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Abstract
Coffee is still one of the most consumed beverages in the world. Yet, the large quantities of by-products generated during 
coffee production are wasted, which is a burden in the sustainability of coffee production. Coffee cherry by-products are 
rich in several compounds of interest that can be used in several applications, minimize the wastes, and the environmental 
damage from coffee production. This review article aims to discuss the relevance of coffee processing by-products, namely, 
the coffee cherry husk and pulp to create value-added food products. Their chemical composition, properties, and extraction 
methods of valuable compounds are discussed, and possible food applications showcased, thereby aiming at increasing and 
supporting a more environmentally friendly coffee utilization.
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Introduction

Coffee is one of the most popular beverages in the world 
with a yearly average production of 9 billion kg tonnes of 
coffee beans [1, 2]. The demand for coffee is predicted to 
increase up to 150% by 2050 [3], which will simultaneously 
lead to increased production of coffee by-products. Coffee 
plants are farmed in the tropic region with Brazil as the larg-
est producer, followed by Vietnam, Colombia, and Indonesia. 
The market is dominated by two varieties, Coffea arabica 
L. (Arabica) and Coffea canephore Pierre (Robusta) [4, 5].

One of the main burdens on the sustainability of cof-
fee production is the large amount of waste generated dur-
ing processing [2]. In order to obtain the coffee beans, the 
coffee cherry has to undergo processing, during which 
the beans are separated from the outer layers. According 
to Usva et al. (2020), the carbon footprint of coffee was 
found to be 0.27–0.70 kg CO2 eq/l coffee, and the irrigation 
water footprint is 0.15–0.27 m3 eq/l coffee, and the cultiva-
tion stage contributes to 32–78% of the total carbon foot-
print [6]. Therefore, it is worth looking at the by-products 
produced as possible raw materials to close the circularity 

gap [7]. The concept of circular economy, which encour-
ages the maximal utilization of existing materials, can also 
be applied to agricultural production. With the help of a 
biorefinery strategy, the low-cost, abundantly available raw 
materials could be harnessed for valorizing several valu-
able ingredients, contributing to a more sustainable agro-
industrial production [8].

Coffee processing by-products are rich in nutrients and 
bioactive compounds[9, 10], representing potentially valu-
able ingredients for the food, nutraceutical, and cosmetic 
industry [8–10]. Previous studies showed antimicrobial 
[11–13] and antioxidant [13, 14] properties of phytochemi-
cals obtained from coffee by-products, among others [9]. 
Moreover, the consumer demand for natural ingredients in 
the food industry, and nutrients with proven health benefits 
is currently increasing [9].

Besides the environmental impact of coffee production, 
it is important to mention the social aspect as well. The 
livelihood of 125 million people is estimated to depend on 
coffee production worldwide today [15]. Coffee prices have 
decreased since 2016, reaching 30% lower price compared 
to the average of 2010 [2]. As a result, farmers have strug-
gled to cover operating costs, the livelihood of workers has 
become uncertain and many countries’ economies depend 
on coffee production [2]. By harnessing coffee production 
by-products, coffee growers would be enabled to generate 
extra income, representing an effective strategy to minimize 
the impact of increasing production costs [2].
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The increase in world population, and environmental 
changes, is increasing the need of alternative and sustain-
able ingredients and foods that sustain healthy lifestyles 
and well-being. Food industry is looking actively for novel, 
sustainable, and innovative solutions to feed the world pop-
ulation, and therefore, the management and up-cycling of 
food industrial by-products could be a solution. Based on 
these premises, this review article aims to discuss the rel-
evance of coffee processing by-products, namely, the cof-
fee cherry husk and pulp, two of the most produced coffee 
by-products, to create value-added products for foods and 
food ingredients. Their chemical composition, properties, 
extraction methods of valuable compounds, and examples of 
food applications are discussed, thereby aiming at increas-
ing and supporting a more environmentally friendly coffee  
utilization in food applications.

Coffee Cherry Processing and By‑products

The coffee plant bears 10–15-mm long fruits that are also 
called cherries or berries (Fig. 1) [9]. In the middle of 
the cherry, two seeds are developed, i.e., the coffee beans 
(endosperm) that are covered by the silver skin. The seeds 
are enveloped by the parchment, a thin layer of cellulosic, 
yellowish endocarp which constitutes a durable layer pro-
tecting the seeds. The endocarp is surrounded by the muci-
lage or pectin layer. This layer is viscous, colorless, and 
translucent. The pulp (outer mesocarp) is found between the 

mucilage and the skin and is soft, fleshy, fibrous, and yel-
lowish in color. The most outer part is the skin or pericarp, 
which is green when unripe, and turns red, orange or yellow 
when ripe, for some particular genotypes [4, 9, 16].

The cherries are processed in order to obtain the seeds 
or the so-called green coffee beans. The beans are used 
for the production of coffee powder, and the rest of the 
cherry contains several by-products which includes coffee 
pulp (CP), mucilage (CM), parchment (CPm), husks (CH), 
silver skin (CS) [17], which are currently largely underuti-
lized [5, 18]. Altogether, around 50% of the coffee cherry 
is discarded causing serious environmental problems for 
soil and water around farm land [1, 5]. The amount of cof-
fee by-products and its impact generated during the several 
stages of the coffee production are summarized in Fig. 1. 
The soil and water problems noticed from the waste of the 
cherry arise from the high acidity, high content of caffeine, 
tannins, and other polyphenols [1, 5]. When landfilled, the 
pH of the soil is acidified causing nutrient unavailabil-
ity for crops [19]. Furthermore, the long term release of 
caffeine into waters has a negative impact on the aquatic 
environment [20].

Depending on the method used, different wastes are cre-
ated [4], as explained in the sections "Dry Process", "Wet 
Process", "Semi-dry or Semi-wet Process", and shown in 
Fig. 1. Drying is an important step in all processing meth-
ods. By reducing the moisture content of coffee processing 
by-products low level, elongated shelf life can be achieved. 

Fig. 1   Schematic representation of the coffee cherry, the different stages of the coffee production, and its impact [5, 7, 17]
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Another preservation method mentioned by Ameca et al. is 
ensiling which according to some studies leaves the antioxi-
dant capacity unchanged [21].

Dry Process

Dry process is the simplest and least expensive method, and 
is therefore often used for Robusta coffee [5]. After harvest-
ing, the coffee fruits are dried in the sun until the moisture 
content is reduced to 10–11%. The dried fruits are then de-
hulled mechanically to obtain the beans with the silver skin. 
The main by-product produced during the dry process is 
the husk and represents 40–50% of the dried fruit. In this 
method, no steps are implemented to ensure the separation 
of ripe and unripe cherries, which is crucial for high quality 
coffee beans [4, 9, 16].

Wet Process

During the wet process, the ripe cherries are initially sepa-
rated from the unripe and damaged cherries by flotation, the 
latter ones remaining on the surface of the water. The ripe 
fruits are de-pulped, and the skin and the pulp are obtained 
as a by-product at the first step [5, 16]. However, the muci-
lage layer remains around the seeds. Therefore, a fermenta-
tion step is applied in order to hydrolyze the sticky layer, 
mainly composed of pectin. Fermentation takes place for 
12–48 h; then, the seeds are washed to completely get rid 
of the mucilage [5, 9]. Meanwhile, a lot of waste water is 
created [9]. Then, the parchment coffee beans are dried, and 
the de-pulping step is repeated which results in separation of 
the beans and the parchment (another by-product) [5, 9, 16].

Wet processing is associated with superior coffee bean 
quality and better aroma profile, therefore, the beans pro-
duced with this method have higher economic value [9, 16]. 
Higher content of chlorogenic acids and trigonelline and 
lower content of sucrose were linked with wet processing 
[16]. On the other hand, this processing method is more 
expensive, consumes a lot of water and energy due to the 
equipment used, and it therefore has a larger environmental 
impact [5, 9]. It is generally used for Arabica coffee [5].

Semi‑dry or Semi‑wet Process

This method differs from the wet method, because the 
fermentation step is excluded. Thus, after de-pulping, 
the beans are dried with the mucilage and the parchment 
layer on and then de-hulled [9]. As described by Esquivel 
and Jiménez (2012), several by-product fractions can be 
obtained by this process: the skin and the pulp in one 
fraction, generally called pulp (~ 40% w/w of the whole 
cherry), mucilage and soluble sugars as second fraction 
(~ 12% w/w), and the parchment (~ 6% w/w) [16].

Coffee Pulp and Husk Composition

Plants are not only a source of essential nutrients such as car-
bohydrates, lipids, and proteins but also non-nutrient bioac-
tive compounds [9]. The approximate composition of coffee 
pulp is 50% carbohydrates, 20% fibers, 10% protein, 2.5% 
fat, and 1.3% caffeine [4]. However, the nutritional com-
position of the coffee cherry is determined by the variety, 
altitude, climate, soil, agricultural practices, harvest time, 
processing method and circumstances, among others [4, 22].

Cheng et al. (2016) summarize the effect of shade and 
altitude on the content of different components of coffee 
beans. When the plants were grown in shade, the content 
of caffeine and lipids were increased while trigonelline, 
chlorogenic acids, and sucrose content were decreased. 
Higher growing altitudes resulted in higher content of caf-
feine, trigonelline, lipids, and chlorogenic acids and in 
lower sucrose levels in coffee beans [23].

As mentioned previously, depending on the processing 
method used, the main by-product can either be the husk 
when dry method is used or the pulp when wet method is 
applied. The fresh coffee pulp can have a moisture con-
tent of 82.4% [24]. Coffee pulp and the coffee husk are 
slightly different products, since in coffee pulp, the pectin 
rich mucilage is removed [9, 16]. The nutrient content in 
the pulp and the husk is shown in Table 1. Of these com-
pounds, some are insoluble in water, including polysac-
charides like cellulose, hemicellulose and lignin, lipids, 
minerals, some of the vitamins, and proteins [9].

Carbohydrates

Carbohydrates are the most abundant components of cof-
fee pulp and husk by-products, as shown in Table 1. The 
identified polysaccharides are fibers, such as cellulose, 
hemicellulose, lignin, and pectin [9]. Coffee pulp and husk 
contain a significant amount of fermentable sugars making 
them favorable substrates for fermentation [9]. In green 
coffee beans, carbohydrates were identified as binders of 
aroma compounds and they influence the viscosity and 
foam stability of the brewed coffee [39].

Sugars

Sugars are non-volatile compounds that can contribute to 
the flavor of the beverage. According to Pua et al. (2021), 
the pulp is rich in mannose, fructose, and also has a rela-
tively high content of galactose, while glucose is less 
prominent. Lower glucose concentration might be observed 
due to fermentation occurring during drying of the pulp 
[40]. Coffee pulp contains 23–27% fermentable sugars 
on dry weight basis [41]. Rambo et al. (2015) prepared 
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ethanol extraction of the coffee husk and analyzed the 
sugar composition of the biomass. Contrary to Pua et al. 
(2021), they found that 35.3% of it was glucose, 21.9% 
xylose, 1.7% mannose, 1.6% arabinose, 1.5% galactose, 
and 0.5% rhamnose, and the total sugar content was 62.5%. 
However, since hemicellulose can be extracted with etha-
nol, it may contribute to the relatively higher sugar content 
measured [42]. Since sugars are water soluble, they can be 
extracted by aqueous extraction [39]. Compared to other 
plant sources, coffee husk is rich in xylose [42].

Fibers

Dietary fibers are plant cell wall compounds mainly con-
sisting of cellulose, hemicellulose, pectic substances, and 
lignin [29]. They consist of sugar monomers [43]. Soluble 
and insoluble dietary fibers are distinguished based on their 
water solubility. Soluble dietary fibers, like pectin, β-d-
glucan, galactomannans, glucomannans, inulin, and resist-
ant starch, can dissolve in water [44]. The broad definition 
of fibers, as defined by the European Food Safety Author-
ity (EFSA), is non-digestible carbohydrates that include 

non-starch polysaccharides, resistant starch, oligosaccha-
rides, and lignin [9]. These materials cannot be digested by 
human enzymes present in the gastrointestinal track [29, 45], 
however, the gut microbiota has a wide range of enzymes 
to break them down while producing beneficial fermenta-
tion products for the host [45, 46]. Murthy and Naidu [29] 
measured 28% total dietary fiber content for coffee pulp of 
which 18 ± 0.9% being soluble and 10 ± 0.8% insoluble [29]. 
Coffee pulp is rich in pectin that has gel forming ability 
at low pH and high sucrose concentration [17]. Pectin is a 
functional food ingredient that is used as a stabilizer and gel-
ling agent due to its gel forming and viscoelastic properties 
[18]. Phenolic compounds and other bioactive molecules 
can be found covalently bound to the plant cell wall [29] 
in coffee by-products, providing antioxidant properties to 
dietary fibers. The total antioxidant activity of coffee pulp 
and coffee husk fiber measured by Murthy and Naidu (2010) 
was 1.53 ± 0.6 and 1.84 ± 0.5 mmol Trolox equivalent/100 g, 
respectively, which are in line with that of fresh fruits and 
vegetables [29]. In another study, the total antioxidant capac-
ity of dietary fiber in coffee husk was about 48.6 mg chlo-
rogenic acid/g [38].

Table 1   Nutritional composition 
of dried coffee pulp and husk

N.M., not mentioned; *dry weight

Nutrient Nutrient/pulp 
(g/100 g)*

Reference Nutrient/husk 
(g/100 g)*

Reference

Carbohydrates 57 [25] 58–85 [26]
Sugars 9.7 [24] 26.5–36.4 [27, 28]
Reducing sugars 9.6 [24] 11.24 [28]
Sucrose N.M 2 [26]
Total dietary fibers 16–28 [25, 29] 43 [29]
Cellulose 10–33 [24, 25, 30] 43 [26]
Hemicellulose 15–29 [24, 25] 7 [26]
Lignin 26–31.5 [24, 25] 9 [26]
Pectin 11.3 [24] 1.6 [26]
Proteins 7–13 [13, 21, 24, 25, 30] 4.8–6.5 [27, 28]
Lipids 1.3–2.5 [13, 25, 30] 1.5–1.66 [27, 28]
Ash 7.3–8.9 [13, 24] 5.6–6.3 [27, 28]
Potassium N.M 2.060 [31]
Calcium 0.320 [9] 0.221 [31]
Magnesium N.M 0.079 [31]
Iron 0.010–0.050 [32] 0.026 [31]
Sulfur N.M 0.110 [31]
Tocopherols N.M 0.006–0.010 [33]
Total phenolic content 0.255–0.453 [34] 0.384–0.455 [35]
Tannin content 0.7 [36] 9.3 [27]
Caffeine 0.54–4.15 [13, 25, 36, 37] 1.2–1.39 [27, 38]
Trigonelline N.M 0.15–0.18 [11]
Moisture after drying 11.6 [25] 12–12.3 [27, 28]
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Lipids

Lipids are flavor carriers and they contribute to mouthfeel 
and texture [23]. As indicated in Table 1, the lipid com-
position of coffee pulp and husk was found to be 1.3–2.5 
and 1.5–1.7 g/100 g, respectively. Lipids are derived from 
the coffee peel which is covered by wax. Cutin is the most 
significant compound [17], although, Duangjai et al. (2016) 
also identified sterol compounds in the hot water extract of 
dried coffee pulps [13]. Currently, there is no comprehensive  
analysis of the lipid composition of the coffee fruit processing  
by-products available. Since coffee bean is more widely 
studied, the lipid composition is better described. The major 
lipids identified were sterols, tocopherols, diterpenes, and 
triacylglycerols [16], and the lipid content has been measured 
at 7–17%, including coffee oil found in the endosperm of the  
coffee beans [23].

Proteins

Proteins are biopolymers of amino acids. The amino acid 
sequence influences the complex structure of proteins, as 
well as the biological function. Proteins are key functional 
food ingredients due to the capability to form gel, stabilize 
structures, form emulsions, and foams [47]. The coffee bean 
has a slightly higher (ca. 13–16%) protein content than that 
of the pericarp [48]. The foam layer formed on top of an 
espresso is an important influencer of coffee cup quality 
and is related to the proteins present in the bean [49]. In 
green coffee beans, most of the proteins are present as α- and 
β-legumin type storage proteins [48]. Other fractions include 
enzymes and arabinogalactan-protein complexes, a fraction 
of structural elements in cell walls and bound to membranes 
[39, 48]. The cell wall of fruits typically contain around 
5% protein [50]. For instance, Dong et al. (2020) extracted 
2.8–5.55 g/100 g protein together with soluble fibers from 
the coffee peel [51]. As shown in Table 1, the protein content 
of coffee husk is 5–6%, while 7–13% protein are found in 
coffee pulp. However, since coffee cherry is rich in other 
nitrogen containing compounds, such as caffeine and trigo-
nelline, protein content measured by the Kjeldahl method 
(using the N × 6.25 conversion factor) is likely to result in 
an overestimation [17]. The proteins found in greatest abun-
dance in ripe cherries are globulins, while the most abundant 
amino acids in the husk are glutamic acid and aspartic acid 
accounting for 7.7% and 7.1% of total amino acids [26, 48]. 
In coffee pulp, 3% of the protein present was found to be in 
a lignified form which compromises its bioavailability [9].

Minerals and Vitamins

In plants, minerals can be found in inorganic, and organic 
forms. When phosphorus is stored in organic form as phytic 

acid, it often complexes with magnesium, potassium, and 
calcium salts. Since phytate salts are insoluble in water, the 
way phosphorus salt is stored influences the solubility of 
other minerals [52]. As shown in Table 1, the ash content 
of husk and pulp is 5.6–6.3% and 7.3–8.9%, respectively. In 
husk, potassium was found to be the predominant mineral, 
followed by calcium, sulfur magnesium, and iron. However, 
the number of studies analyzing the mineral content in cof-
fee pulp is limited [9, 31]. Calcium was shown to be more 
abundant in coffee husk and pulp than in spent coffee or 
silver skin. Reports on the vitamin content of coffee by-
products are limited. As indicated in Table 1, coffee husk 
contains tocopherols which are also present in the bean and 
the silver skin, however, the tocopherol profile differs [9].

Phytochemicals

Coffee cherries are rich sources of phenolic compounds and 
alkaloids [9]. Several studies focused on the valorization 
possibility of these compounds from different coffee sources 
[5, 9, 10].

Phenolic Compounds

There is a growing interest for phenolic compounds due to 
their health benefits. Coffee by-products are good sources of 
phenolic compounds. Iriondo-DeHond et al. (2019) observed 
that the amount of phenolic compounds increase from the 
outside to the core of the coffee cherry [38]. The four main 
groups found in coffee pulp are flavan-3-ols, hydroxycin-
namic acids, flavonols, and anthocyanidins [4]. Londono-
Hernandez et al. (2020) found 23 phenolic compounds in 
the ethanol extract of dehydrated coffee pulp of which 17 
were identified. Of these molecules, hydroxycinnamic acids, 
flavanols, hydroxycoumarins, and fatty amides accounted for 
59%, 17%, 6%, and 6%, respectively, most corresponding to 
polyphenols [25]. Murthy and Naidu found chlorogenic acid 
as the most abundant compound in coffee pulp and cherry 
husk [29]. Polyphenolic compounds are known for their anti-
oxidant properties, and flavonoid content, as showed in a 
study with coffee pulp [34].

Phenolic Acids  Coffee pulp was found to be a rich 
source of phenolic acids, of which ferulic acid, protocat-
echuic acid, 5-caffeoylquinic acid (chlorogenic acid), 3-p- 
coumaroylquinic acid, and 3-feruloylquinic acid were 
reported most frequently [13, 53, 54]. Due to their antioxi-
dant properties, they are widely studied [25]. Hydroxycin-
namic acids, such as chlorogenic, ferulic, and caffeic acids, 
exert antioxidant properties by donating a hydrogen atom to 
oxidized molecules [13].

Chlorogenic acids (CGAs—a subgroup of phenolic acids) 
are ubiquitous in plants [55] and are mainly produced by 
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the esterification of trans-hydroxycinnamic acids such as 
p-coumaric acids, ferulic acids, caffeic acids, and sinapic 
acids with (-) quinic acid [22, 56, 57]. Caffeic, p-coumaric, 
ferulic, vanillic, and protocatechuic acids are the most com-
monly occurring CGAs in coffee [9, 58]. The chlorogenic 
acid content in coffee can account up to 10% of the dry mat-
ter [55], and therefore, coffee is regarded as to be the most 
abundant source of CGA. In some countries, coffee is the 
most prominent source of antioxidants, accounting up to 1 g 
of CGAs per day [22, 56].

CGAs give a flavor-profile of acidity, astringency and 
bitterness [23]. They are water soluble compounds and are 
heat labile; therefore,almost all the CGA content of coffee 
beans are lost when they are subjected to dark roasting [23, 
39]. CGAs are susceptible to hydrolysis and isomerization 
[57]. In beans, caffeoylquinic and feruloylquinic acids are 
suspected to give off-flavors probably due to degradation 
products formed prior to roasting [22]. Heeger et al. (2017) 
analyzed the stability of these compounds during pasteuri-
zation and storage of water extracts of coffee pulp. Gallic 
acid, protocatechuic acid, and rutin were shown to be sta-
ble, however, epicatechin was found to disappear, supposedly 
due to processing and storage of the cherries [4]. Ramírez-
Martínez (1988) identified chlorogenic acid (5-caffeoylquinic 
acid) (42.2% of the total of identified phenolic compounds), 
epicatechin (21.6%), 3,4-dicaffeoylquinic acid (5.7%), 
3,5-dicaffeoylquinic acid (19.3%), 4,5-dicaffeoylquinic acid 
(4.4%), catechin (2.2%), rutin (2.1%), protocatechuic acid 
(1.6%), and ferulic acid (1.0%) in fresh coffee pulp by HPLC 
[59]. The composition of the extract and the amount of CGAs 
extracted depend on the solvent used for the extraction, char-
acteristics of the raw material, and related factors [9]. For 
extraction, aqueous alcohol (most often 70% methanol) is 
frequently used [58].

Tannins  Tannins are a highly heterogenous group of water 
soluble phenolic compounds. They are naturally present in 
plants, providing protection against biotic and abiotic stress-
ors. Tannins can be divided into two groups: hydrolysable and 
condensable tannins [60]. Hydrolysable tannins can be further 
separated into gallotannins and ellagitannins. When gallotan-
nins are hydrolyzed, the degradation products are sugar and 
gallic acid, while ellagitannins result in ellagic acid, besides 
sugar and gallic acid. These compounds can be hydrolyzed by 
weak acids and are decomposed when exposed to high temper-
ature, creating a highly irritative substance named pyrogallol 
[60]. Condensed tannins represent the second most abundant 
group of phenolics after lignin [61]. These complex tannins 
are produced by the reaction of gallotannins or ellagitannins 
with catechin units, being the oligomers of flavan-3-ol and/or 
flavan-3,4-diol monomers. They are not readily hydrolyzed, 
but in an acidic alcoholic environment, they can be decom-
posed resulting in red pigments [25, 60].

On the other hand, increased antioxidant and radical scav-
enging activity was observed for tannins with higher degree of  
polymerization [60]. They act as free radical scavengers and 
can inhibit the xanthine oxidase enzyme, a producer of free 
radicals [34]. In humans, they exert antioxidant and free radi-
cal scavenging activities, antimicrobial, anti-inflammatory, 
anti-cancer, and cardio protective properties [60, 61]. In order 
to provide health effects, they need to be present in bioavail-
able form [60].

Fresh coffee processing by-products are a potentially 
valuable source of condensed tannins, such as proantho-
cyanidins [16]. Different anthocyanin compounds were 
found in coffee husks, pulp, mucilage, and peels [62, 63]. 
Prata and Oliveira (2007) found cyanidins as the most 
prominent group of anthocyanins in fresh coffee husk, 
being cyanidin-3-rutinoside the major one and Vinas et al. 
(2012) detected cyanidin-3-glucoside and cyanidin-3-O-p-
coumaroylglucoside in the peel, pulp, and mucilage of dif-
ferent Arabica varieties [62, 63]. Anthocyanins were more 
abundant in red genotypes, which is expected due to the 
peel color [63]. However, anthocyanins in general are easily 
degraded by light, temperature, and oxidizing agents [62]. 
Aglycone derivates were observed after tissue browning and 
increased concentration of condensed tannins during drying 
[16]. Higher Oxygen Radical Absorbance Capacity (ORAC) 
values were measured when the concentration of condensed 
tannins were higher [34].

Alkaloids

The most well-known alkaloid present in the coffee is caf-
feine. Trigonelline is the second most abundant alkaloid in 
green coffee beans and also contributes to bitter flavor and 
is water soluble. It is degraded during roasting while sev-
eral desirable aroma compounds are being formed [23, 39]. 
Duangjai et al. (2016) have also identified trigonelline in the 
hot water extract of the coffee pulp [13].

Caffeine  (1,3,7-trimethylxanthine) is an alkaloid synthe-
sized in tea and coffee plants and is distributed in the roots, 
stems, leaves, and seeds of the plants [64]. It contributes to 
the bitter taste of the drinks brewed from these plants [23]. 
Since caffeine is an adenosine receptor antagonist, it stimu-
lates the central nervous system increasing alertness, con-
centration, learning ability, decreasing fatigue, and boost-
ing performance in exercise when consumed in moderate 
amounts. Coffee is currently the primary source of caffeine 
[23].

Caffeine is heat stable and water soluble, and C. 
canephora can contain up to twice as much as C. arabica 
[9, 22]. As indicated in Table 1, 0.5–4.15 g/100 g and 



152	 Food Engineering Reviews (2024) 16:146–162

1 3

1.2–1.4 g/100 g caffeine was found in pulp and husk, respec-
tively, by different researchers. According to the analysis of 
Londono-Hernandez et al. (2020), the caffeine content of 
the pulp was 3% of the dry weight [25]. Compared to the 
seed, the pericarp contains two to ten times lower amount 
of caffeine [16]. An in vitro test of caffeine metabolites 
showed antioxidant activity especially for 1-methylxantine 
and 1-methylurate [22, 65].

Volatiles

Volatile compounds that contribute to the overall aroma 
profile of cascara were examined by Pua et al. (2021). They 
detected 91 components, of which the main groups were 
alcohols, esters, aldehydes, acids, and ketones, many of them 
found in other fruits as well. Compounds associated with 
dried fruits, such as pyrazines, furans were detected, suppos-
edly due to the drying process [40]. Al-Yousef and Amina 
analyzed the volatile compound profile of dried coffee husk 
by essential oil isolation and identified 55 compounds [66]. 
The essential oil was predominantly consisting of aromatic 
compounds, mainly oxygenated constituents and hydrocar-
bons. The most abundant compounds were butylated hydrox-
ytoluene (BHT), 1,2-benzenedicarboxylic acid, phenylethyl 
alcohol, octanoic acid, 2,3-isopropylidene-6-deoxyhexo, 
decane, 1,1′-oxybis-, nonanoic acid, 1,2-benzenedicarboxylic  
acid, beta-d-arabino-2-hexulopyran, oxalic acid, 2-ethyl-
hexyl tetra, and hexatriacontane. The isolated oil was soluble 
in chloroform and ether but not in water [66].

Extraction of the Main Components 
from the Coffee Husk and Pulp

As described in the previous section, the coffee cherry 
comprises of several valuable components. Many stud-
ies describe the extraction of bioactives (mainly phenolic 
compounds) from coffee processing by-products. Since the 
effectiveness of the extraction of these substances and the 
final chemical composition of the extract is influenced by 
several factors, some considerations are summarized in the 
following sections.

Extraction Methods

The most conventional extraction method is liquid extrac-
tion, when solvents with different polarity can be used to 
extract the components of interest [67]. Efficiency can 
be further improved by applying high pressure, employ-
ing assistant methods, such as microwaves, ultrasound, 
and enzymes. These methods can provide quicker, more 

selective, and environmentally friendly solutions that may 
also be more gentle, while also less toxic solvents being 
used [67]. However, the composition of the matrix and the 
sensitivity, polarity of the extractable compound should 
be taken into consideration when choosing the extraction 
method and the solvent [67].

When comparing two different low pressure methods 
for the extraction of bioactive compounds of coffee husk 
(i.e., Soxhlet and Ultrasound Assisted Extraction (UAE)) 
using the same solvent, Soxhlet resulted in higher yields 
of phenolic compounds and increased antioxidant activ-
ity. The lowest yield, and antioxidant activity was achieved 
when supercritical fluid extraction (SFE) was used [68]. The 
low antioxidant activity of SFE extracts can be explained 
by the difference in the polarity of CO2 and phenolic com-
pounds [68].

As shown in Table 2, the amount of extracted total phe-
nolic compounds (TPC) is lower with hot water extraction 
than with the Soxhlet method, but comparable to SFE. When 
applying SFE extraction, an increased yield was obtained 
when pressure was increased at constant temperature, due to 
better solvation power of CO2, more effective disruption of 
plant cells, and thus better release of components. Increas-
ing temperature at constant pressure reduced the yield due 
to the reduced density of the solvent [68]. To produce higher 
yields, it could potentially be beneficial to apply enzymes 
that degrade the cell walls and membranes, thereby ena-
bling the reduction of extraction temperature which will 
assist in conserving thermolabile compounds [69]. Correa 
et al. (2021) reviewed extraction studies where enzymes 
were applied to facilitate extraction, some of which are also 
presented in Table 2 [69]. In general, SFE was proven to 
be an effective method for the extraction of caffeine and 
chlorogenic acids [68].

The reported extraction methods for different components 
of the coffee by-products are summarized in Table 2.

Sample Preparation

Sample preparation is an important step toward extract-
ing the desired components. However, as the first step, 
the farming characteristics influence the composition of 
coffee cherry, as stated above. Furthermore, the processing 
parameters are also crucial in determining the composition. 
Extraction from dry samples was seen to be more effec-
tive than from fresh fruits [71]. Delgado et al. (2019) tested 
different drying methods for coffee pulp. They found that 
when lyophilization was used the total phenolic content of 
the infusion was significantly higher compared to when oven 
dried. Even though caffeine is thought to be non-thermo 
labile, the highest amount of caffeine was observed when 
freeze drying was used. Conversely, the condensed tannin 
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Table 2   Summary of reported extraction methods from coffee husk and pulp by-products

Coffee 
by- 
product

Extracted compound Extraction method Solvent Yield of extraction Reference

Husk Sugars EAE1 Water 12.89 g reducing sugar/100 g 
husk; or 26.93 g reducing  
sugar/100 g husk (if 
combined with fungal pre-
treatment)

[72]

Fibers (hemicellulose and 
lignin)

Chemical 1. Alkali treatment (NaOH)
2. Bleaching with acetate 

solution, sodium chloride, 
and water

3. Acid hydrolysis with 
sulfuric

61.8 wt% cellulose in sample 
after bleaching

[73]

Phenolic compounds Soxhlet Hexane9 3.9% (mass of extract/mass 
of sample)

[68]

Dichloromethane9 2.7%
Ethyl acetate9 3.4%
Ethanol9 4.8%

UAE4 Hexane9 1.45% (mass of extract/mass 
of sample)

Dichloromethane9 2.3%
Ethyl acetate9 2.1%
Ethanol9 3.1%

SFE3 CO2 0.55–1.97% (mass of extract/
mass of sample)

CO2 + ethanol 2.1–2.2%
Solvent extraction Ethanol 45.2 mg CGE6/g (TPC7) [71]

Water 45.6 mg CGE6/g (TPC7)
Water:Ethanol (1:1) 97.9 mg CGE6/g (TPC7)

UAE4 Ethanol 26.7 mg CGE6/g (TPC7)
Water 36.2 mg CGE6/g (TPC7)
1 water: 1 ethanol 91 mg CGE6/g (TPC7)

Anthocyanins Solvent extraction Acidified methanol 17.2–20.3 mg/100 g [62]
19.3–22.5% color 

contribution
Solvent extraction Acidified ethanol (pH = 1) 14.49 mg cyanidin  

3-glucoside/100 g of coffee 
fresh exocarp

[74]

Caffeine UAE4 Hexane9 5.54 µg/mg extract [68]
Dichloromethane9 139.2 µg/mg extract
Ethanol9 71.1 µg/mg extract

Soxhlet Hexane9 2.1 µg/mg extract
Dichloromethane9 189.9 µg/mg extract
Ethanol9 129.6 µg/mg extract

SFE3 CO2
9 185.7–684.2 µg/mg extract, 

up to 70%
CO2 + ethanol 87.8 µg/mg extract

Theobromine UAE4 Dichloromethane9 0.66 µg/g extract [68]
Soxhlet Dichloromethane9 0.75 µg/g extract
SFE3 CO2 1.13 µg/g extract



154	 Food Engineering Reviews (2024) 16:146–162

1 3

1 EAE, enzymatic assisted extraction; 2MAE, microwave-assisted extraction; 3SFE, supercritical fluid extraction; 4UAE, ultrasound assisted 
extraction; 5SUPRAS, supramolecular solvents made up of hexagonal inverted aggregates of octanoic acid in ethanol:water mixtures [1]; 6CGE, 
chlorogenic acid equivalent; 7TPC, total phenolic compounds; 8GAE, gallic acid equivalent; 9polarity of hexane, dichloromethane, ethyl acetate, 
and ethanol were, respectively, 0, 3.1, 4.4, and 5.2; 10SDF, soluble dietary fiber; N.M., not mentioned

Table 2   (continued)

Coffee 
by- 
product

Extracted compound Extraction method Solvent Yield of extraction Reference

Pulp Fibers Solvent Extraction 0.1 M HCl solution and 
ethanol

9.2% (g SDF10/g peel) [51]

EAE1 Distilled water and 0.2%  
cellulase, ethanol 
precipitation

9.5% (g SDF10/g peel)

Solvent extraction and EAE1 0.1 M HCl solution, then 
water (EAE)

11.4% (g SDF10/g peel)

UAE4-EAE1 Enzymatic method combined 
with ultrasound, ethanol 
precipitation

13% (g SDF10/g peel)

Shear emulsifying- EAE1 Distilled water for shear 
emulsification, then  
enzymatic method

14% (g SDF10/g peel)

Phenolic compounds Solvent extraction Water (100 °C) 15.6 mg CGE6/g (TPC7) [38]

Water (85 °C) 4.85–9.17 mg GAE8/g 
(TPC7)

[4]

Water (92 ± 3 °C) 7.61–17.40 mg GAE8/L 
(TPC7)

[13]

Water (80 °C) 123.9–209.2 mg GAE8/L 
(TPC7)

[34]

Water 254.6–284.1 mg total 
polyphenols/100 g pulp

[34]

HCl 424–453.2 mg total 
polyphenols/100 g pulp

SURPAS5 Hexagonal inverted  
aggregates of octanoic acid 
in ethanol:water mixtures

0.9 mg protocatechuic acid/g 
pulp

[1]

EAE1 Water (p-coumaroyl 
esterase)

85–100% [75]

Water (feruloyl esterases) 64–100% [76]

Anthocyanins Solvent extraction HCl solution 3.64–4.09 mg/100 g pulp [34]

Caffeine Solvent extraction Water (85 °C) 3.4–6.8 mg/g dry matter [4]

Water (92 ± 3 °C) N.M [13]

Water (80 °C) 53.2–101.5 mg/L [34]

SUPRAS5 Hexagonal inverted 
aggregates of octanoic acid 
in ethanol:water mixtures

3.6 mg/g [1]

Trigonelline Solvent extraction Water (92 ± 3 °C) N.M [13]

SURPAS5 Hexagonal inverted 
aggregates of octanoic acid 
in ethanol:water mixtures

 ~ 0.25 mg/g [1]
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content of oven dried samples was higher, suggesting the 
formation of the tannin molecules when the pulp is exposed 
to heat. The measured tannin content is similar to that found 
in medium roasted coffee beans [34]. Heeger et al. (2017) 
reported the importance of particle size of the dried samples 
having effect on the amount of bioactives extracted [4].

Temperature

Temperature exposure is crucial factor during processing and 
product preparation. When 70 °C aqueous extraction was 
used, p-coumaric and ferulic acids were no longer detect-
able, as they are sensitive to higher temperatures. Extraction 
at 90 °C resulted in the decomposition of hydroxycinnamic 
acids as well [34]. Chlorogenic acid tends to form isomers 
when pasteurization is applied, decreasing its original con-
centration [4]. In fact, better extraction yield was obtained 
for water soluble compounds such as phenolic acids, caf-
feine, melanoidins, and hydrophilic volatile compounds, 
when higher temperatures and pressures were used [22]. 
In general, heat improves the solubility of the components, 
dilution coefficient, and the diffusivity of the solvent [34]. 
Gallic acid, protocatechuic acid, and caffeine are stable after 
pasteurization, while the level of polyphenols and flavonoids 
varied depending on the extraction temperatures [4, 34].

Solvent

The yield of extraction is highly dependent on the solvent. 
To ensure an higher extraction yield, the selection of the 
solvent needs to be done taking into consideration the com-
ponent properties like polarity and heat sensitivity of the 
extractable components [67]. For instance, ethyl acetate 
can be used to extract flavonoid aglycones, while flavonoid 
glycosides, phenolic acids, and sugars need polar solvents 
such as water or methanol (Wei et al. 2012). The extraction 
yields still differ when solvents of similar polarity are used 
[61]. The lowest overall yield of phenolic compounds was 
achieved when hexane was used for Soxhlet extraction from 
coffee husk, while ethanol showed the highest yield, con-
firming that this group mainly consists of polar components 
[68]. The combination of different solvents may result in bet-
ter extraction yields as shown for water/methanol or water/
ethanol mixtures [4, 71]. When supercritical fluid extrac-
tion (SFE) was used by Andrade et al. (2012), ethanol as a 
co-solvent was proven to increase yield [68]. Delgado et al. 
(2019) found that higher extraction yield of total polyphe-
nols, flavonoids, tannins, and anthocyanins was achieved 
when acid water (1% HCl) was used instead of non-acidic 
water for the extraction of coffee pulp, resulting in higher 
antioxidant activity [34]. Caffeine was not detected when 
ethyl acetate was used as a solvent [68].

Other Considerations for Usage of Coffee Husk 
and Pulp: Microbial Contamination

Due to the high moisture content and wet processing meth-
ods, coffee processing by-products are susceptible to micro-
bial spoilage [17]. During the de-pulping process, bacte-
ria, yeasts and filamentous fungi were all present in high 
numbers [21]. Mold contamination poses a crucial health 
threat since mycotoxins and biogenic amines can be pro-
duced. Therefore, fruit maturation has to be controlled 
so that contamination can be avoided during downstream 
processing steps [22]. In coffee beverages ochratoxin A 
(OTA), aflatoxin B1 and enniatin B were reported as the 
most common mycotoxins. Furthermore, pesticides may be 
present as well [38]. In the acute toxicity assay conducted 
by Iriondo-DeHond et al. (2019) on rats, after single oral 
administration of 2000 mg/kg body weight raw coffee husk, 
parchment, and silver skin, no sign of toxicity was found. 
Coffee-cascara (husk) is authorized in the US, while it has 
undergone the novel food evaluation by EFSA and was found 
to be safe for infusion preparation [38, 77].

Application of Coffee Cherry By‑products

Application of Coffee Husk and Pulp By‑products 
in the Food Sector

As shown in Table 3, coffee husk and pulp have the potential 
to be used as functional food ingredients. Some of the main 
food related applications are described below.

Dietary Fibers

Coffee husk and pulp are highly rich in dietary fibers, as 
seen in Table 1. Some soluble dietary fibers also contribute 
to food formulations since they influence texture by pro-
viding viscosity, gel formation, and emulsifying properties 
[51]. Soluble dietary fibers were shown to reduce sugar 
and cholesterol absorption, increase calcium absorption, 
and decrease serum cholesterol and postprandial blood glu-
cose. The recommended daily intake of fibers is 30 g [9]. 
Bakery products are consumed in a large amount world-
wide, however, they often lack fibers [78]. Isolated coffee 
cascara dietary fiber was tested in gluten-free breads [79]. 
Results showed that the inclusion of isolated coffee cascara 
dietary fiber facilitated the increase of the dough yield, less 
crumb firmness, and a higher crumb elasticity and overall 
improved the nutritional and sensory quality of the breads 
[79]. Cookies could be easily enriched with dietary fiber, 
without significantly imparting sensory characteristics, as 
shown by Belmiro et al. (2022). Coffee cherry dietary fibers 
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techno functional properties can be also improved by physi-
cal modification using dynamic high pressure (DHP) [78]. 
DHP method enabled the incorporation of 6% coffee cherry 
ground without compromising the sensory and physical 
attributes of the cookies. Similar results were found by other 
studies when applying the husk and pulp in baked goods, 
resulting in enhanced nutritional and functional qualities, 
such as higher dietary fiber content and increased antioxi-
dant activity [80–82].

Stabilizer and Gelling Agents

Pectin is a functional food ingredient that is used as a stabilizer 
and gelling agent due to its gel forming and viscoelastic proper-
ties [18]. Reichembach and de Oliveira Petkowicz (2020) also 
extracted pectin from coffee pulp, with high methoxyl content 
and gel forming properties. The pectin can be used for the pro-
duction of candies, jams, and acidified dairy products [83].

Beverages

Notably, Heeger et al. (2017) prepared cascara beverages 
from the coffee pulp, which contained 226 mg/L caffeine. 
This amount is lower than most coffee drinks, but similar to 
black tea. The authors emphasized the importance of stand-
ard quality, since the amount of bioactive compounds may 
vary depending on plantation [4].

Enzyme Production

Coffee processing by-products are optimal substrates for 
the production of enzymes in solid-state fermentation. They 
are rich in carbohydrates (e.g., celluloses and hemicellu-
loses) and proteins, being comparable to the natural habitat 
of microbes used for fermentation [84]. Coffee husk and 
pulp were used to identify new sources of substrate [85], to 
solve pollution problems [86–91], also being a cheap and 

Table 3   Food applications of coffee husk and pulp

Plant material Compound Application Function References

Husk Phenolic compounds Beverage Antioxidant [35]
Carbohydrates lipids, phenolic compounds Active food packaging material Improved properties of packaging [17]
Fiber and phenolic compounds Cookie Nutritional and functional enrichment [78]

Gluten-free cookie [82]
Anthocyanins Natural food colorant Color [62]
Cascara-extract Yoghurt Appetite control by α-glucosidase inhibition [98]
Phenolic compounds, dietary fiber Food ingredients: extract and fiber Health-promotion [38]
Phenolic compounds, melanoidins Gluten-free bread Antioxidant, α-glucosidase inhibition, colorant [99]
Organic matter Substrate for fermentation Production of citric acid [93]
Organic matter Substrate for fermentation Bioconversion to gibberellic acid [88]

Production of fruity aroma [100]
Enzyme production Tannase [86]

Protease [90]
Xylanase [84]
Cellulase [87, 89]
α-Amylase [91]

Phenolic compounds Natural preservative Antimicrobial [38]
Phenolic compounds, caffeine Beverage Antioxidant [4]
Phenolic compounds Functional drink Antioxidant [34]
Fiber Gluten-free bread Nutritional and functional enrichment [81]
Fiber and phenolic compounds Salty cookies [80]

Cookies [78]
Gluten-free cookies [82]

Fiber Coffee flour as food ingredient Reduce blood glucose level in diabetes mellitus patients [101]
Cascara-extract Yoghurt Appetite control by α-glucosidase inhibition [98]
Pectin Food ingredient Gelling agent [18, 83]
Polyphenols Food ingredient Antioxidant [18]
Anthocyanins Natural food colorant Color [102]
Carbohydrates lipids, phenolic compounds Active food packaging material Improved properties of packaging [17]
Organic matter Substrate for fermentation Enzyme production Pectinase [92]

Xylanase [84]
α-Amylase [91]
Protease [85]
Tannase [94]
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readily available resource [84, 92, 93]. Kandasamy et al. 
(2016) used coffee pulp and corncob simultaneously for 
protease production by Bacillus sp. These were identified 
to be feasible substrates, also reducing the cost of enzyme 
production [85]. Marín et al. (2019) assessed the mixture 
of coffee husk and wood chips for cellulase production and 
evaluated different zero waste strategies for the residue after 
fermentation, such as biogas production, composting, and 
anaerobic digestion [89]. Penicillium verrucosum was used 
for the production of tannase to degrade coffee pulp tannin 
[94]. The produced tannase was applied to fruit juices where 
the efficiency was proven [94].

Food Colorants

Colorants are used in the food industry to recover the color 
lost during processing or create color characteristic to the 
specific product. Fruits and vegetables are rich sources of 
pigments that can be used as natural colorants in the food 
industry [62]. Prata et al. (2007) identified fresh coffee husks 
as potential source of anthocyanins [62]. Parra-Campos and 
Ordóñez-Santos (2019) optimized the extraction of antho-
cyanins form the outer skin of coffee and applied it to French 
meringue. According to their results, the extract was found to 
be a good substitute of Ponceau 4R (E124) [74].

Antioxidant Ingredients

Foods rich in unsaturated fatty acids are susceptible for oxida-
tion, resulting in off-flavors and quality degradation of food 
[95]. The extracts of coffee by-products are rich in compounds 
with high antioxidant activity; therefore, they have the poten-
tial to be used for shelf-life extension [8, 96]. According to 
Faria et al. (2020), the extracts of green coffee fruits containing 
chlorogenic acids and alkaloids applied in 0.04% to sunflower 
oil were successful in delaying oxidation, and giving compa-
rable results to 0.02% butylated hydroxytoluene (BHT) [97].

Antimicrobial Activities

Polyphenols, caffeine, and chlorogenic acids found in cof-
fee by-products were shown to exert antimicrobial activi-
ties, mainly being effective against bacteria and fungi [8, 
96]. Many articles have focused on the antimicrobial activ-
ity of coffee by-products; however, fewer explores that of 
the coffee pulp or husk. The coffee pulp extracts obtained 
by Duangjai et al. (2016) showed inhibitory (bacteriostatic) 
effect against S. aureus, S. epidermidis, P. aeruginosa, and 
E. coli [13]. According to the data summarized by Mirón-
Mérida et al. (2021), the aqueous and/or alcoholic extracts 
of coffee by-products could be applied against food-borne 
pathogens to prevent microbial growth in food and agricul-
tural products [8].

Other Food Applications  Most of the ingredients used in 
food production are dried and pure as possible to ensure con-
sistent standard quality and defined chemical composition, 
which requires the highest purity and makes food production 
energy-intensive [103]. Likewise, manufacturing pure ingre-
dients from coffee by-products requires often additional pro-
cessing steps (e.g., extractions, concentration, and drying), 
which contributes to costs and environmental impact. How-
ever, in some situations, coffee husk and pulp by-products 
have been used without further extraction of ingredients. 
For example, the dried husk of the fruit of Coffea arabica 
L. has been applied to produce beverages [77], sprits, and 
as dietary fibers supplements, while dried coffee pulp has 
been used as flour for breads, cookies, muffins, squares, 
brownies, pastas, sauces, and beverages [104]. Using coffee 
by-products as novel foods, minimize the required interven-
tions for ingredients production, toward de development of 
more sustainable food products.

Furthermore, the high value of coffee by-products has 
been demonstrated through development and commerciali-
zation of different food products. For instance, The Coffee 
Cherry Co. upcycles coffee cherry pulp to manufacture flour 
for the baking, snack, and beverage industry. In baked goods, 
the product is claimed to act as a natural colorant, flavor 
enhancer for chocolate and spice notes, enhancer of nutri-
tional qualities, and beneficial for moisture retention. In bev-
erage products, the use of coffee by-products can enhance 
clean fruit notes and are high in antioxidants [105]. Pectcof, 
a company based in the Netherlands, explores opportunities 
to upcycle coffee pulp soluble dietary fiber. “Dutchgum” 
is a soluble dietary fiber extracted from the coffee cherry 
with stabilizer and emulsifier properties. Furthermore, this 
company also commercializes coffee by-products to be used 
in food products as antioxidants, colorants, sugars, and fib-
ers [106]. Starbucks has introduced the Cascara Latte, when 
syrup made out of the husk of the coffee cherry is added to 
the drinks . Discarded Spirits Co. brews spirits of discarded 
food and cascara. From cascara, a vermouth is brewed hav-
ing the aroma of bitter chocolate, cherry, coffee, red wine, 
figs, and cinnamon . Cascara, the tea brewed from dried cof-
fee pulp, might be available at some specialty coffee places. 
In Denmark, Kaffe Bueno uses green chemistry and biotech-
nology to up-cycle coffee by-products into active and func-
tional ingredients for nutraceuticals and functional foods.

The multifunctionality of commercial applications of cof-
fee by-products is also well described elsewhere [38, 106].

Other Applications

Coffee production by-products have also the potential to be 
used outside food industry. For instance, those have been 
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exploited within cosmetic industry due to their anti-oxidant, 
anti-aging, anti-inflammatory [5], and antimicrobial prop-
erties [5, 13]. Furthermore, due to their biodegradability, 
coffee by-products have been used as biosorbents for water 
treatment and as substrates for the production of enzymes 
[17]. Coffee by-products extracted compounds can impart 
antioxidant, antimicrobial, surface hydrophobicity, gas 
impermeability, and increased mechanical resistance to 
packaging materials, and therefore, be used in active food 
packaging [17]. The coffee husk also has great potential as 
filler for wood polymer composites dues to the high content 
of cellulose, lignin, and proteins [107]. The carbohydrates 
facilitate the improvement of certain mechanical proper-
ties of the composite materials, while the relatively high 
amount of proteins within the coffee husk can function as 
plasticizers, which is a relevant property to facilitate the 
processing of composite polymers. Examples of composite 
polymers, where an increase in tensile strength and modules 
was observed post inclusion of coffee husk, include HDPE 
[108] and LLDPE [107]. Proof of the efficacy of up-cycling 
coffee husk has already been shown through the commer-
cialization of construction composite materials made of 
coffee husk plastic to create durable, fireproof, and insects 
resistant composite materials [109]. Coffee production by-
products can also be used for biofuel production (e.g., biogas 
and bioethanol) [110]. The biogas produced could be used 
for roasting coffee processing solid wastes, which can be 
used to produce briquettes with 70% less processing cost 
and 80% more energy density, in comparison with briquettes 
made from raw biomass [111]. Overall, briquettes and pel-
lets with a high caloric value and performance can be made 
from coffee by-products [110].

Concluding Remarks

Coffee production is increasing and consequently the pro-
duction of coffee by-products and solid residues that are 
mostly wasted in the environment are increasing too. Under 
an environmental point of view, this can be a concern. The 
minimization of the environmental constrains can be sup-
ported by implementing sustainable approaches, e.g., up-
cycling coffee by-products toward the creation of value-
added products.

Coffee processing by-products are rich sources of bio-
active compounds and other nutrients that can be widely 
utilized in the food industry.

Based on the nutritional composition of coffee pulp and 
husk by-products, dietary fibers are the main component. 
Coffee pulp and husk have both soluble and insoluble types 
of dietary fibers, which suits a broad range of food applica-
tions. Those can be extracted using mostly a combination 
of extraction methods, e.g., solvent extraction; ultrasound 

assisted followed by enzymatic assisted extraction, mainly 
for the non-soluble fibers. Soluble dietary fibers can be 
extracted using solvent extraction.

Coffee cherry and pulp also contain considerable amount 
of proteins (the second main component). Proteins can also 
be extracted and used as food ingredients. Although limited 
research has been done regarding the extraction of proteins 
from coffee husk and pulp by-products, enzyme-assisted 
extraction is known to facilitate the process of extraction from 
green coffee beans [70]. Furthermore, significant amounts of 
proteins were detected, in extracts of dietary fibers.

Lipids are also part of the coffee pulp and husk by-products. 
Up to date, there is no comprehensive analysis of the lipid 
composition of the coffee processing by-products. Still lipids 
can be extracted from green coffee beans using CO2 super 
critical extraction [112] and enzyme-assisted extraction [70].

The coffee by-products discussed in this review are 
also a source of micronutrients, vitamins, and minerals, 
such as potassium, calcium, and magnesium. The main 
phenolic compounds found in coffee by-products are chlo-
rogenic acids, with potential health-promoting properties, 
such as antioxidant, anti-diabetic, and anti-obesity. Due 
to their health-related benefits, phenolic compounds have 
been the most extracted compounds from coffee pulp and 
husk. The phenolic compounds can be extracted by vari-
ous extraction techniques, being the most popular solvent 
extraction, with differing yields and antioxidant capacities. 
Researchers have reported the parameters that influence 
the extraction process, starting from the origin of the raw 
material, to processing, sample preparation, extraction 
method, solvent, and temperature, to name a few. Due 
to the sensitivity and location of some of the bioactive 
compounds, effective cell disruption methods, and gentle 
extraction techniques may be beneficial. The use of polar 
solvents was shown to result in higher yield of extracted 
phenolic compounds.

The protein, mineral, vitamin, and lipid composition of 
the cascara are still under-investigation. This highlights the 
need for conducting further studies on the retrieval of these 
compounds as well. Furthermore, some extraction tech-
niques should be optimized to become industrially viable.

The different components from coffee husk and pulp are 
sources of bioactives compounds that can fulfill the grow-
ing markets of functional foods and alternative plant-based 
ingredients with high nutritional value. Furthermore, those 
by-products can be used as food pigments, anti-oxidants, 
anti-microbial ingredients, gelling agents, and stabilizers, 
or either be used as extracts for enzyme production. The 
high value of coffee by-products has been already recog-
nized by food industry, through the commercialization of 
different food products, as presented in this review.

Coffee production already accounts for significant envi-
ronmental footprint, which is predicted to further increase 
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due to the increasing tendency of coffee consumption. 
Applying biorefinery approaches on coffee production 
by-products to reduce wastes will contribute to a circular 
economy and ultimately lower the negative environmental 
impacts from coffee production. If implementing circular 
economy in coffee production, a more efficient use of the 
coffee cherry is foreseen, as most of the coffee produc-
tion products (coffee and its by-products) can contribute 
to improve both environmental and economical impacts. 
By revalorizing coffee pulp and husk, valuable compounds 
can be obtained while less waste will be produced, and 
revenue issues for coffee farmers can be addressed simul-
taneously (promoting a social impact). Therefore, further 
research on the utilization of the coffee fruit has the poten-
tial to provide a combined (partial) solution to acute envi-
ronmental, social, and health issues.
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