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Abstract
Tea (Camellia sinensis) is the most widely consumed beverage in the world, with an excellent source of bioactive compounds 
such as catechins, caffeine, and epigallocatechin. There is an increasing trend to extract these bioactive compounds to deliver 
them as value-added products. Generally, the extraction of polyphenols and other functional compounds from different 
parts of tea is carried out using different solvents (e.g., water, water–ethanol, ethanol, methanol, acetone, ethyl acetate, and 
acetonitrile). The extraction efficiency of functional compounds from tea depends on the type and polarity of the solvent as 
well as the applied process. Several conventional techniques, such as boiling, heating, Soxhlet, and cold extraction, are used 
to extract bioactive ingredients. However, these procedures are unsuitable for achieving high yields and biological activities 
due to the long extraction times of cold brewing and the high temperatures in other heating methods. Many efforts have 
been carried out in food and pharmaceutical industries to replace conventional extraction techniques with innovative tech-
nologies (e.g., microwave (MAE), ultrasonic (UAE), pressurized liquid (PLE), pulsed electric field (PEF), and supercritical 
fluid (SFE)), which are fast, safe, energy-saving, and can present eco-friendly characteristics. These innovative extraction 
techniques have proven to improve the recovery rate of phenolic-based antioxidant compounds from tea and increase their 
extraction efficiency. In this review, the application of novel processing technologies for the extraction of value-added 
compounds from tea leaves is reviewed. The advantages and drawbacks of using these technologies are also highlighted.

Keywords  Tea (Camellia sinensis) · Phenolic compounds · Bioactivity · Extraction · Ultrasound · Supercritical CO2 · 
Pulsed electric field · Microwave · Pressurized liquid

Introduction

Tea (Camellia sinensis L.) is an ancient crop belonging to 
the Theaceae family. Although this evergreen plant origi-
nates from southeastern China, it has been widely distributed 
in countries with tropical and subtropical climate changes 

worldwide [1–3]. China’s tea spread to India, Japan, Russia, 
and Europe [4, 5]. According to [6], tea production was 5.79 
million tons, of which China and India contributed 72%. 
Depending on how the fresh leaves are processed, there 
are various kinds of tea (e.g., green, white, black, yellow, 
oolong, Pu’er, or Pu-erh) [7]. Two varieties of tea, green and 
black, are extensively consumed worldwide [8, 9]. There are 
thousands of chemical constituents in tea, where the concen-
tration present can be substantially affected by the different 
heredity (e.g., genetic strain), environmental factors (e.g., 
weather, soil, irrigation method, growth altitude, and harvest 
season), horticultural practices, and processing technologies 
and conditions [1, 10, 11].

Recently, there has been an increasing trend toward 
extracting bioactive compounds from tea to produce value-
added products such as health supplements. Cold brewing 
of tea has also gained popularity due to increased consumer 
acceptance. In general, the extraction of polyphenols and 
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other functional compounds from tea is carried out using a 
variety of solvents. Although water as a traditional solvent 
has been applied in most of the studies to extract polyphe-
nols from green and black teas [12–16], the use of other sol-
vents such as water–ethanol [17], ethanol [18, 19], methanol 
[20, 21], acetone [15, 22], ethyl acetate [23], and acetonitrile 
[15] has also been reported.

The extraction efficiency of bioactives without any 
chemical modification is not only a function of the type and 
polarity of the solvent used but is also influenced by the 
applied processing techniques for extraction [24]. Processing 
conditions such as tea: solvent ratio, particle size, agitation 
rate, and time/temperature have a significant effect on the 
extraction of bioactive compounds from tea [25]. Conven-
tional techniques like boiling, heating, and reflux distillation 
are used for the extraction of bioactive ingredients from tea 
[26]. However, these conventional procedures are unsuitable 
for achieving high yields and biological activities due to the 
long extraction times and the high temperatures used [27].

Many efforts have been carried out to promote the use 
of innovative technologies such as microwave, ultrasound, 
pressurized liquid, pulsed electric field, and supercritical 
fluid with fast, safe, energy-saving, and eco-friendly char-
acteristics that replace conventional solvent extraction meth-
ods (e.g., heat reflux) in food and pharmaceutical industries 
[26–35]. Applying novel technologies under mild processing 
conditions can decrease the impurity and structural changes 
of polyphenols sensitive to epimerization and oxidative oli-
gomerization reactions and significantly enhance the extrac-
tion yield. In addition, these technologies also increase the 
solvent permeability rate in plant cells and the mass transfer 
coefficient of the target secondary metabolites [30]. Fur-
thermore, there is a serious concern about tea by-products 
getting accumulated in the environment. Therefore, using 
economic and environmental approaches to reuse such agri-
cultural and food processing waste seems necessary for the 
food industry.

The application of innovative extraction and separation 
systems such as nanofiltration membranes [2, 3], supercriti-
cal carbon dioxide [2, 36], microwaves [37, 38], ultrasound 
[39, 40], and pressurized liquid [3, 41] have been reported to 
significantly enhance the extraction of bioactive compounds 
from tea for the fortification of different foods such as bak-
ery products [42]. Furthermore, studies have shown that tea 
can be a suitable substrate to produce activated carbon using 
combinations of chemical activation and microwave energy 
[43], as well as microwave and infrared energies [44]. More-
over, the discoloration process of dye wastewater by pulsed 
discharge plasma combined with charcoal derived from tea 
has been previously reported [45]. This paper provides a 
comprehensive summary of the literature published on the 
application of innovative processing technologies like ultra-
sound, microwave, pulsed electric field, pressurized liquid, 

and supercritical fluid to extract and recover bioactive com-
pounds from tea.

Tea: Nutrition and Health Properties

Tea, the most popular and oldest non-alcoholic beverage, 
has a unique flavor with some health benefits [46]. The 
global average consumption of this healthy functional drink 
is about 120 mL per day per person, while this value for 
Great Britain’s inhabitants is 4.5 times higher (≈540 mL/
day) [47]. Tea primarily contains polyphenols, and cate-
chins and theaflavins are tea’s primary and secondary poly-
phenols. Through the enzymatic browning by polyphenol  
oxidase, catechins present in tea leaves are converted to 
theaflavins during fermentation [48–50]. There are two 
optical isomers for each geometrical isomer of catechin 
(trans-catechins and cis-epicatechins), including (+ ,–)- 
catechin and (+ ,–)-epicatechin. Esterification of (–)- 
catechin with gallic acid (GA) can lead to the synthesis of 
(–)-gallocatechin-3-gallate (GCG), (–)-catechin-3-gallate (CG),  
epicatechin-3-gallate (ECG), and (–)-epigallocatechin-
3-gallate (EGCG) from tea leaves [51, 52]. Moreover, four  
different kinds of theaflavins, namely theaflavin (TF), 
theaflavin-3-gallate (TF3G), theaflavin-3ʹ-gallate (TF3ʹG), 
and theaflavin-3,3ʹ-digallate (TF33ʹG), can be formed with 
the polymerization through oxidative coupling [53, 54]. 
The presence of other flavonoids (e.g., quercetin), alkaloids 
(theophylline, theobromine, and caffeine), long-chain ali-
phatic alcohols (e.g., policosanols), amino acids (e.g., glu-
tamic acid, aspartic acid, and theanine), and minerals (e.g., 
fluorine, chlorine, calcium, and manganese) in various tea 
products has been demonstrated [5, 55].

The daily drinking of tea can significantly reduce the inci-
dence rate of cancer types such as skin [56–59], breast [2, 
3, 60–63], ovarian [64, 65], prostate [66, 67], lung [68, 69], 
oral [70, 71], colon [72, 73], stomach [70, 74], and pan-
creatic [75–77] induced by the consumption of alcohol 
and tobacco. The presence of polyphenols such as EGCG 
can notably inhibit the activation of carcinogens and, con-
sequently, cancer initiation due to its antiradical and anti-
oxidant activities and its implication in the detoxification 
system activation. The robust mechanism associated with 
the modulation in membrane organization, the formation of 
intercellular interactions with some functional macromole-
cules (e.g., proteins and nucleic acids), the epigenetic altera-
tion, and the regulation of cellular replicative potential can 
highly limit the progress of carcinogenesis. This mechanism 
is accomplished by preventing the self-renewal, prolifera-
tion, and viability of the predominant tumor-initiating clones 
and, thus, the consequent growth [78]. Earlier, the effects 
of anti-mutagenic, anti-diabetic, anti-inflammation, anti-
bacterial, anti-viral, anti-arthritis, anti-obesity, and neuro-
protective of tea polyphenols have been comprehensively 
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reported by other researchers [49,  79–88]. Additionally, the 
immune response by these bioactives was recently identified 
against severe acute respiratory syndrome coronavirus type 
2 (SARS-CoV-2) [49, 89].

Several bioactive compounds, such as polyphenols and 
caffeine, can be extracted using conventional and novel 
extraction systems [23, 90]. The tea dust generally contains 
2.5% decaffeinated tea, serving as a value-added source to 
extract bioactive compounds such as theanine [42]. This 
amino acid has many health benefits, such as relaxing and 
anti-tumor effects, learning capability enhancement, weight 
and nervousness decrease, reduction of blood pressure, tri-
glyceride and cholesterol levels, immune system improve-
ment, and inhibition of tobacco and nicotine addiction 
[42, 91–96].

Conventional Extraction of Bioactive 
Compounds from Tea

Selecting a proper extraction technique is essential for recov-
ering the maximum amount of bioactives from tea. The con-
ventional solid–liquid extraction (CSLE) methods are com-
monly used due to their ease and broad applications [97] and 
liability [97–101]. Soxhlet extraction is a standard technique 
for extracting phenolic compounds from tea using organic 
solvents such as methanol, ethanol, acetone, diethyl ether, 
and ethyl acetate. Flavonoids can be extracted with polar 
solvents such as ethanol, methanol, water, and combinations 
of these solvents [102–105]. The choice of solvent depends 
on the solvent’s ability to solubilize the solute, the extraction 
temperature, and the particle size of the solute [106].

Chang et al. [107] reported the possibility of extract-
ing phenolics from green tea using co-solvents combined 
with carbon dioxide-assisted Soxhlet extraction. Although 
water is the commonly used solvent for extracting pheno-
lics from tea, applying other non-polar green solvents (such 
as butanol, ethyl acetate, and ethanol) has been reported 
to extract bioactives and decaffeinating. It was reported in 
another study that using ethanol as a solvent improved the 
extraction of catechins than those extracted with water [36].

Goksu and Poyrazoglu [108] investigated the effect of 
using 80% methanol on total phenolic content (TPC) extrac-
tion from caffeinated and non-caffeinated green and black 
teas. There was a significant difference in TPC contents 
between caffeinated (159.4 mg/kg) and non-caffeinated 
(32.81 mg/kg) black teas. Similar results were observed for 
caffeinated (128.22 mg/kg) and non-caffeinated (43.16 mg/
kg) green teas. Ethyl acetate, compared to n-butanol and 
n-hexane, was found to be a better solvent for isolating cat-
echins from green tea [109]. The optimum extraction condi-
tions with water were reported to be at the solid-to-solvent 
ratio of 1:30, the temperature of 80 °C, and the extraction 

time of 40 min for the extraction of catechins, which were 
then isolated using ethyl acetate and decaffeinated using cit-
ric acid. The authors reported that this treatment could lead 
to a substantial reduction in the caffeine content by up to 
78.8%. The application of liquefied dimethyl ether removed 
the total caffeine from dried green tea leaves before extrac-
tion, whereas catechins were retained up to 56% [110].

Another study used the green, deep eutectic solvent 
(DES) to extract catechins from Chinese green tea [111]. 
The results showed that the efficiency values of catechins, 
( +)-epicatechin gallate (EG), and (-)-epigallocatechin 
gallate (EGCG) were 82.7, 92.3, and 97.0%, respectively. 
Nadiah and Uthumporn [112] characterized catechins, caf-
feine, and gallic acid (GA) in tea leaves and spent tea. They 
evaluated the effect of various extraction conditions, such 
as boiling water, 50% ethanol concentration, and different 
extraction times. Compared to water, ethanol resulted in 
higher extraction efficiency of phenolic compounds from 
tea extracts, probably due to the higher polarity of ethanol 
that influenced the extractability rate.

The effect of particle size (intact and pulverized) and sol-
vent type (methanol and acidified methanol) on the TPC, 
total flavonoid content (TFC), tannin content, and antioxi-
dant activities of leaves of yellow, green, and black tea was 
studied by Kopjar, Tadić, and Piližota [113]. Pulverized tea 
leaves treated with acidified methanol exhibited the highest 
values of functionalities among the different tea leaves. The 
yellow tea leaves had higher bioactivity than the leaves of 
green and black teas. The antioxidant activities of extracts 
obtained from the yellow and green tea leaves were higher 
than those obtained from black tea leaves. Nibir et al. [114] 
have recently studied the antioxidant, and antimicrobial 
properties of aqueous extracts of flowery broken orange 
pekoe, broken orange pekoe, red dust, and green tea pre-
pared with a solid-to-water ratio of 1:6. The aqueous extract 
of green tea exhibited promising anti-bacterial properties 
with a maximum level of phenolic content corresponding to 
26.33 mg GA equivalent (GAE)/g extract.

Optimizing the operating parameters involved in the 
extraction process is essential to obtain bioactive com-
pounds’ maximum efficiency and functionality from plant-
based food matrices [25]. The optimization of phenolic com-
pounds extracted from tea fruit peel biomass (TFPB) was 
carried out by Xu et al. [115]. The highest TPC (47.5 mg 
GAE/g) was obtained at the optimum conditions of 43% 
ethanol, 60 °C extraction temperature, and 33 min extrac-
tion time. Gallocatechin and epigallocatechin were the major 
phenolic compounds of TFPB. In another study, Kim et al. 
[116] evaluated the optimization of the TPC, antioxidant 
activity, and EGCG of green tea leaves at different ethanol 
concentrations (0–100%), extraction times (3–15 min), and 
extraction temperatures (10–70 °C). The maximum antioxi-
dant activity (88.4%) was obtained using 57.7% ethanol at 
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70 °C for 15 min. Zielinski et al. [117] optimized the extrac-
tion process of phenolic compounds from white tea, and 
optimum conditions were 10 min extraction time at 66 °C 
and using 30% ethanol solution. Hung et al. [51] evaluated 
the effect of using water and ethanol at different concentra-
tions (10, 50, and 95%) on the extraction of catechin and the 
antioxidant capacity of different C. sinensis twig. The results 
showed that the 50% ethanol extract had the highest level 
of phenolic (161.3 mg GAE /L) and flavonoid (278.9 mg 
quercetin equivalents/L) contents.

Although the conventional extraction of bioactive com-
pounds from tea is easy and convenient, applying these 
methods implies adverse thermal effects on the extraction 
yield and quality with a significant expenditure of solvents 
and energy. Thus, the potential of using innovative extrac-
tion methods such as ultrasound-assisted extraction (UAE), 
microwave-assisted extraction (MAE), pulsed electric field 
(PEF), supercritical fluid extraction (SFE), and accelerated 
solvent extraction (ASE)/pressurized liquid extraction (PLE) 
has been reported to be an excellent alternative to produce 
tea extracts at industrial scale with an optimal expenditure 
of energy and chemicals. The application of some of these 
techniques for extracting bioactive compounds from tea is 
discussed in the subsequent sections.

Innovative Methods of Extraction

Ultrasound‑Assisted Extraction

Ultrasound-assisted extraction (UAE) is one of the most 
emerging, efficient, and eco-friendly methods to disrupt 
cells to extract intracellular compounds from the cell matrix.  
UAE works on a simple principle of cavitation phenomenon 
where micro channels are formed in the sample by increasing 
the rate of diffusion of the solvent into the matrix [118–121] 
(Fig. 1). It is also referred to as the mechanical waves that 
can increase with pressure leading to the formation of 

cavities [106, 122]. With the increase in pressure, the cavi-
ties reach a specific limit beyond which they cannot absorb 
more energy and lead to the collapse of the bubbles when 
they reach maximum volume, thereby aiding in the disrup-
tion of the cells [122–124]. UAE can enhance the mass 
transfer rate of bioactive compounds during the extraction 
process from the plant tissues [125]. The application of this 
method reduces the extraction time and energy consumption 
and provides higher extraction yield [126–130]. Mixing the 
solvent using UAE will also increase the surface area under 
contact between the solvent and the cell matrix [118, 131]. 
Due to the reduced extraction times, UAE can decrease the 
thermal degradation of heat-sensitive bioactive compounds 
such as polyphenols [132].

UAE has been in use for a long time to extract bioactive 
compounds from various tea leaves, as referred to in Table 1. 
Most of the research work was on green tea leaves [121, 
134–143] and Black tea [31, 136–138, 143]. In addition, 
research has been carried out to extract bioactive from tea 
infusions [39], matte leaves [144, 145], tea solids [146–148], 
tea seeds [131], yellow tea [122], white tea [136, 137, 149], 
and Oolong tea [136, 137]. Solvents used for the extraction 
process were dependent on the targeted bioactive compounds 
for the process. Water remained the most used solvent for 
extraction [31, 121, 122, 138, 142, 143, 146–148] followed 
by methanol [138, 143, 144, 148, 149], ethanol [122, 138, 
142, 147, 149], hexane [131, 144], and acetone [147]. Some-
times solvents like water/acetone and methanol/ethanol were 
used in combination for better yields. The solvent used for 
the extraction process should also be appropriately selected 
based on its selectivity for the target bioactive compound. 
For example, methanol served as the best extraction solvent 
for tannic acid, with a 19% higher yield [148].

UAE experiments were designed to understand the effect 
of various processing parameters like temperature, sonica-
tion time, power, and solid solvent ratio on the extraction 
efficiency of tea [39, 122, 131, 134, 140, 141, 144, 146, 
147]. UAE was explored as an extraction method to extract 

Fig. 1   Graphical representation 
of the cavitation formation and 
bubbles collapse accelerating the 
release of bioactive compounds 
from the plant cells (retrieved 
from Roohinejad et al. [133])
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compounds like catechins [134, 135, 138, 139, 142, 143], 
caffeine [136, 142, 143], tannic acid [148], oil [131], fla-
vonoids [141], volatile compounds [137], theophylline and 
theobromine [136], theaflavins [138], antioxidant polyphe-
nols [31, 140], total phenolic content [149], and antioxidant 
capacity [138] of tea extracts were analyzed with UAE. 
Among these, the catechins were found to be more stable 
in deep eutectic solvent (DES) extracts than in any other 
solvents (e.g., water, methanol, and ethanol) used for the 
extraction process [139]. In addition, UAE has been stud-
ied for increasing the total phenolic content and antioxidant 
capacity in cold-brewed black tea [31].

UAE effectively increased the extraction efficiency 
of catechin and decreased the extraction time and solvent 
consumption [134]. The application of dynamic UAE also 
reduced the oxidation and hydrolysis of the analytes because 
the system was airtight [143]. Using 50% acetone with soni-
cation provided the highest extraction yield of 36% and 17% 
for EGCG [147] compared to conventional hot brewing at 
33% and 12%. The highest extraction of total flavonoids with 
UAE (2,957.73 mg/L) was using ethanol as a solvent in com-
parison to conventional water extraction at ~ 500 mg/L [122]. 
Using water as a solvent, the extraction yield for green tea 
was 85% [121]. The solvent BGG-4 (betaine, glycerol, and 
D ( +) glucose) for UAE improved the extraction efficiency 
of the catechins (217 mg g−1) vs. UAE with water as solvent 
led to 100 mg g−1 for total catechins for green tea [139]. The 
optimum conditions for temperature included a range of 28 
– 60 °C [39, 131, 134, 137, 141, 142, 146–148], power in the 
range 50–461W [39, 131, 140] and frequency in the range 
of 20 kHz—40 kHz [39, 122, 134, 148]. Sonication time for 
optimized conditions varied from as low as 10 s to as high as 
120 min [39, 122, 131, 134, 137, 140–142, 146–149]. UAE 
is efficient at lower temperatures (60 °C), thereby minimiz-
ing thermal damage and maintaining the organoleptic char-
acteristics of tea [39]. Application of UAE at high pressure, 
such as 90 to 338 kPa, increased the extraction yield to 200% 
and reduced extraction time and efficiency of extraction to 
74% [145]. UAE significantly reduced the cold brewing time 
from 16 h to 30 min providing an energy-efficient method of 
extraction from black tea leaf matrix [31]. The application of 
UAE enhanced the extraction yield of EGCG to 15%, and the 
highest oxidative stability was observed in the nanoemulsion 
sample prepared with green tea with peanut oil [135]. The 
UAE with deep eutectic solvents resulted in an increase in 
the extraction yield of TPC, the total quantity of four main 
catechins, and the antioxidant activity of green tea polyphe-
nolic extract [140]. Increasing the ultrasonic power from 10 
to 50 W increased the extraction yield from 46.23 to 85.21%. 
The yield decreased by increasing the temperature [131].

The major advantages of using UAE compared to the 
conventional extraction methods include faster energy 
transfer, adequate mixing, faster response to process control 

systems, lesser energy consumption with average extraction 
time, reduction in thermal degradation, greater purity of the 
finished product, and fast return on investment [123]. The 
extraction efficiency usually differs from one tea to another 
due to the differences in the structure and the chemical com-
position of the leaf. Other factors, such as the turbidity of the 
plant tissue (tea leaves) and the starch granules, can also be 
influenced by the ultrasound energy applied and, thus, the 
effectiveness of the extraction [153]. UAE can be considered 
for shorter extraction time with minimal solvent usage for 
extraction of bioactives [131].

Microwave‑Assisted Extraction

Microwave-assisted extraction (MAE) has received exten-
sive attention as an alternative method for extracting bioac-
tive compounds from plant-based food matrices [27, 125, 
153–155]. The principle of MAE involves the propagation 
of non-ionizing electromagnetic waves between X-rays and 
infrared rays in the electromagnetic spectrum. These waves 
can penetrate the sample, interact with the compounds, espe-
cially polar compounds, and generate heat, which subse-
quently leads to changes in the structure of the cells [123, 
125, 153, 156] (Fig. 2). The synergistic combination of heat 
and mass transfer, working in the same direction, is the pri-
mary cause of the process acceleration and the increased 
extraction yield [153, 157, 158].

MAE is a sequential process. The solvent initially pen-
etrates the solid matrix of tea, followed by the structural 
breakdown. This aids in transporting the solutes rich in bio-
active compounds out of the matrix. The solute migrates 
from the external solid surface to the bulk solution leading 
to the separation and the discharge of the extract contain-
ing bioactive compounds [153, 160, 161]. Then, the solvent 
interacts with the free water molecules present in the plant 
cells resulting in the rupture of the cell wall and aiding in the 
release of bioactive compounds from the cells to the solvent 
[162, 162, 163].

MAE was used to optimize better extraction efficiency 
of the bioactive compounds in various tea varieties which, 
includes green tea [3, 30, 37, 154, 155, 164, 165], black tea 
[27, 155, 164, 165], oolong [155, 164], decaffeinated green 
tea [166], mulberry tea [167], tea flower (C. morifolium) 
[151], decaffeinated Iranian green tea leaves [121], and tea 
blends consisting of white tea, green tea, mint, and pep-
permint [38]. MAE was suitable for producing green tea 
extracts rich in polyphenols [30].

MAE was used for the extraction of polyphenols [3, 30, 
37, 164, 166, 168], tea flavonoids [11], antioxidant and 
anti-diabetic properties of tea extracts [151], and total phe-
nols recovery [27, 94, 95, 165, 169]. The bioactive com-
pounds extracted using MAE include catechin and epicat-
echin [38, 154], caffeine [38, 155, 170], and tea saponins 
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from the oil—tea camellia seed cake [171]. The optimized 
temperature conditions used for MAE were in the range of 
80–200 °C [3, 30, 94, 95, 151, 152, 164, 169]. The tem-
perature was considered the primary variable [3, 121] for 
caffeine and catechin extraction using MAE [152]. However, 
even though a higher temperature was used, MAE was only 
carried out for a short period ranging from a minimum of 
30 s to a maximum of 60 min [11, 27, 30, 37, 38, 94, 95, 
151, 152, 154, 155, 166–169, 171] and microwave power in 
the range of 150–900 W [11, 27, 30, 38, 94, 95, 121, 151, 
152, 155, 165–168, 170]. The solvent composition, solid-to-
solvent ratio, extraction temperature and time, microwave 
power, stirring speed, pressure, and surface area of contact 
are the critical parameters affecting the extraction of bio-
active compounds in an MAE process [88, 153, 156]. The 
order of influence of these parameters was deduced to be 
irradiation time > intensity > tea to the solvent ratio [166].

The solvent used for the extraction depends on the sol-
vent’s penetration and interaction with the targeted bioactive 
compounds [153, 172]. Some of the solvents used for the 
extraction process were water [30, 37, 121, 151, 169], etha-
nol [37, 38, 94, 95, 152, 168, 169], and acetone and metha-
nol [37, 169]. The solvent should also have the capacity to 
absorb the microwave energy, but absorption depends on the 
boiling point, microwave energy dissipation, and dielectric 
properties of the solvent. Depending on the solvent volume, 

the heating time would be altered [27]. The ethanol concen-
tration was the most influential parameter for the extraction 
of polyphenols. The enhancement of product recovery in 
MAE is due to the heating effect of the microwave [168]. 
MAE can be considered one of the fastest extraction meth-
ods for polyphenols and caffeine [37]. The caffeine recovery 
in the tea samples was found to be in the range of 88.2% to 
99.3% [170] using dynamic MAE. MAE’s extraction effi-
ciency was more than 95% [11, 94, 95, 121] for the recovery 
of catechins and derivatives within a short time [3, 11, 154]. 
It also had a good recovery process compared to conven-
tional methods [152]. MAE-assisted green tea extracts were 
more concentrated in total polyphenols (26%) compared to 
black tea (16%) [165]. The yield and efficiency of the extrac-
tion increase proportionally to the time and the microwave 
applied power and decrease beyond a specific limit mainly 
due to the increase in temperature. Microwave power is a 
crucial parameter to optimize the extraction process. The 
mixing process is an essential consideration in the optimiza-
tion process since it is directly related to the mass transfer 
in the solvent. The surface area under contact also enhances 
the efficiency of the extraction process. The finely powdered 
samples usually have a large surface area aiding in a better 
contact surface between the plant matrix and the solvent, 
thereby deepening the penetration of the microwaves [153, 
172]. The extraction time and the irradiation power were the 

Fig. 2   Comparative illustration of conventional (A), ultrasound (B), and multi-mode microwave (C) applicator used to extract bioactive com-
pounds from tea tissues (retrieved from Barba et al. [159])
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parameters that should be reduced to decrease the degrada-
tion of polyphenols [168].

Many researchers have reported that the MAE is more 
effective than the conventional extraction methods (e.g., 
solid–liquid extraction, extraction at room temperature, mac-
eration, reflux extraction) in extracting bioactive compounds 
from green teas at ambient temperature [11, 37, 173]. The 
results of the bioactive extraction from tea leaves using 
different operating conditions of MAE are summarized in 
Table 2. MAE can be used for industrial applications with 
minor modifications in the sample size and solvent-to-solid 
ratio [168]. MAE was the fastest extraction method, involv-
ing a rapid extraction of phenols [164]. The extraction time 
was reduced to more than eight times when compared with 
HRE (hot reflux extraction), two times when compared to 
UAE (ultrasound-assisted extraction), and five times when 
compared to SFE (supercritical fluid extraction). The extrac-
tion yield was increased by 17.5% compared to HRE. The 
energy consumption was ¼ when compared to UAE, with 
a 40% increase in the total phenolics. The study concluded 
that MAE only required a shorter time and lesser energy 
consumption and provided higher extraction selectivity and 
extraction yield [94].

MAE is an easy, convenient [167], fast, and reliable 
method for the recovery of catechins and epicatechins 
[154]. It can be considered one of the effective methods of 
extraction [166, 169] due to its targeted extraction of bioac-
tives and thereby enhancing the antioxidant quality of the 
extracts [168]. Compared to the UAE, the extraction effi-
ciency of bioactives was higher with MAE [121] and more 
efficient at higher temperatures. MAE also led to a higher 
recovery of total phenolic compounds, compared with the 
standard brewing techniques, without affecting the antioxi-
dant potential of the tea [27]. MAE reduced the extraction 
time, energy consumption, and environmental burden [30], 
making it an alternative technology for the extraction of 
bioactives from tea.

Pulsed Electric Field

Pulsed electric field (PEF) is a non-thermal technology 
that extracts targeted bioactive compounds from tea. This 
method works on the simple principle of cell wall disrup-
tion, increasing the cell matrix’s permeability for efficient 
extraction. PEF is one of the emerging technologies in the 
process industries and is considered competitive compared 
to the other processes concerning cost-effectiveness [174]. 
For the extraction process, the tea sample is placed between 
two electrodes, followed by the application of high elec-
tric field pulses for a concise duration (ns to µs) [34, 35, 
175–180] (Fig. 3). Currently, high-intensity PEF (> 10 kV/
cm) is used as a preservation method for the inactivation 
of microorganisms due to the breakage of cell membranes 

[181, 34, 35, 182, 183] and in turn increases the shelf life of 
the food [34, 35, 179, 184]. The size and formation of pores 
can be reversible or irreversible, depending on the pulse 
intensity, the electric field strength, the number of pulses, 
and the treatment time [33]. The effect of various operating 
parameters involved in PEF technology on the extraction 
efficiency and functionality of tea’s bioactive compounds 
are summarized in Table 3.

PEF treatment induced pores on the tea matrix’s surface 
and facilitated the solvent’s penetration and the polyphe-
nols’ migration [187]. Electroporation efficiency is also 
controlled by the electric field intensity [180]. The degree 
of disintegration of the cell matrix also depends on treat-
ment time, and intensity of the electric field applied. Lower 
intensities take a longer time for the electroporation and vice 
versa [180]. Thus, increasing the intensity of electric fields 
increases the extraction yield proportionately [33, 177]. For 
the solvents used for PEF extraction, the conductivity and 
solubility of targeted compounds in the solvent are critical. 
The increase in conductivity of the solvent will increase the 
extraction efficiency due to enhanced electroporation [177]. 
In addition, He et al. [171] reported that increasing the sol-
vent concentration can reduce the concentration of the bioac-
tive compounds bound to the sample, making the dissolution 
process easier. Other parameters for optimization include the 
pulse duration, the number of pulses, and the pause between 
the pulses [180]. The longer pulse duration for the extrac-
tion was more effective compared to a short duration. The 
longer pulse duration increases the permeation of the cells 
but negatively leads to the decomposition of the extracts. 
The effect of the pulse width varies depending on the elec-
tric field strength, types, quality, and contact parameters, 
such as the geometry and the size of the samples [180]. The 
extraction kinetics strongly depends on the interval between 
the pulses and higher field strengths [180].

By using PEF for extraction, tea’s aromatic compounds, 
polyphenols are protected from damage [34, 35, 188], and 
its color, taste, and aroma remain unchanged [34, 35, 
39, 179, 186, 188]. Traditionally, PEF has been used in 
the extraction and retention of polyphenols from green 
tea [179, 187], black tea [186], Puer tea [174], and green 
tea infusions [33–35]. PEF retained more bioactive com-
pounds and color than conventional heat treatment [34, 
35]. PEF is mainly used to extract polyphenols, catechins, 
and free amino acids [35]. The extraction yields for poly-
phenols ranged from 22 to 32% [179, 180, 186] and the 
extraction rate was observed to increase ~ 2 times without 
degrading or altering the phenolic profiles [187]. Using 
PEF beyond a specific limit, had a loss of < 10% in vola-
tiles and but it increased amino acid content by 7.5% [34, 
35]. On the contrary, it reduced the loss of aromatic com-
pounds due to the volatilization in instant tea [186]. Addi-
tionally, PEF treatment has been known to improve the 
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taste and aroma of tea samples and characteristics like the 
natural aging of tea. The high voltage of PEF assisted in 
artificial aging, thus improving the taste with an acceler-
ated aging process. It can also be used to rapidly age unfer-
mented Pu Erh tea [174]. Overall, this extraction technique 
provided the maximum extraction yield of polyphenols 
without destroying their activities [179] compared to hot 
brewing methods. Moreover, PEF has been investigated 
as an alternative to drying processing before extracting 
polyphenols [187].

A longer shelf life of infusions was achieved (about 
90 days) when storage temperature at 4 °C was considered 
along with PEF treatments [34, 35]. A slight temperature 
increase was recorded during the treatment at ≤ 10 °C [33]. 
Effective log reductions were observed for Escherichia coli 
and Staphylococcus aureus, at 38 kV/cm and less treatment 
time 16–200 µs [34, 35]. PEF is a time and energy-efficient 
extraction method. The advantages of using PEF include 
minimal energy consumption, uniform transmission, and 
quicker processing [174, 189]. PEF has not been exten-
sively researched compared to other technologies reviewed 
in the study due to economic limitations. More validation 
and further research into the extraction using PEF should be 
studied and analyzed to understand the underlying effects of 
PEF on tea.

Supercritical Fluid Extraction

Supercritical fluid extraction (SFE) is one of the alterna-
tive technologies used to extract bioactive compounds 
from tea leaves [88, 106, 190, 191]. SFE works based on 
the principle of the supercritical properties of fluids like 
CO2 and water. SFE is a two-step process, extraction, and 
separation. The system consists of an extraction chamber, 
wherein the tea samples are placed inside the supercritical 
fluid. The samples are then subjected to a specific tempera-
ture and pressure to extract the bioactive compounds. After 
the extraction process, the mixture containing the bioactive 
compound passes through the separator for the separation 
process (Fig. 4) [191].

SFE was used in the extraction of theophylline, theobro-
mine, and caffeine [193–197], safrole and allylbenzenes 
[198], monoterpenes [199], triterpenic acids [200], alkaloids 
[195], phenolics [196], volatile compounds [201], and oil 
[202]. Japanese tea [203], Sassafras tea [198], Mate (IIex 
paraguariensis) leaves [193, 197, 199], Malaleuca alterni-
folia Cheel leaves [204], herbal tea [200], Hedyotis diffusa 
and Hedyotis corymbose, Assam tea—seeds (C. sinensis var. 
assamica) [202], Korean tea [205], green tea [194, 196, 201, 
205–207] were all studied for the extraction of various bio-
active compounds using SFE from tea leaves.

The temperature and pressure can be adjusted based on 
the dissolving power of the target bioactive compounds Ta
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[106, 208], and they serve as critical factors for the extrac-
tion system [197, 209]. This is because the density of the 
solvent and solubilization of the solute will depend on the 
pressure applied to the system. However, increasing the 
pressure beyond a specific limit will negatively impact the 
extraction process as it might reduce the diffusion rate of 
the solvent. This will hinder the extraction resulting in lower 
yields [209]. Pressure is also a critical parameter in the SFE 
extraction [190], and most pressure conditions ranged from 
7.4 to 88 MPa. Different flow rates for CO2 were employed, 
and there is no guiding explanation involved why the flow 
rates were different for each sample; one detail can be attrib-
uted to the difference in the system used, and the flow rate 
ranges from 0.9 g to 1250 g / min [190, 195–197, 201–206]. 
Extraction curves further helped prove that the extraction 
rate increased with pressure [210].

Diffusivity and apparent volume of solvent increase with 
temperature, while density decreases with temperature. The 
extraction process ranged from 10 to 540 min, with temper-
atures ranging from 40 to 100 °C [190, 193–198, 201–207]. 
Depending on the sample matrix, varying time–temperature 
combinations were employed under the SFE extraction pro-
cess. A decrease in the temperature conversely increases 
the density and the solvation of the solutes. This is called 
a “crossover effect,” where the high temperatures result 
in lower yields, and lower temperatures provide higher 
extraction yields. Thus, the author states that the increase in 
kinetic energy (due to temperature) will be directly propor-
tional to the diffusion rate of CO2 [209]. However, Natolino 
et al. [210] state that temperature had a negligible effect on 
extraction kinetics.

SFE has increased the extraction efficiency and preserved 
organoleptic characteristics of the bioactive extracts. The 
supercritical fluid commonly used in SFE is CO2 (with high 
purity) as it is non-toxic and non-flammable under low criti-
cal pressure, is cost-effective, and allows easy removal of the 
supercritical fluid from the extracts [123, 207]. Generally, 
the co-solvent used in the extraction process has intermedi-
ate volatility between the supercritical fluid and the extracted 
bioactive compounds. This aids in enhancing the solubility 
of the bioactive compound in the supercritical fluid. The 
type of supercritical fluids is the rate-determining step of 
the entire SFE process. The bioactive compounds (solutes) 
of interest in tea, such as polyphenols and alkaloids, are less 
soluble in carbon dioxide, and hence increasing the pres-
sure increases the solubility of the solutes. In addition, co-
solvents (isopropyl alcohol, ethanol, n-hexane, pentane, hep-
tane, toluene, methanol, acetone) [203] can also be used to 
increase the solubility of polar compounds during the extrac-
tion process. For the optimization and strong interaction of 
the matrix and the bioactive compounds [209] the co-solvent 
type and concentration, like ethanol and water, during the 
initial pre-treatment used were the critical parameters for Ta
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Fig. 3   a–d Schematic illustration of the electroporation mechanism in the cell membrane exposed to an electric field (retrieved from Roohinejad 
et al. [133])
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the extraction process of green tea [207]. Table 4 provides a 
summary of the extraction process of SFE in the extraction 
of targeted bioactives in tea over the years.

Ethanol served as a suitable solvent for extracting meth-
ylxanthines [197]. Solvents such as ethanol [196, 197, 200, 
206, 207], methanol [193, 203], hexane [204], and water 
[195, 205, 206] were used as the solvent phase in the extrac-
tion process. However, water was experimentally proved to 
be the best solvent for the selective extraction of caffeine 
from green teas with a selectivity of 0.88 compared to the 
selectivity of ethanol (0.24) [195]. SFE uses a lesser sol-
vent for extraction [197]. The extraction success depends on 
selecting the conditions that can enhance the extraction of 
the desirable compounds by regulating the solvation power, 
avoiding the influence of other materials, and reducing the 
co-extraction of impurities [213]. The sample matrix of the 
leaves played a fundamental role in the extraction process 
for SFE [204]. The solvent removal from the system also 
depends on several factors, such as the solubility of the sol-
ute, the interactions of the solute-solid matrix, the localiza-
tion of the solute in the matrix, and its porosity.

The extractability with SFE was found to be 57%, 68%, 
and 94% for theophylline, theobromine, and caffeine from 
mate tea [197], and a recovery of > 96% for safrole and 
other alkylbenzenes in Sassafras teas [198]. SFE has been 

employed to remove caffeine in green tea by avoiding the 
extraction of antioxidants from the tea matrix [214]. For 
green tea, SFE showed a maximum removal of caffeine 
(91.5%) and retention of 80.8% of catechins [206]. The caf-
feine content in green tea was minimized to 2.6%, and 37.8% 
of ECGC was lost in the process [207].

Most of the process optimization was based on the maxi-
mum extraction of caffeine (54%) and EGCG (21%) [195]. 
The extraction rate was 36.1% for caffeine and 40.6% for 
catechins in green tea [196]. The increased amount of caf-
feine extracted using SFE was accompanied by decreased 
volatiles present in green tea [201]. The solubility of the 
extracted caffeine was found to be lower in green tea [194] 
as compared with pure caffeine (61 times higher). The com-
bination of UAE and SFE extraction methods also resulted 
in higher extraction yields (15–16%), decreasing the extrac-
tion time to 95 min in comparison to 180 min of heat reflux 
extraction and 135 min of UAE, and aiding in minimizing 
the amount of solvent used (43 mL) [200]. SFE was effi-
cient for extracting caffeine and theobromine compared to 
extraction rates of other polyphenolics from mate tea [193]. 
Chlorophyll was sometimes co-extracted with caffeine,  
and further processing was required to recover the chlo-
rophyll to improve the quality of tea [196]. Additionally, 
antioxidant activity improved with the highest extraction 

Fig. 4   Graphical illustration of 
the SFE method used to extract 
bioactive compounds from tea 
(retrieved from [192]
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yield of 50% (Natolino, Da Porto, and Scarlet 2022) in tea 
after SFE. The maximum TPC, TFC, tannin content, and 
total antioxidant activity was 131.24 mg GAE/100 mL, 
194.60  mg QE/100  mL, 49.99  mg TAE/100  mL, and 
262.23 µmol TEAC/100 mL for Camellia sinensis [190].  
Supercritical CO2 extraction efficiently extracted oil from 
Assam tea seeds with a maximum of TPC (15.89 mg 
GAE/100 g) and scavenging activities (IC50=15.35 g/L for 
DPPH and 87.23 g/L for ABTS) [202]. SFE can achieve 
higher extraction efficiency and yield [203] within a shorter 
extraction time [197, 198]. The selectivity of CO2 for caf-
feine extraction was much higher [197, 199] than tea’s other 
bioactive compounds.

Pressurized Liquid Extraction

The pressurized liquid extraction (PLE) process uses ele-
vated temperature and pressure to extract bioactive com-
pounds from tea [215]. Due to the high temperature used, 
the structural bonds in the bioactive compound weaken, 
resulting in the rapid extraction of the selective bioactive 
compounds from the tea matrix [41]. The critical factors 
contributing to the extraction process include the high solu-
bility of the bioactive compounds in the solvent and the high 
diffusion rate caused due to the weakening of the bonds 
[208, 216]. This extraction process has been explained 
in detail elsewhere [217–219]. The solvent forms a layer 
around the tea to enhance the desorption of the bioactive 
compounds from the matrix site of the tea leaves [220]. Fur-
thermore, the bioactive compounds diffuse into the organic 
solvent and finally get distributed into the extraction phase. 
The efficiency of the extraction depends on the nature of 
the matrix and the compound, the location of the targeted 
bioactive compound inside the matrix [218, 220], solubil-
ity, and the diffusion rates [218, 221, 222]. Pressurized 
solvent extraction (PSE), pressurized hot-water extraction 
(PHWE), subcritical water extraction (SCWE), accelerated 
solvent extraction (ASE) technology, and superheated water 
extraction (SHWE) are different forms of PLE used for the 
extraction [123, 218]. PLE is typically used to extract and 
isolate caffeine and catechins from tea. The PLE had the 
highest recovery rates of target bioactives but also ensured 
a maximum degree of accuracy due to automation [215].

Temperature and pressure are major parameters of con-
cern for PLE. The temperature in the process affects the 
efficiency and sensitivity of detecting the targeted bioac-
tive compounds. Higher temperatures improve extraction 
efficiency by disrupting the bonds, eliminating interac-
tions, and lowering the activation energy required for the 
desorption process. It also decreases surface tension by 
altering the sample’s wettability and solubility [218]. How-
ever, increasing the temperature might impact negatively by 

extracting non-targeted bioactive compounds, resulting in 
decreased selectivity. On the other hand, elevated pressure 
in the process affects the solvent’s boiling point, causes cell 
disruption, and enhances the mass transfer rate. The elevated 
pressure also assists in controlling the challenges related to 
the bubbles formed within the matrix that hinder the sol-
vent from reaching the bioactive compounds. This boosts the 
bioactive compounds’ solubility and desorption rate [218].

Several experimental procedures to extract catechins [28, 
29, 41, 223], epicatechins [41], caffeine [28, 29, 224–226], 
phenolics, ligands, carotenoids, oils, lipids, essential oil, and 
nutraceuticals [218] using PLE from tea has been reported. 
Various types of tea products like green tea [223, 225, 226], 
black tea [41], fermented and non-fermented teas [41], mate 
leaves [144, 216], herbal tea [215, 218], and eagle tea [215] 
were studied. Solvents such as water [41], methanol [41, 
144], ethanol [29, 41], ethyl acetate [41, 144], ethyl lactate 
[28, 29], n-hexane, toluene, dichloromethane, acetone have 
been also carried out with PLE [144].

For the extraction processes, the temperature range was 
between 275 °C [28, 29, 41, 144, 215, 216, 226] to a lowest 
at 40 °C [225] and some maintaining high pressure to reach 
275 °C [224]. The best solvents that can be used for PLE 
include methanol [41, 144, 224], water [28, 226], ethyl lac-
tate [28, 29], n–hexane [227] for enhanced extraction of bio-
active compounds. When a combination of water and ethyl 
lactate was used as extraction solvents, the yields were 3.5 
times and 1.5 times higher than using them separately with 
water and ethyl lactate. PLE also aided in 26–36% removal 
of catechins from the tea leaves [28] with 53–76% caffeine 
recovery. In terms of recovery rates, there was 3.21% for 
catechin and 2.96% for epicatechin from black tea [41].

Most of the extraction time ranged from a lowest of 5 min 
[215, 227] to a highest of 20 min [28, 29, 41, 144, 216, 225, 
226]. However, a study with micro pressurized extractions 
where the treatment required only 20 s (5–100 mg sample) 
for rapid solid sample analysis [224]. The optimized pres-
sure also had a range between 3 and 10 MPa [29, 41, 144, 
215, 216, 224–227].

PLE was demonstrated to be an alternative method for 
the extraction of caffeine [225] but not great for tea because 
it squeezes out the soft leaf matrix making the diffusion of 
caffeine and hindering the penetration of the solvent into the 
matrix. Ethyl lactate was a suitable solvent for isolating caf-
feine from green tea leaves [28, 29]. PLE is considered a selec-
tive method of extraction since it reduces the co-extraction 
of catechins during the selective extraction of caffeine [28]. 
The use of high temperature enhanced the extraction of polar 
compounds [144, 216], and the polarity of the solvent also had 
a higher effect on the extraction process [216]

The extraction process of PLE is analogous to the liquid– 
liquid extraction process [226]. Some studies showed no sig-
nificant changes in palmitic acid, phytol, stearic acid, squalene, 
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and vitamin E extraction from tea [144]. A significant advan-
tage of PLE is that it prevents tea leaves from being damaged 
by oxygen and light during the process, and it is highly auto-
mated to ensure precision [215] and rapid extraction results 
for complex samples. PLE could also be used for the regular 
detection and extraction of pesticide residues faster and sim-
pler [227]. PLE is better and faster with a lower sample and 
solvent technique [224]. Although it has many advantages, one 
of the significant drawbacks of PLE is thermal degradation 
due to elevated temperature [215]. The results of PLE applica-
tion under different processing conditions to extract-specific 
bioactive compounds from various species of tea are shown 
in Table 5.

Innovative Processing Technologies: 
Advantages and Drawbacks

Summarizing all the technologies, UAE has been proven 
to have higher extraction efficiency at lower temperatures. 
The most critical parameters affecting extraction in UAE 
include sonication power, frequency, solvent-to-solid ratio, 
temperature, and sonication time [146, 152]. One of the 
limitations of using UAE is when the sample is exposed to 
UAE for a longer time, it can significantly affect the pro-
cess since it generates heat, which leads to the decomposi-
tion of the thermo-sensitive compounds. Thus, selecting an 
appropriate sonication time plays an important role in the 
extraction process [228]. Conversely, MAE is considered 
a rapid alternative method that couples microwave heating 
with chemical extraction techniques. MAE is most employed 
for extraction and pre-treatment, wherein time, temperature, 
and pressure play the most influential role in the process. 
The major advantage of using MAE is to extract healthy-
functional constituents from tea, resulting in higher extrac-
tion yield with a shorter time, lower energy consumption, 
and higher extraction selectivity.

PEF serves as an effective method that is more specific 
for the extraction of intracellular compounds without the use 
of heat and pressure. In addition, it can be used as a method 
for the inactivation of the microorganisms present in the 
tea, depending on the intensity of the electric field strength 
applied. The effectiveness of the process depends on factors 
such as the electric field intensity, pulse wave shape, pulse 
frequency, polarity, solvent selection, the ratio of solute to 
solvent, pulse duration, and the treatment temperature and 
time. The electroporation mechanism assisted the extrac-
tion to a greater extent with the optimized conditions. The 
extraction efficiency of PEF falls in the range of 27 to 32%. 
PEF can be a promising method for large-scale extractions 
and for extending tea extracts’ shelf life. In addition, PEF 
can help preserve the color of the product and its bioactive 
properties without affecting the properties.

Comparatively, SFE was more specific for the extraction 
of caffeine from tea. The critical parameters in SFE include 
the temperature and pressure, the flow rate of CO2, and the 
matrix composition of tea leaves. This method assisted in 
the highest retention of catechins in the cells rather than 
their extraction. SFE is regarded as a method for extract-
ing phytochemicals, and the recovery and extraction rate are 
found to be more than 90% with a longer extraction time. 
This method of extraction is found to be better with the use 
of organic solvents. SFE might be an expensive extraction 
method compared to UAE, PEF, PLE, and MAE.

Furthermore, PLE can rapidly extract the targeted bioac-
tive compounds, as there is a higher chance of improved 
wetting of the molecules present inside the tea leaf matrix 
by the organic solvent. The temperature and the pressure 
play an influential role in the extraction process. The higher 
temperature and pressure improved the solubility of the tar-
geted bioactive compound during the extraction process. The 
method uses a high temperature, thus making it unsuitable 
for thermo-sensitive compounds. It helps in the faster extrac-
tion of bioactive foods like caffeine and catechins. However, 
reagents and pressure preparations are expensive to be used 
on a large scale in the industry; hence, further research is 
needed for determining alternative cheap reagents.

From the review, it can be concluded that SFE is most 
widely used for the selective removal or extraction of caf-
feine and has an extraction efficiency of ~ > 80%. Moreover, 
when catechins and caffeine need to be extracted with higher 
recovery rates, PLE is commonly preferred since it has a 
recovery range of 50 to 90% for catechins and 26 to 95% 
for caffeine. MAE and PEF were employed for maximum 
extraction yields for total phenolic compounds (~ 35%). In 
addition, PEF was also used for improving the extraction of 
free amino acids. UAE provided favorable conditions for the 
extraction of catechins and flavonoids, including theobro-
mine, theophylline, and theaflavins.

Considering the review, each method of extraction has 
advantages in specific ways. The mass transfer is increased 
due to the bond breakage between matrix and bioactive 
compounds for all the extraction methods. The extraction 
yield SFE ranks higher than other methods discussed but 
with the disadvantage of longer extraction time. MAE and 
UAE are the two best extraction methods with water as a 
solvent and high extraction efficiencies. Both methods have 
lower extraction time for phytochemicals; however, based on 
temperature, MAE could be used as an extraction method 
if a higher temperature is preferred, and UAE can be used 
if a lower temperature is preferred. PEF, on the other hand, 
could be opted to increase the extraction efficiency and 
retain the bioactives with an increased color retention and 
shelf life. SFE and PLE could be effective methods for selec-
tively extracting caffeine. For industrial-scale applications, 
PEF, PLE, and SFE can be used as a continuous process 
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for extraction, whereas UAE and MAE can only be used 
as a batch process. In addition, SFE, PLE, and PEF also 
require high initial capital investments. Comparing all the 
technologies, both UAE and MAE are two technologies that 
can have a broader spectrum of commercialization in terms 
of acquiring process equipment and, at the same time, attain-
ing higher extraction efficiency.

The review overall had a broader view of the novel meth-
ods used to extract bioactive compounds from tea. With all 
the conventional techniques used for the extraction process 
from tea, it was evident that the novel processing technolo-
gies provide better results owing to technological advance-
ments. However, each method has different advantages, 
which are specific to the method and have fewer limitations 
for the extraction process. However, the study is insufficient 
to conclude one extraction process, as many variables, such 
as the type of the sample, the experimental conditions, and 
many other process parameters, play a major role in select-
ing an extraction process. More extensive studies should be 
directed toward the extraction techniques, and comparative 
studies with other novel extraction technologies need to be 
carried out from the quantity and quality viewpoints.

Conclusions and Future Directions

Over the last two decades, novel innovative processing 
technologies (e.g., UAE MAE, PEF, SFE, and PLE) have 
been used as an alternative technology to replace conven-
tional extraction methods due to their high efficiency and 
effectiveness in extracting bioactive compounds from tea. 
Several studies discussed in the present review have high-
lighted the application of these novel technologies to vari-
ous teas. Applying these technologies over conventional 
solvent extraction techniques improves extraction time and 
temperature, the number of used solvents, and extraction 
efficiencies. Moreover, food-processing industries are tak-
ing sustainable initiatives to fully utilize the possibility of 
environmental-friendly novel technologies for extraction.

The application of novel technologies for the extraction of 
bioactive compounds from tea would provide a sustainable 
solution for tea industries and generate value-added func-
tional ingredients that have commercial value. Additionally, 
novel-processing technologies might be used to tailor foods 
with added or enhanced functional and nutritional values, 
lowering the carbon footprint and substantially reducing the 
water volumes used in industrial heat transfer processes.

The biggest drawback to applying novel technologies 
could be consumer acceptance, capital investments, and 
reproducibility. During the extraction process, the food 
matrices are subjected to various combinations of pressure, 
time, and temperature as the main parameters involved in 
the extraction technique. Improper application of process Ta

bl
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parameters can strongly initiate Maillard reactions, leading to 
the formation of carcinogenic substances. Hence, every food 
sample needs to be studied uniquely, and the process vari-
ables should be optimized. Also, the functionality of the bio-
active compounds extracted using various novel techniques 
must be examined before commercial approval. In brief, 
novel technologies can produce high-quality bioactive com-
pounds with minimal environmental impact. Even though 
high investments are generally required to carry out-tailor 
made research by industries on these novel technologies, the 
results from fundamental research are very promising.
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