which aids in the production of sprayed micro or 
nanoparticles. The electrospraying setup is placed inside a 
chamber and circulated with conditioned air to ensure the 
flow of nanoparticles toward the collector (Fig. 1B).

Needleless Electrospinning  
System Configurations

The efficiency of nanofiber formation in NE is strongly 
dependent on the stability of Taylor cones. Taylor cones 
often tend to move along the perimetric wall of the rotat-
ing roller to form a solution jet in the presence of a strong 
electric field. Thus, inter-molecular interactions between the 
polymer molecules in the solution will influence the stability 
of the formed Taylor cone. Also, the rheological properties 
of the solution (viscosity and flow behavior) must be con-
sidered, as these would directly impact the take-up capacity 
of the solution by the fiber generator [10]. NE also requires 
a higher voltage to initiate the electrospinning process as 
compared to needle electrospinning.

Spinneret geometry parameters such as the dimensions 
and shape have a significant impact on the rate of produc-
tion of nanofibers in NE. Typically, spinnerets are classified 
based on the path of the jet from the spinneret to the collec-
tor and based on the motion of the spinneret [11]. Various 
spinneret geometries explored for needleless electrospinning 
are presented in Fig. 2. There are several types of NE spin-
nerets, including linear-rotary, static bubble, magnetic field 
assisted, and coil. The spinneret design and configuration 
directly impact the distributed electric field intensity which 
leads to the variations in the distribution of charge density 
on the polymer surface that affects the Taylor cone forma-
tion [12]. For example, a coil spinneret provides higher pro-
ductivity as compared to a cylinder spinneret which has the 
same diameter and length [13]. Increasing the rim radius 
increases the surface area, which decreases the electric field 
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Fig. 1   A Needleless electrospinning setup and B needleless electrospraying setup to produce nanofibers/nanoparticles from the polymer solutions
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intensity and distribution in the spinneret. As a result, the 
rate of fiber production is lowered [5]. The amount of avail-
able spinneret surface area has a direct impact on fiber pro-
duction rate and other fiber properties.

The spinneret assembly must be made of the appropriate 
material because some solvents can be corrosive. The resist-
ance of Teflon, stainless steel, and polyether ether ketone 
(PEEK) to typical solvents is well-known [14]. The choice of 
spinneret material is thus identified as a key factor in ensur-
ing the safety of nanofibers used in food processing systems.

The fiber production rate is largely affected by the electric 
field intensity which needs to be strong and narrowly distrib-
uted in the fiber generation area [5]. Metal electrode with a 
sharp edge, also called corona electrode, helps in the forma-
tion of the highest electrical charge density [15]. Xiong et al. 
simulated the electric field distribution of mushroom-like 
spinnerets [3] and reported that the strongest charge density 
was toward the edge of the free surface in the uncovered 
mushroom spinneret. Furthermore, the electrical charge den-
sity was observed to be uniformly distributed and to have 

Fig. 2   Needleless electrospin-
ning spinneret configurations
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Fig. 3   Mechanism of nanofiber formation in a single needle electrospinning and a roller electrospinning system
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great spinning capacity with concentrating charges near the 
edge, significantly lowering the required critical voltage.

Apart from the uniformity of charge density distribution, 
modifications in the spinneret configurations are also known 
to form nanofibers with various structures and functionali-
ties. For instance, Zhou et al. used a dual-wire spinneret sys-
tem in which the electrohydrodynamic destabilization and 
electrocapillary force resulted in the formation of a chain of 
droplets between the two wires [16]. The complex morphol-
ogy of droplets in the channel can facilitate surface jetting 
and result in the formation of core-shell nanofibers. Also, a 
threaded rod spinneret was designed by Zheng et al. [17]; it 
could clean the residual polymer solution on the spinneret 
(self-cleaning) enabling efficient spinning with a production 
rate of 5-6 g/h. Several novel spinnerets, such as mushroom 
spinneret [18], multi-unit spinning to derive 3D nanofibrous 
structures [19], sprocket wheel spinneret [20], and linear 
flume spinneret [21], are presently being investigated for 
nanofiber production for NE. Furthermore, a needleless 
electrospinning device has recently been patented, which 
consists of an enclosure that collects the vapor formed dur-
ing the spinning process and recovers the solvents [22].

Polymers Explored for Needleless 
Electrospinning Applications

Just like conventional electrospinning, NE also can spin a 
wide variety of synthetic, bio-based, and composite poly-
mers. However, the polymer-solvent combinations for effi-
cient spinning and the toxicity of solvents are the key factors 
contributing to the wide applicability of the spun polymers.

Synthetic Polymers

Various water-soluble and water-insoluble polymers 
have been explored in NE. Poly(vinyl alcohol) [23], 
poly(2ethyl2oxazolene), poly(vinylpyrrolidone), etc. as 
water-soluble polymers and poly(styrene-co-acrylonitrile), 
acrylonitrile butadiene styrene, and poly (vinyl alcohol-co-
ethylene) [24], etc. as water-insoluble polymers were found 
to be suitable to produce nanofibers.

Biopolymers

Biological materials derived from plants and animals can 
be spun in their natural state or as blends. The properties of 
biobased materials and their availability have sparked inter-
est in their use in the production of electrospun nanofibers 
[25]. Various polymers derived from plant sources, such as 
cellulose derivatives, zein, and lignin, animal sources, such 
as collagen and gelatin, and marine sources, such as chi-
tosan, chitin, hyaluronic acid, etc., have been investigated for 

use in food and pharmaceutical fields. Owing to their bio-
compatibility and biofunctionality, naturally derived prod-
ucts have gained attention in electrospinning. A majority of 
these electrospun polymers are proteins or polysaccharides. 
The spinning conditions of various biomaterials in NE are 
given in Table 1.

Biopolymers from Plant Sources

Cellulose, being insoluble in water, requires bio-compatible 
green solvents (such as glycerin, sodium hydroxide [26], 
quaternary onium hydroxides, ionic liquids, and deep eutec-
tic solvents [27]) for the preparation of spinning solutions 
and for their use in food applications [28]. NE efficiently 
regenerates cellulose into micro/nanofibers from its soluble 
derivatives. Similarly, carboxymethyl cellulose, a water-
soluble cellulose derivative, has been used for plant extract 
encapsulation [29]. As fillers, cellulose derivatives are also 
used in improving the mechanical strength of nanofibers. For 
example, microcrystalline cellulose was incorporated into 
polyvinylpyrrolidone nanofiber to enhance its mechanical 
properties [30]. In the context of alginate, the high viscosity 
of sodium alginate necessitates a combination with carrier 
polymers or solvents with good fiber-forming capacity. The 
incorporation of carrier polymers and the addition of trace 
components such as Ca2+ can assist in an increase in inter-
molecular interactions between the alginate polymers, which 
further results in smooth, ultrafine fibers. The spinnability 
of lignin in needleless configuration has also been explored 
with a wire electrode [31].

Biopolymers from Animal Sources

The spinnability of chitosan is challenging as it has a poly-
cationic property [32] with a rigid chemical structure and 
strong intramolecular hydrogen bonds resulting in enhanced 
viscosity and decreased chain movements. Chitosan elec-
trospun fibers are often formed in a Trifluoroacetic acid 
solution or a co-solvent system of Trifluoroacetic acid and 
dichloromethane. Also, obtaining a homogeneous fiber 
matrix and the formation of electrical sparks are challenges, 
often resulting in the formation of spindle or bead-like struc-
tures in spun fiber mats. Thus, the spinning of chitosan as a 
blend of other polymers such as poly (ethylene oxide) and 
poly (vinyl alcohol) has been investigated to provide homo-
geneous fiber formation.

Silk fibroin is soluble in concentrated aqueous acidic 
solutions and in aqueous salt solutions with high ionic 
strength. Calcium chloride has been reported to improve silk 
fibroin solubility in the formic acid solvent [33]. Gelatin, 
obtained by thermal degradation of collagen, results in a 
3D macromolecular network due to the presence of ioniz-
able groups and strong hydrogen bonding. This results in 
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reducing the mobility of gelatin and, therefore, the spinna-
bility of gelatin is poor. This can be improved by spinning 
gelatin with a blend of polymers. NE has also proven to 
produce composite nanofibers of poorly miscible polymers 
fluid mixing electrospinning method. For example, chitosan 
oligosaccharide and sodium alginate are poorly miscible. 
However, the composite nanofibers were obtained by mixing 
chitosan oligosaccharide/gelatin and sodium alginate/gelatin 
solutions [34]. Various studies have reported NE of gelatin 
nanofibers with production rates up to 100 g/h [35]. Fur-
ther, casein has been explored for electrospinning by using 
a mixed polymeric solution containing poly (ethylene oxide) 
and poly (vinyl alcohol). Due to its low tensile strength and 
water solubility, it requires crosslinking post-fiber forma-
tion. The presence of glycerol and paraffin oil in the spin-
ning solution also results in overcoming the brittle structure 
of formed nanofibers [36]. Whey protein isolate contributes 
as an emulsifier and helps in chain entanglements during 
emulsion electrospinning. Thus, it is used as an ideal carrier 
for encapsulation of bioactive components [37].

Composite Polymers

Composite nanofibers exhibit enhanced mechanical strength 
and performance, as well as the ability to provide active 
and/or smart properties that are useful [38]. A study on 
NE to produce double-layered composites of chitosan and 
bacterial cellulose showed that the electrospun bacterial 
pigment-incorporated composites had an improved anti-
microbial activity as well as the ability to prevent external 
contamination compared to bacterial cellulose layers without 
pigment incorporation [39]. In another study, potato protein-
maltodextrin conjugates were electrospun using a rotating 
cylinder spinneret in a NE system, and a high fiber produc-
tion rate (5.8 ± 0.4 g/h) was reported. An increase in protein 
content resulted in a decrease in the production rate and an 
increase in fiber diameter [40]. Earlier, whey protein and soy 
protein mixed with maltodextrin were electrospun in a roller 
electrospinning setup, and the latter resulted in decreased 
surface tension and increased electrical conductivity [41].

Composite structures of nanofibers consisting of spir-
ulina protein concentrates and gelatin have been devel-
oped by Mosayebi et  al. [42]; gelatin and soy protein 
isolate were combined in a 40: 60 ratio to create uniform 
bead-free nanofibers that had a smaller average diameter 
(208 ± 46 nm). In another study, composite structures of 
PVA and gelatin were spun in NE using dimethyl sulfoxide. 
These nanofibers were suggested for potential food appli-
cations [24]. A blend of gelatin and silk fibroin was also 
explored; an increase in gelatin content resulted in thicker 
fibers with diameters ranging from 200 to 660 nm [43].

Factors Influencing the Spinnability 
of Polymers in Needleless Configurations

The spinnability of polymers is influenced by solution 
parameters and process conditions. This section discusses 
the factors that require consideration during the spinning 
of polymer solutions in NE.

Properties of Spinning Solutions

NE requires suitable spinning solution properties such as 
polymer concentration in the solution mixture, electrical 
conductivity, viscosity, and surface tension, all of which 
are considered in conventional electrospinning processes 
as well. These would vary for different polymers and 
different configurations of NE systems. In general, NE 
requires a solution with higher viscosity (and polymer con-
centration) as compared with needle electrospinning. This 
is required for the formation of a thicker solution layer on 
the spinneret surface. As a result, boundary layer resist-
ance is reduced and the mass flow rate is increased [44].

Electrospinning Process Conditions

Apart from solution mixture properties, the spinning effi-
ciency in NE is also influenced by the system properties 
such as applied voltage, collector to spinneret distance, 
temperature, and relative humidity inside the spinning 
chamber. In NE, the surface of the drum requires more 
charges to be applied to the polymer solution to form 
spherical droplets, and this results in the entanglement 
of the polymer chains. Therefore, NE requires a higher 
applied voltage [45]. The critical voltage required to start 
electrospinning is highly dependent on material proper-
ties, environmental conditions (humidity and temperature), 
and collecting distance. A large collector-to-spinneret dis-
tance allows adequate jet stretching and complete solvent 
evaporation, resulting in a decrease in the diameter of the 
formed fibers [46].

The mechanical motion of the spinnerets also affects 
the fiber production rate. The rotating spinnerets produce 
uniform bead-free fibers at a faster spinning rate than sta-
tionary nozzle-free spinnerets. At lower spinneret speeds, 
uneven coverage of the spinneret surface restricts continu-
ous jet formation [44]. When the rotation speed of the 
moving spinnerets is increased, fiber diameter is decreased 
as a result of jet ejection from different directions [17]. 
Thus, suitable rotation speeds must be established for dif-
ferent polymer solutions for the continuous generation of 
fiber jets. However, these rotation speeds depend on the 
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type and properties of the polymer solution and the design 
of the spinneret assembly.

Properties of Electrospun Nanofibers 
Prepared Using Needleless Configurations

Nanofibers produced through NE have recently been investi-
gated for their suitability as packaging materials, carriers for 
encapsulation, quality sensing strips, and other applications. 
However, the characteristics of nanofibers decide their suit-
ability for different applications.

Surface Morphology and Porosity

NE produces coarser fibers with a wider diameter distribu-
tion than needle electrospinning because the Taylor cone 
diameter is not controlled. In a study conducted by Huang 
et al. disk-electrospun nanofibers resembled uniform fiber 
morphology with no beads, similar to those spun from nee-
dled electrospinning systems [47]. However, the disk elec-
trospinning process produced coarser fibers with a wider 
distribution in fiber diameter (581 ± 276 nm). This was 
attributed to the widely distributed electrical field intensity 
on the disk edge. Further, disk electrospun membranes had 
larger pore diameters explaining lower fiber densities. NE 
has also been reported to generate more uniform nanofib-
ers as compared to single-needle electrospinning carried out 
under the same conditions as a result of the uniformity of 
the applied electric field around the flat spinneret [48]. At 
higher concentrations of polymers, NE can produce defect 

and bead-free nanofibers as compared to needle spinning, as 
needle spinning requires frequent clearing of the needle tip 
to inhibit solution clogging at higher polymer concentrations 
[49]. Also, the spinneret’s configurations tend to directly 
impact the fiber morphology. At the same applied voltage, 
nanofibers generated in a disk nozzle were finer as compared 
to the cylinder nozzle [44]. Figure 4 presents the morphol-
ogy and fiber diameters of NE nanofibers.

Thermal Properties

NE nanofibers can offer higher thermal stabilities, and this is 
due to the alignment of polymeric materials during whipping 
and stretching, producing nanofibers with highly ordered 
structures. Additionally, during electrospinning, atoms of 
polymeric molecules are physically linked with one another 
to form lengthy polymeric chains wherein intermolecular 
interactive forces increase the temperature at which degra-
dation takes place. Zein nanofibers showed higher tempera-
tures of initiating second weight loss (260 °C) as compared 
to pure zein (240 °C) [50]. Being a low-temperature fiber 
formation process, the process of electrospinning did not 
have any negative impact on the glass transition temperature 
of zein nanofibers. In a study involving the incorporation 
of chitosan, the formation of crystal regions in the nanofib-
ers was hindered, resulting in a decrease in endothermic 
peaks with an increase in the chitosan concentration [51]. 
Similarly, in another study conducted on cinnamic aldehyde 
encapsulation in zein nanofibers, the incorporation of cin-
namic aldehyde resulted in a decrease in the thermal stability 
of zein nanofibers [52].

Fig. 4   Surface morphologies of different biopolymeric nanofibers prepared using needleless electrospinning. Source: [35, 50, 92, 99–101]
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Mechanical Properties

NE can impact the mechanical strength and associated sta-
bility of nanofibers. This is due to an increase in polymeric 
crystallinity during the process as compared to needle-spun 
nanofibers [53]. Improved mechanical strength is an impor-
tant phenomenon in explaining the suitability of nanofibers 
for filtration applications. A decrease in fiber diameter is 
expected to improve the mechanical properties of the spun 
nanofibers. However, in a study conducted by Zahran et al. 
when fiber diameter approached lower values (~ 34 nm), a 
weak mechanical performance was observed [30]. Therefore, 
fiber morphology and diameter should be optimal to achieve 
the required mechanical performances.

The addition of a significant amount of NE fibers can 
result in a notable increase in the tensile strength of films. 
For example, an increase in zein nanofiber concentration in a 
casted gelatin film increased Young’s modulus as a result of 
increased stiffness and density. Also, an inverse relationship 
was observed between the nanofiber concentration and elon-
gation at breaking due to the increased brittleness of films 
resulting in a reduction in direct interactions between the 
available protein chain networks [50]. The addition of micro-
crystalline cellulose has been reported to increase the stor-
age modulus of electrospun poly(lactic) acid (PLA) fibers 
by 279% [30]. Further, the application of various crosslink-
ing strategies in spun nanofibers is reported to increase the 
fiber’s mechanical strength [35].

Applications of Needleless Electrospun 
Nanofibers in the Food Industry

This section presents insights from recent research works 
that involve NE applications for the food sector.

Encapsulation of Bioactive Components

Electrospun nanofibers have the potential to be used in 
the food industry as the encapsulation carrier of various 
food additives and bioactive components. They have been 
explored for their feasibility, stability, and robustness for 
appropriate drug delivery profiles. Electrospun drug-loaded 
nanofibers have been prepared by treating the co-dissolved 
solution of a guest bioactive ingredient and the host polymer 
excipient in a single fluid process. NE is a novel approach 
for scaled-up production of bioactive components encapsu-
lated nanofibers with controlled release.

In a study conducted by Karim et al. NE was used for the 
synthesis of zein nanofibers loaded with cinnamic aldehyde 
for the reduction of nitrite in sausages [52]. They concluded 
that nanofibers had no negative effects on the color, texture, 

and sensory properties of sausages when compared to sam-
ples with 120 ppm nitrite. In another study, zein nanofibers 
were used to encapsulate capsaicin, and encapsulation effi-
ciencies of up to 93% were achievable [54]. Ramakrishnan 
et al. have studied the efficiency of curcumin encapsulation 
in polycaprolactone fibers in an NE process and reported 
93% entrapment efficiency and a controlled release behavior 
for a period of 48 h [55]. In another study, tea tree essential 
oil was encapsulated in polyamidoamine dendritic polymers 
using NE, and a high air filtration efficiency and controlled 
release of volatile fragrance components from encapsulated 
tea tree essential oil were achieved [56].

An earlier study used a wire electrospinning setup to 
encapsulate neem seed oil in cellulose acetate, reporting 
improved mycelial growth inhibition against A. flavus and A. 
alternate [57]. Additionally, it was demonstrated that encap-
sulation of bioactives in spun nanofibers can improve their 
thermal stability by more than 50% as compared to their 
free counterparts. The application of NE can thus result in 
fiber mats that can deliver multiple drugs/bioactive ingredi-
ents at varied rates, and different fiber populations can also 
influence the mechanical and physical properties. Also, the 
encapsulation of nanoparticles into nanofibers is another 
novel approach that has shown a higher production rate 
(1.690 g/h average) with uniform fiber diameters [58]. In 
addition to its time-regulated release kinetics and preserva-
tion of bioactivity, the needleless emulsion electrospinning 
method improves cell metabolic activity and viability [59].

Food Packaging Systems

Organic acids, antimicrobial peptides, and essential oils are 
examples of natural antimicrobial substances that are fre-
quently used in active food packaging systems. Biobased 
polymeric materials have unique ion binding and aroma bar-
rier properties, with increased antimicrobial activity. Their 
reactive functional groups make them easily modifiable. 
Biopolymer-based nanofibers capture antimicrobial agents, 
and their notable functionality and biodegradability make 
them versatile choices for the creation of novel packaging 
systems [60]. The layer-by-layer customization of nanofiber 
mats by NE can help create products with beneficial proper-
ties for potential uses in the food packaging industry. One 
such product is the bacterial cellulose and PVA-chitosan 
produced by NE and functionalized with bacterial pigment 
prodigiosin, which has shown promising results not only 
for the packaging interior but also prevents the packaging 
exterior from contamination due to its chitosan antibacterial 
properties and multifunctional external surface with antibac-
terial activity [39].

In another recent study, Zataria multiflora essential oil 
was encapsulated into polyvinyl alcohol via electrospinning 
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for the active packaging of strawberries [61]. Results indi-
cated that the strawberries treated with PVA/Zataria multi-
flora essential oil preserved the anthocyanin, total phenols, 
and antioxidants during storage. The fibers also delayed 
the biochemical and physiological changes in fruit and 
extended the shelf life. Another study reported the develop-
ment of nanofiber mats of PLA/polyethylene glycol blends 
incorporated with peppermint essential oil by solution-
blow-spinning for potential packaging applications. Results 
confirmed extended shelf life, reduced weight loss, and 
increased firmness [62].

A recent study used gluten/zein nanofibers to encap-
sulate star anise essential oil, which was then further 
cross-linked by xylose Maillard reactions. The obtained 
nanofibers with essential oil/cyclodextrin inclusions 
demonstrated exceptional antimicrobial effectiveness 
against both E. coli and S. aureus, indicating a promising 
application potential in food-active packaging [63]. Also, 
antioxidant nanofibers were developed using gelatin and 
spirulina protein concentrate using NE (Fig. 5), having 
wide applicability in high-humidity food packaging appli-
cations along with the potential for nutraceutical delivery 
[42]. Overall, findings confirm that NE mats are feasible, 
effective, and environmentally friendly options for active 
packaging applications.

Enzyme Immobilization

Enzyme-immobilized nanofibers support advances in bio-
processing efficiency and bioactive packaging. Using NE to 
create nanofibers has also been investigated for the biofunc-
tionalization and immobilization of enzymes. For example, 
biofunctionalization using the one-step carbodiimide method 
was used to immobilize trypsin on the surface of biocompat-
ible chitosan nanofibers. This resulted in activity of up to 
209.8 ± 0.6 IU/cm2 [64]. Immobilization in nanofiber matri-
ces also supports long-term storage stability and improved 
reusability. In another study, chymotrypsin was immobilized 
in nylon 6,6 nanofibers, reporting enhanced thermos-stability 
as compared to native enzymes and enzymes immobilized on 
planar films [65], and these nanofibers retained activity over 
a wider range of temperatures. Similarly, poly (acrylonitrile 
co-methyl methacrylate) nanofibers were spun to immobilize 
β-galactosidase using nano spider NE, and improved tem-
perature and pH stability were observed as compared to the 
free form [66]. Nylon 6 nanofiber carriers produced using 
NE have shown higher protein loading (71%) upon laccase 
immobilization with higher residual activity (29%) even 
after 7 cycles of usage. Such findings explain the potential 
of NE as a cheap and effective immobilization approach for 
enzymes on a large scale [67].

Fig. 5   Generation of needleless electrospun antioxidant nanofibers based on gelatin and spirulina protein concentrate. Source: [42]



264	 Food Engineering Reviews (2024) 16:252–269

1 3

Further, steady-state kinetics of immobilized enzymes were 
assayed in different studies and fitted with the Michaelis–Menten 
equation to find the kinetic parameters (Michaelis constant and 
maximum activity). The Michaelis constant increased during 
immobilization by NE, representing a decrease in the affinity of 
the enzyme (Table 2) to the substrate. This results in the quick 
dissociation of an enzyme-substrate complex for the biocatalysis 
to take place. Enzymes immobilized in nanofibers have been 
reported to experience more diffusion-oriented collisions with 
the substrate to create the enzyme-substrate complex for bioca-
talysis over time [65].

Filtration

Fibrous materials such as nonwoven fabrics are extensively 
used as filtration media due to their flexibility, low initial 
resistance to flow, and large retentate holding capacity. The 
removal efficiency is typically higher in fibers with smaller 
pore diameters, but this is often assisted by high filtration 
resistance. Reducing filtration resistance while maintaining 
high filtration efficiency is challenging. Electrospun fibers 
serve as a relatively mature filter medium in many applica-
tion fields [68]. Typically, they have high permeability and a 
larger surface area which makes them suitable for separation 
and filtration applications.

Xiong et al. developed a sandwiched air filter assembly 
by controlled accumulation of nanofibers using NE with 
improved air filtration efficiency [69]. Also, NE can sup-
port improved water filtration efficiency. The arrangement 
of oriented fibers can affect the permeability and the sepa-
ration efficiency of the membrane [70]. Needleless elec-
trospun konjac glucomannan incorporated polyacrylonitrile 
has also been reported to have potential applications in pol-
lutant removal in food industry wastewater [71]. In another 
study, chitin nanowhiskers were reinforced on the needle-
less electrospun poly(vinylidene fluoride) membrane, and 
improvements in thermal stability, mechanical properties, 

pure water flux, and oil-water filtration performance of 
the membranes were achieved [72]. Overall, the scope of 
NE membranes in food and beverage filtration applications 
remains underexplored.

Food Quality Monitoring

The higher specific surface area with predictable pore 
geometries helps NE fibers offer improved material reac-
tivities and fastens the absorption and release rate kinet-
ics by increasing the number of interactive sites [73]. 
Colorimetric freshness sensor films developed using the 
electrospinning method showed potential for food qual-
ity sensing applications [4]. In a study conducted by Liu 
et al. a novel colorimetric film was developed using NE 
to monitor shrimp spoilage during storage [74]. The film 
consisted of polycaprolactone fiber in which anthocyanin 
dye was immobilized; a reversible color change could hap-
pen, widening prospects for repeated usage. NE has also 
been explored for the preparation of cellulose acetate-based 
halochromic nanofibers wherein a clear change in color at 
different pH conditions occurs, extending applications in 
food quality monitoring systems [75]. NE-based porous 
structures have shown high sensitivity and elevated per-
formance in the production of low-cost optical sensors 
wherein polyamide 6 has been electrospun for the devel-
opment of Fabry-Pérot optical sensing structures [76].

Further, electrospun nanofibers have the potential to be 
used as effective sorbents for solid-phase extraction [77]. 
The microextraction efficiency of NE nanofibers has also 
been assessed for the analytical quantification of trace com-
ponents present in food samples. Chen et al. reported that 
the electrospun polyacrylonitrile/covalent organic frame-
work nanofibers spun using a wire electrospinning system 
exhibited good stability and extraction efficiency for trace 
sulfonamide residues in food [78]. In short, there is ample 
research potential in the use of electrospun nanofibers for 
food quality sensing applications.

Table 2   Activity of enzymes immobilized in needleless electrospun nanofibers

Enzyme Polymer Spinning method Residual activity Michaelis constant, Km 
(mM)

Maximum 
activity, Vmax 
(mM/s)

Reference

Chymotrypsin Free form - 88.05% after 12 h at 30 °C 4.10 0.0006 [65]
Nylon 6,6 Wire 16.67% after 12 h at 30 °C 5.84 0.0008

Laccase Free form - Retained activity for 
7 days at 4 °C

0.051 0.0277 [67]

Nylon 6 Roller 81.5% after 7 days at 4 °C 1.07 0.0010
β -galactosidase Free form - - 146.8 (per mg protein) 0.4980 [98]

Acrylonitrile-
co-methyl 
methacrylate

Drum 68% of activity was 
retained

236.7 (per mg protein) 0.5280
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Challenges and Directions for Future Research

Though NE offers advantages, particularly in terms of its 
scalability, these systems are also associated with certain 
challenges that need to be addressed. Major considerations 
and avenues for future research are presented in this section.

Process Control

NE is a multivariate process in which the quality of the 
formed fiber is associated with various factors, making the 
process complex for precise flow rate control. This results 
in the lack of uniformity and homogeneity of the formed 
fibers. These process control limitations can be addressed 
by the application of modeling and simulation tools that 
can better explain the underlying mechanisms. Simulation 
studies can help in understanding the behavior of polymer 
solutions when subjected to high voltage electric potential 
and how electric field distribution takes place in NE, also 
providing insights into the mechanism of Taylor cone for-
mation. When it comes to the NE process, the distribution 
of electrostatic field intensity has a significant impact on 
the quality of obtained fibers and overall spinning perfor-
mance. An inhomogeneity in the electric field distribution 
along the surface of the collector results in a decrease in 
the efficiency of the process. Various numerical simulation 
models [79] have been explored to simulate the NE and to 
understand the effect of different parameters such as spin-
neret configuration [12], electric field intensity on the col-
lector [80], and electrode geometries on the productivity, 
fiber homogeneity, and efficiency of fiber formation in NE.

Studies on computational modeling of NE have also 
explored predicting the conditions for controlled fiber 
deposition [81]. Recently, a computational model was 
developed by Domaschke et al. to predict the 3D structure 
and macroscopic mechanical responses of the electrospun 
membranes based on geometry (diameter distribution, 
persistence length, and porosity) and mechanical proper-
ties [82]. The need for simulation tools to comprehend the 
spinning behavior in NE is also becoming a possibility. 
However, to date, no studies report the simulation of bio 
nanofibers production through NE.

Apart from these aspects, the high excitation voltage 
required to form Taylor cones, poor free liquid surface sta-
bility, and the difficulties in regulating the spatial motion 
of the numerous jets limits the applicability of NE on the 
industrial scale. Though there are recent studies that are 
emerging studies the characteristics of the needleless elec-
trospun nanofibers through biopolymers, the comparison 
between properties of the polymeric/composite nanofibers 
and their spinnability can help in determining the most 
feasible spinning method to produce nanofibers with 
enhanced fiber characteristics.

The machine learning approach also has the potential to 
develop electrospinning systems with integrated decision-
making algorithms to control the process. In a study con-
ducted by Hwang et al. an adaptive electrospinning system 
was developed with a reinforcement learning algorithm that 
interacts with the formed fiber in real time to measure its 
thickness [83]. Based on the pre-trained algorithm, the sys-
tem controls the movement of the collector for the uniform 
deposition of the fiber. These types of data-driven modeling 
approaches can also be explored in NE to improve fiber pro-
ductivity as well as quality.

Safety

NE operates at a higher applied voltage which may some-
times result in spark generation in the system. Thus, it is 
important to understand the flash point of solvents before 
being used as in NE; solvents such as chloroform, tetrahy-
drofuran, and toluene cannot be used as base solvents [45]. 
A disadvantage of this technology when utilized on an indus-
trial scale is the greater amount of undesired residual solvents 
and monomers remaining in the nanofibrous material, with 
possible cytotoxicity effects. These chemicals may cause 
health and environmental issues during production, handling, 
and usage [84]. Nevertheless, these toxic residuals can be 
effectively removed by a washing-out procedure in distilled 
water [85]. Thus, the technology should further explore the 
effective toxic residual removal systems and protocols for 
efficient and safe industrial production of nanofibers.

Improving Productivity and Fiber Quality Using Novel 
Technologies That Assist Needleless Electrospinning

Various novel approaches can aid NE in improving pro-
ductivity and fiber quality. For example, a high-intensity 
focused ultrasound was used in ultrasound-assisted NE, 
resulting in the formation of an ultrasound fountain on the 
free surface and aided in jet initiation and bead-free fiber 
generation [86]. However, when compared to conventional 
electrospinning, the ultrasound-assisted process produced 
thicker fibers, which could be attributed to the increased 
number of variations in the ultrasound-assisted NE. It has 
also been reported that changing the pulse rate (cycles per 
second) and intensity changes the fiber diameter. A novel 
shear-aided NE method, in which the spinneret manipulates 
solution properties based on rotational speed and orifice gap 
size, was also reported [87].

Another study found that the electric field and aerodynamic 
field have a synergistic effect on the NE process, increasing the 
rate of fiber production [88]. Another novel approach is the use 
of a magnetic field to aid in free surface perturbation and the 
subsequent formation of steady vertical polymer spikes, which 
increases the fiber production rate [13]. Also, the construction 
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of stable and annular pre-Taylor cones with high curvature 
can assist in promoting the production rate of nanofibers with 
superior quality [3]. Though these assisted technologies help 
to improve the NE performances in thermoplastic polymers, 
studies on assisted technologies for bioderived materials are 
still limited, which should garner significant attention.

Conclusion

Given the rising focus on bio-based materials, studies on their 
spinning potential and associated parameters require a detailed 
investigation, particularly in needleless configurations, rec-
ognized for enhanced production rates. Overall, the approach 
will have takers from different segments of the food industry, 
ranging from encapsulation to enzyme immobilization to food 
packaging to food quality sensing. Understanding the under-
lying mechanisms, such as the diffusion kinetics of encapsu-
lated bioactives/enzymes, and optimizing spinning conditions, 
spinneret configurations, and polymer solution properties are 
the major aspects that require research attention. These would 
assist in optimizing fiber geometry and functionality to meet 
the requirements of specific applications. The inhomogene-
ity of fiber distribution in needleless configurations remains 
a limitation and modeling, and simulation tools can assist in 
improved process control and system performance. To con-
clude, needleless electrospinning is a promising area with 
significant research and commercial potential for a range of 
food applications.
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