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Abstract
Cold plasma (CP) is a novel non-thermal technology and has marked a new trend in both the sectors of agriculture and 
food processing for their safety and quality. This review describes an overview on the effects of CP with respect to micro-
bial decontamination, enzyme denaturation, pesticide degradation, food allergens, polyphenols, food packaging, and many 
other physiological processes. Furthermore, mechanisms and applications involving different aspects related to cold plasma 
are discussed. The recent studies on cold plasma referred mainly with the interactions of reactive species and target food 
commodity. Finally, the future prospects and challenges that could help in rendering substantial benefits of CP to the food 
industries and researchers, particularly in upscaling this eco-friendly technology, are discussed.
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Introduction

Over a decade, non-thermal plasma has gained interest by 
food processing researchers. The reason for this could be 
its economical, eco-friendly, and versatile performance. 
At present, food safety is a major concern, and this could 
be more useful if maintained without affecting its nutri-
tional, sensorial, and shelf-life properties. In this regard, 
non-thermal plasma possesses all the features to process 
the food economically without affecting their properties 
[1]. Let us go to the basics of plasma. When a gaseous sub-
stance is subjected to a high level of energy, it transforms 
into an ionized state of matter and is known as “plasma.” 
The term “plasma” was first coined by Irving Langmuir in 

1927 [2]. All types of plasma are basically ionized gaseous 
entity consisting of variety of elements, such as electrons, 
photons, ions, and free radicals. Elements like photons and 
electrons constitute the “light” species, and the rest of the 
elements are considered as “heavy” species [3–5]. On the 
basis of the temperature, there are two types of plasmas: 
non-thermal and thermal. Thermal plasma is generated 
under high power (≈50 MW) and extremely high pressures 
(≥ 105 Pa). Thermal plasma exhibits a thermodynamic equi-
librium between the “heavy” species and the electrons. It 
ensures an overall consistent plasma temperature [4, 6]. On 
the other hand, non-thermal plasma can be obtained under 
low pressures and low power. These plasmas are also called 
non-equilibrium plasma in which the electrons exhibit much 
higher temperature compared to the gas at macroscopic 
level [4]. Therefore, no thermodynamic equilibrium is 
observed between the “heavy” species and the electrons. In 
this review, cold plasma and non-thermal plasma have been 
used interchangingly for low-temperature plasma.

Food consumption provides nutrition and development 
to an organism. In the current situation, food quality and 
safety have been a major concern for the food industry and 
food researchers. Therefore, tackling some food-related 
issues is the need of hour-like microbial contamination or 
any kind of enzymatic degradation in perishable food prod-
ucts [7, 8]. Moreover, there have been several studies on 
the existence of various types of food contaminants, such 
as mycotoxin [9–11], heavy metals [12, 13], and polycyclic 
aromatic hydrocarbons [14]. In this regard, pesticides and 
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allergens deserve a special note on the account of exhib-
iting the most prominent effects among all the food con-
taminants [15–19]. Previously, several thermal techniques 
have been used for food processing and sterilizing, such as 
freezing, drying, and heating [20–22]. Other sterilization 
approaches, such as chemical treatments, are often tedious 
and leave behind the toxic residues [23]. Furthermore, in 
terms of food packaging, several conventional substances 
such as papers and metals have been replaced by polymers 
[24]. In addition to providing functional characteristics simi-
lar to those of the conventional substances, the polymeric 
substances give more flexibility, are essentially inert, much 
cheaper, and exhibit lower specific weight. For food packag-
ing, multi-layered materials are in high demand. However, 
the production of multi-layered polymers necessitates the 
surface sterilization or modification of these materials. The 
surfaces of polymeric materials are usually hydrophobic and 
have low surface energy [25]. This characteristic renders the 
conventional strategies useless during surface sterilization 
of the polymers.

Cold plasma (CP) technique employs versatile applica-
tion. CP has grabbed lot of awareness in the field of food 
safety and processing. It was initially used for other indus-
tries such as electronic and polymer industries. CP was used 
to enhance the surface energy of the materials, properties 
of paper and glass, and printing and adhesion properties 
of polymers [4, 26]. However, it has recently been recog-
nized as a potentially useful in the domain of food safety 
and processing. It offers wide range of applications along 
with very short processing time without leaving any toxic 
residues [27]. Several researchers have shown that the pres-
ence of reactive species within the plasma makes it a good 
medium for the inactivation of microbial species. Therefore, 
sterilization using plasma would not only reduce the surface 
contamination of the food products but also increases their 
shelf-life [8, 28–35]. There are handful of studies describ-
ing the applications of cold plasma to imrpove food quality 
through enzyme degradation [36–40]. In addition, CP has 
been reported to enhance the characteristics of various food 
packaging materials [24, 41–43]. CP has also been reported 
to enhance several functional aspects of food products, such 
as seed germination [44–46], physico-chemical properties 
of grains [47, 48], hydrogenation of vegetable oils [49, 50], 
inactivation of anti-nutritional factors [51], and high-quality 
mung bean sprout [52].

Therefore, this article gives a synopsis on recent devel-
opments in the application of cold plasma (CP) for food 
processing industry in terms of food safety and quality main-
tenance. It includes background of plasma generation and its 
sources as well as types of setups and apparatus in current 
use. Mechanism and application of non-thermal plasma in 
different approaches of food processing are discussed for dif-
ferent targets. Furthermore, limitations and future prospects 

of CP have also been discussed. The recent understanding 
and potential use of CP, a green and eco-friendly technology, 
will provide new opportunities for boosting and sustaining 
food sector.

Basics of Cold Plasma Technology

Plasma Generation

Usually, plasma is produced by the application of energy 
to a gaseous substance. The energy can be applied via dif-
ferent approaches, such as electric current (direct or alter-
nating), thermal energy, magnetic fields, microwave, or 
radiofrequencies. Such energy sources can impart energy 
to the gaseous atoms and molecules by, essentially, increas-
ing the kinetic energy of the electrons within them. Such 
an increase in the kinetic energies of the electrons causes 
them to move from lower energy states to higher energy 
states, which leads to the generation of ions. In addition, it 
results in more frequent collisions between the electrons and 
the “heavy species” that release several types of radiations 
[53]. Although several sources could be employed for the 
energy input in plasma generation for food processing, an 
electrical discharge is preferred to produce the non-thermal 
plasma [54]. This is because the electric discharge approach 
helps in better regulation of the plasma temperature. Low 
temperature is the primary requirement of the plasma for use 
in food products processing [4]. The type of gas employed 
for plasma production as well as the frequency and mag-
nitude of the electric current chiefly determine the type of 
active species present in it [55]. Plasma can be produced via 
various sources, such as corona discharge, dielectric barrier 
discharge (DBD), gliding arc discharge (GAD), microwave 
frequency, and radio frequency. However, with respect to 
food products and food processing industry, jet plasma and 
the plasma generated from DBD are the most commonly 
used plasmas [56].

Broadly, plasma works on the principles of ions collision 
in the substance without generating heat. On the applica-
tion of electric energy between two electrodes, the kinetic 
energy of the gas molecules is increased. During the process, 
electrons are released from the cathode surface and acceler-
ated towards the anode. Hence, ionization of gas molecules 
continues till the inelastic collision reached. In the process, 
dissociation of molecules may happen and releases the ions 
(Fig. 1). Hence, the process would bring out the changes in 
the materials under consideration.

Plasma Characteristics

As already mentioned, the intensity and the frequency of 
the electric current primarily determine the energy of the 
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plasma and the type of active species present in it [1, 4]. 
Another important factor involved in the determination of 
the plasma characteristics is the composition of the source 
gas. The type of gas used decides the type of active species 
produced. Modified atmospheric packaging is extensively 
used to avoid food contamination. Misra et al. [57] reported 
a 3-log reduction in strawberries upon plasma treatment in 
sealed package containing oxygen, nitrogen, and carbon-
dioxide. Moreover, type of exposure (direct or indirect) also 
defines the effect of generated reactive species [4, 55].

Target Characteristics

With respect to food safety, the antimicrobial effects of 
plasma have been studied extensively. The internal charac-
teristics of the microbes are majorly influencing the effi-
ciency of the plasma treatment. Different species and strains 
of microbes exhibit variable sensitivities to plasma exposure 
[58, 59]. Furthermore, gram-positive bacteria exhibit higher 
resistance to plasma treatment compared to gram-negative 
bacteria [58, 59]. Sporulated bacteria also exhibit higher 
resistance against the plasma treatment. Liang et al. [60] 
reported higher resistance of fungi to plasma because of the 
chitin present in their cell walls, and is imparting them more 
rigidity.

Other Factors

Several surrounding physical factors also determine the effi-
ciency of plasma treatment, including the pH of the medium, 
temperature, relative humidity, and treatment time. The pres-
ence of humidity usually enhances the impact of plasma due 
to the formation of higher levels of hydroxyl radicals. Fur-
thermore, solid and liquid matrices react differently against 
the plasma treatment. In fact, different matrices of the same 
state show variable interactions with the plasma species. 
For instance, plasma treatment can decontaminate an agar 
plate or a filter membrane more rapidly compared to a fruit 
surface [59].

Augmentation of Plasma Efficiency

All the above factors seem to be affecting the efficiency of 
plasma treatment and open up a wide domain of approaches 
to enhance the effect of plasma. Moreover, several tech-
niques could be used in conjugation with plasma treatment 
to further improve the impact of plasma.

In general, food products are packaged under different 
mixtures of gases, which help in enhancing the shelf life 
of food products, minimize microbial contamination, and 
act as a preservative. Since the surrounding environment of 
the target plays an important role during plasma interaction, 
exposure to CP in the presence of these mixtures of gases 
has been exploited and found to enhance the sterilization 
efficiency of plasma [57, 61, 62]. Furthermore, the pH of the 
medium could be altered to enhance the plasma sterilization 
efficiency. For instance, use of sanitizers, plasma-activated 
water (PAW), and essential oils, in conjugation with CP 
treatment, has been shown to enhance CP efficacy [63, 64]. 
Moreover, Mehta et al. [62] also reported enhancement in 
polyphenolic components in strawberry juice when cold 
plasma processing was coupled with hydrothermal treat-
ment. Furthermore, external magnetic fields have also been 
reported to enhance the efficacy of plasma by increasing its 
density [65].

Types of Plasma

Plasma consists of several species that are present either 
in excited or in their fundamental state but with an overall 
neutral charge [66]. CP is a type of non-thermal plasma that 
can be generated via various approaches at both atmospheric 
pressure and reduced pressure. For utilization in the food 
industry, CP at atmospheric pressure is preferred to mini-
mize the risk of degradation of food products. Schematic 
diagram of different types of plasma is shown in Fig. 2.

Dielectric Barrier Discharge (DBD)

DBD setup includes two metal electrodes kept close to each 
other and separated by a dielectric material. Commonly used 
dielectric materials include quartz, ceramic, polymer, or 
plastic [67]. The gap between the discharge material ranges 
from 100 mm to a few centimeters. An alternating current is 
emitted by the electrodes to generate plasma [68]. The die-
lectric barrier essentially acts as a stabilizer that helps to cre-
ate several micro-discharges [56]. Recently, a novel model 
of DBD plasma, known as “in-house” or “encapsulated” 
plasma has been employed. In the latter, the food for sterili-
zation is enclosed in a plastic packaging material and kept in 
place of the dielectric materials [59, 69, 70]. DBD approach 
offers several advantages such as simple design, flexibility 

Fig. 1   Basic principles of plasma. On energy applications, ions gen-
erated lead to the collision of molecules and bring out the transforma-
tions
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in terms of choice of gas and size of electrodes, and uniform 
discharge ignition. However, DBD plasma is produced at 
high ignition voltage of 10 kV and, hence, requires techni-
cal expertise and caution. A high level of energy is required 
to sustain DBD plasma, produced at atmospheric pressure. 
DBD plasma has also been used for UV generation, CO2 
lasers, and ozone generation [4].

The breakdown voltage as a function of pressure and dis-
tance between the electrode is represented by Eq. (1).

where C = log
{

A

log (1+1∕y)

}

 and VB = Ed, the total voltage 
applied between two electrodes. A and B are the constants 

(1)VB =
B(pd)

C + log (pd)

depending on the gas used. The secondary emission coeffi-
cient (γ) depends on the material of cathode, the state of its 
surface, type of gas, and reduced electric field.

Gliding Arc Discharge (GAD)

GAD is created using two or more diverging metal elec-
trodes and operates at a high potential difference (~9 kV). 
Approximately, 100 mA of electric current is passed through 
the electrodes, which leads to an arc formation in the nar-
rower region between the electrodes. The inlet gas, carrying 
the humid air, flows from the narrow to the wider region 
between the electrodes and causes the arc to glide along 
with it. Based on the conditions, GAD could produce both 
thermal and non-thermal plasma at atmospheric pressure. 
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GAD setup could be used to produce a high concentration 
of short-lived active species by applying high electric power 
[71]. GAD can also be used to produce high density plasma. 
Since there is no thermodynamic equilibrium between elec-
trons and other plasma components, it is classified as non-
thermal plasma [3]. GAD plasma can be used for both liq-
uid and surface sterilization. It has previously been used for 
organic compounds degradation, bacterial decontamination, 
and water purification [4, 72]. The Arrhenius equation used 
to express the radical reaction rate and describe the effective 
rate of associative ionization in the plasma is represented 
by Eq. (2).

where τi is a pre-exponential factor, Ea is the effective acti-
vation energy, Ru is the universal gas constant, and Tg is the 
gas temperature.

Corona Discharge Plasma

Corona discharge plasma refers to the plasma that is pro-
duced when an ample amount of electric field around a sharp 
electrode ionizes the electrons in the atoms or molecules of 
surrounding gases [6]. It is only produced at high voltage, 
and its applications are limited to non-homogenous medium. 
However, its design is simple and relatively less costly. This 
technique has been employed previously for the surface ster-
ilization, microbe elimination, and electro-precipitation [4, 
73]. Corona discharge gives the current in the gas, and the 
total current flowing between the electrodes in the discharge 
region is described by Eq. (3).

where Iion is the ionic current component, and Idisp is the 
displacement current component.

Plasma Jet

The plasma jet device consists of two concentric electrodes, 
and a gas or a mixture of gases is flown between the elec-
trodes. The inner electrode is subjected to a high radio fre-
quency (~13.56 MHz), and a potential difference of 100–250 
V is maintained between the electrodes that leads to ioni-
zation of the gas. The ionized gas molecules are directed 
out through a nozzle towards the surface of a food product 
located at a distance of few millimeters [28, 56, 74]. The 
ionized gas flows out through the nozzle in the form of a 
jet and hence, the name plasma jet. Plasma jet may also 
be generated by applying low-frequency kHz, nanosecond 
pulses, etc.

(2)Re =
ne

�i

exp

(

−
Ea

TgRu

)

(3)Itot(t) = Iion(t) + Idisp(t)

Capacitively Coupled Plasma (CCP)

CCP is most commonly used at the industrial level. CCP 
setup consists of two closely placed metal electrodes in a 
gas-filled chamber. One of the electrodes is attached to a 
radio frequency power supply and the other is grounded. 
The potential difference between the electrodes leads to the 
ionization of the gas. Since this setup resembles a capacitor, 
the plasma produced by it is termed as capacitively coupled 
plasma [75, 76]. CCP has a wide range of applications [24, 
77].

Others

Inductively Coupled Plasma (ICP)

ICP refers to the plasma that is produced by the ionization of 
gas using the energy imparted by the electric current which 
is produced via electromagnetic induction [78]. Structurally, 
ICP setup is broadly classified into two categories: cylindri-
cal and planar. In planar design, a spiral-shaped coil of flat 
metal is used as an electrode. In cylindrical design, the metal 
electrode is in the shape of a helical spring. With the passing 
of an electric current through the electrode, a magnetic field 
is created that induces the electric current into the target 
gas and ionizes it into plasma. Since the electric current is 
produced in the gas via a magnetic field, there is no need for 
the electrodes to be in direct contact with the gas and, hence, 
the electrodes are placed outside the reaction chamber [24].

Microwave Plasma/Electron Cyclotron Resonance Plasma 
(MP/ECR Plasma)

The MP plasma is generated using electromagnetic waves 
with high frequencies. Contrary to the electrode-based meth-
ods, a magnetron is used to produce microwave discharges 
in a process chamber. The heat produced by the microwaves 
causes ionization of the gas molecules. The major advan-
tage of MP is the non-requirement of electrodes that allows 
ionization of the gas in free air and reduced the level of gas 
required to produce the plasma. However, the main limita-
tion of ECR is that it cannot be used over a large area unless 
an array of discharges is used [4, 79]. Some basic magnetic 
circuits can be used are horseshoe magnet with iron keeper 
(low-reluctance circuit), horseshoe magnet with no keeper 
(high-reluctance circuit), electric motor (variable-reluctance 
circuit), and pickup cartridge (variable-reluctance circuits).

ECR plasma is a type of MP, produced by using micro-
waves with 2.45 GHz [80]. Electrons trajectory is in the form 
of a vertical spiral along the magnetic field lines. In ECR 
design, the electrons flow along the magnetic lines in a verti-
cal spiral and ionize the gas molecules to produce plasma. 
This type of plasma is more efficient for surface treatments, 
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such as surface deposition, surface functionalization, and 
surface etching [24, 81, 82].

Basically, an ECR and microwave ion source comprises 
of a multimode cavity. This cavity serves as the plasma gen-
eration and containment cavity. In the plasma drifts down 
the axial magnetic field gradient, the electrons are resonantly 
excited by the high-frequency field at a frequency explained 
through the following Eq. (4).

In this, ωRF is the excitation frequency, ωc is the elec-
troncyclotron frequency, e is the magnitude of the electronic 
charge, B is the magnetic flux density, and me is the electron 
mass.

For more complete description of these phenomena, 
please see the following articles [83–85].

Mechanism and Applications of Plasma

All the entities present in the plasma, whether charged or 
neutral, play a significant role in its action. Apart from 
physical particles (ions, free radicals, electrons), plasma also 
comprises of radiations, such as UV. For various applica-
tions of the plasma, different plasma components are needed. 
Various hypotheses have been given to explain the mecha-
nism of action by reactive species generated by cold plasma. 
For instance, cold plasma generates reactive and charged 
particles that induce numerous chemical reactions owing to 
the possession of sufficient electrical energy to break cova-
lent bonds that lead to the breakdown of cell membrane via 
hydrolysis [86]. Another mechanism could involve the ero-
sion of tissues and release of the bioactives accumulated in 
central vacuoles of guard cells under the effect of reactive 
oxygen species such as ·OH, O, and O2 [62, 87]. However, 
the mechanism of action of each plasma component remains 
more or less similar (Fig. 3). Applications of cold plasma 
are discussed under the following headings, viz, microbial 
inactivation, enzymes inactivation, stability of polyphenols, 
pesticide degradation, food allergen degradation, food pack-
aging, effect of CP on starch, vitamins, and lipids, and seed 
germination.

Microbial Inactivation

During microbial decontamination, the cytoplasmic mem-
brane of the microbe plays a crucial role. The efficiency 
of sterilizing agents and techniques majorly depends on 
their ability to penetrate the cytoplasmic membrane of 
the microbes and eliminate them. Interestingly, in terms 
of disruption of the cytoplasmic membrane, the oxidizing 

(4)ωRF = ωC =
eB

me

potential of the sterilization agent has been shown to be very 
crucial [33]. Therefore, the oxidizing agents in the plasma 
play a critical role in eliminating the microbes. In addition, 
several mechanical effects of plasma have also been reported 
to be mediated by the free radicals present in it, such as OH• 
and NO• radicals [53, 88, 89]. During plasma treatment, 
several such free radicals interact with the microbial cells 
and cause surface lesions. Due to the high frequency of the 
formation of these lesions, the cell does not get enough time 
to repair itself and get destroyed. This process is termed 
as “etching” [90]. The most widely accepted mechanism 
of plasma-induced DNA damage includes the formation 
of reactive oxidative species (ROS) by plasma elements in 
the microbial cells that damage their DNA molecules. The 
major plasma-induced ROS include H2O2, superoxide anion, 
and hydroxyl radicals [53]. The most prominent mechanism 
of plasma-induced microbial destruction includes the reac-
tion of plasma elements with the water molecules inside 
the microbial cells that leads to the generation of hydroxyl 
radicals and responsible for most of the DNA damage [53]. 
Studies have also proposed that the accumulation of charged 
particles within the microbial cells induces the apoptosis, 
electroporation, and electrostatic disruption [31, 58].

Several studies have demonstrated the antimicrobial 
effects of CP [34, 91–94]. Recently, CP treatment has been 
reported for decontamination of tofu [28] and black pep-
per grain [91]. Moreover, reduction in microbial content has 
also been reported in chicken breast [70] and pork jerky 
[35]. Also, decontamination of dried squid has been per-
formed using corona discharge plasma [73]. A study has also 
revealed the decontaminating effects of microwave-induced 
CP on onion powder without any visible effects on their 
sensory characteristics [95]. Wan et al. [96] have success-
fully used the CP technique for the decontamination of egg 
shells. Similarly, microwave-induced CP has been used to 
eliminate E. coli from lettuce with a 90% efficiency [97] and 
from radish [98].

As mentioned above, the efficiency of the plasma 
depends on the sample characteristics as well. CP is much 
more effective against Botrytis cinerea compared to ozone 
or UV-C exposure [99]. CP showed effective decontamina-
tion of fresh produce within 10 s of exposure, while the 
same efficacy of CP was attained for decontamination of 
strawberries after 300 s of exposure [100]. The in-package 
sterilization technique has been shown to be highly advan-
tageous because the sealed sample can be directly exposed 
to the plasma without any leftover contamination after 
the process [33, 101, 102]. Indirect air plasma, such as 
plasma jet, has been used to create plasma-activated water 
(PAW) that has an acidic pH and contains several active 
species [103]. PAW, in turn, has been shown to exhibit 
antimicrobial effects [104]. Synergistic effects of pH and 
plasma species have been proposed to be responsible for 
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Table 1   Effect of CP on microbes

Sr. no Food product Microbe Plasma source Observation Reference

1 Tofu S. enteritidis and E. coli 
O157:H7

Plasma jet Log10 reductions attained 
ranging from 0.2 to 0.6 
log10

Frías et al. [28]

2 Black pepper grains Bacillus subtilis vegetative 
cells and spores

Plasma jet 1-log reduction was achieved 
in the case of black pepper 
inoculated with spores

Charoux et al. [91]

3 Chicken breast Mesophiles, psychrotrophs 
and Enterobacteriaceae

DBD 1.5, 1.4, and 0.5 log lower 
than the control

Moutiq et al. [70]

4 Red pepper Aspergillus flavus&Bacillus 
cereus

MCPT Reduction of spore count by 
0.7 ± 0.1 and 1.5 ± 0.2 log 
spores/cm2

Kim et al. [79]

5 Pork jerky Staphylococcus aureus and 
Bacillus cereus

DBD Reduction in both bacterial 
content

Yong et al. [35]

6 Blueberry Botrytis cinerea DBD Effectively inhibited the 
growth of Botrytis cinerea

Zhou et al. [99]

7 Chicken breast meat Campylobacter and Salmonella DBD Growth was inhibited after 
treatment

Zhuang et al. [102]

8 Pepper powder E. coli DBD & RF Reduction of E. coli to 9 log 
CFU/g

Choi et al. [89]

9 Apple juice E. coli DBD 3.98 to 4.34 log CFU/mL 
reduction

Liao et al. [172]

10 Tangerine juice E. coli HVACP E. coli was reduced by 4.8 
log10 CFU/mL

Yannam et al. [34]

11 Apple juice Zygosaccharomyces rouxii DBD 5-log reduction Xiang et al. [173]
12 Mandarin Penicillium italicum MP Reduction in incidence of 

disease
Won et al. [174]

13 Chicken eggs Salmonella enteritidis HVACP Reduction of 5.53 log CFU/
egg

Wan et al. [96]

14 Lamb meat Brochothrixthermosphacta DBD Reduction by 2 log cycle Patange et al. [175]
15 Radish sprouts Salmonella typhimurium MP Reduction of 2.6 ± 0.4 log 

CFU/g
Oh et al. [98]

16 Egg shells Salmonella
Enteritidis

Jet plasma Reduction up to 2.7 log 
CFU/egg

Moritz et al. [176]

17 Romaine lettuce Escherichia coli DBD Decrease of 0.4–0.8 log 
CFU/g

Min et al. [177]

18 Tomatoes Escherichia coli DBD Decrease of 6 log CFU/g Prasad et al. [33]
19 Onion powder Aspergillus

brasiliensis, Escherichia coli, 
Bacillus cereus

MP Reduction of 1.6, 1.9, 
and 2.1 log spores/cm2, 
respectively

Kim et al. [95]

20 Groundnut Aspergillus flavus, Aspergillus 
parasiticus

RFP 99.3% and 97.9% reduction, 
respectively

Devi et al. [178]

21 Dried squid Marine
bacteria, Staphylococcus
aureus, Aerobic bacteria

Corona discharge plasma Reduction of 1.6, 0.9, and 
2.0 log units, respectively

Choi et al. [73]

22 Hazelnuts Aflatoxigenic fungi  
(Aspergillus flavus and 
Aspergillus parasiticus)

Atmospheric pressure 
fluidized bed plasma

Significant reductions of 4.50 
log (CFU/g) in A. flavus 
and 4.19 log (CFU/g) in A. 
parasiticus

Dasan et al. [179]

23 Celery, radicchio and 
deionized water

L. monocytogenes and E. coli DBD plasma 6-log CFU/mL reduction 
in deionized water and 
reduction up to 2.5 and 
3.7 log CFU/cm2 for L. 
monocytogenes and E. coli 
in liquid medium vegetables, 
respectively

Berardinelli et al. [88]
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the non-thermal sterilization by PAW [105]. Application 
of plasma-activated water (PAW) has been documented for 
food decontamination [106]. Some antimicrobial effects of 
CP are listed in Table 1.

Enzymes Inactivation

Majority of enzymes found in the food products are pro-
teinaceous in nature. Hence, the mechanisms of action of 
CP on enzymes and other proteins are similar. Plasma-
induced changes in the protein structure are primarily 
attributed to the active plasma species. For instance, 
protein inactivation induced by helium/oxygen plasma is 
mainly due to nitric oxide and atomic oxygen. Atomic oxy-
gen in the plasma is able to remove the hydrogen from the 
protein backbone. This has led to the generation of radical 
sites and hence the cleavage of polypeptide chains [38]. 
Hydroxyl, hydroperoxy (HO2), nitric oxide, and superox-
ide anion radicals in the plasma could also modify the 
side-chains and aromatic rings of amino acids, leading 
to enzyme inactivation [107]. While the oxygen-based 
plasma species can cause structural changes in protein by 
converting C–N, N–H, and C–H bonds to NO2, H2O, and 
CO2, respectively. Plasma species such as O2−, H3O+, and 
O2+ are able to increase the polarity of zein molecules, a 
major protein found in maize [108].

Enzymatic browning has been a major problem in the 
food industry. CP has been used for the inactivation of 
several enzymes, such as polyphenol oxidase (PPO), pec-
tin methylesterase (PME), superoxide dismutase (SOD), 
peroxidase (POD), catalase (CAT), lysozyme, alkaline 
phosphatase, a-chymotrypsin, and lipase [7]. Recently, 
inactivation of peroxidase enzyme in green coconut juice 
and amazonia juice has been reported upon CP treatment 
[38, 109, 110]. Moreover, lipase and lipoxygenase enzyme 
in wheat germ have been reported to be inactivated by CP 
[40]. Also, CP can be used for the extension of the storage 
time of potatoes and apples by inactivation of POD and PPO 

enzymes [36]. Furthermore, mild inactivation of PME, a 
cell wall-bound enzyme, has been documented using DBD 
in fresh-cut melon [39]. Their results have concluded that 
different enzymes are exhibiting different sensitivities to CP 
based on their structures. A significant decrease in alkaline 
phosphatase activity was observed within seconds after 
treatment with CP [111]. Similarly, a 70% and 10% decrease 
in PPO activity has been documented in the CP-treated 
guava pulp and whole fruit, respectively [53]. However, CP 
treatment is not effective for all types of enzymes. CAT and 
SOD activities were increased upon CP treatment in blue-
berries [99], while PAW was inefficient for the inactivation 
of the SOD enzyme in button mushrooms [112]. Some food 
enzymes affected by CP treatment are listed in Table 2.

Stability of Polyphenols

Antioxidants pose a problem during plasma treatment owing 
to the fact that they exhibit the opposite action to that of 
free radicals. They protect the cells against reactive oxygen 
species (ROS). However, the ozone and hydroxyl radicals 
present in the plasma could degrade flavonoid compounds 
[62]. Similarly, an increase in the level of polyphenols was 
observed on the treatment of sour cherry marasca juice with 
CP [87].

Studies have shown a decrease in the level of phenolic 
compounds in various food products such as orange juice, 
lamb’s lettuce, and white grape juice after treatment with 
CP [113, 114]. In contrast, de Castro et al. [110] and Rana 
et al. [115] applied cold plasma and reported an increase 
in phenolic compounds in camu-camu juice and strawberry 
fruit, respectively. Also, cold plasma has enhanced the phe-
nolic compounds in tomato-based beverage, siriguela juice, 
and blueberry juice [62, 74, 86]. Moreover, Rodríguez et al. 
[116] and Sarangapani et al. [117] reported an increase in 
the content of phenols upon CP treatment in cashew apple 
juice and blueberries, respectively. These varied results have 
necessitated further research on the CP effects and mecha-
nism of actions of different phenolic compounds. Thus, the 

APP atmospheric pressure plasma, HVACP high-voltage atmospheric cold plasma, MP microwave plasma, DBD dielectric barrier discharge, 
RFP radiofrequency plasma, MCPT microwave-combined plasma treatment

Table 1   (continued)

Sr. no Food product Microbe Plasma source Observation Reference

24 Pork butt and beef loin Listeria monocytogenes, 
Escherichia coli O157:H7, 
and Salmonella Typhimurium

DBD Microbial reductions were 
2.04, 2.54, and 2.68 log 
CFU/g in pork-butt samples 
and 1.90, 2.57, and 2.58 
log CFU/g in beef-loin 
samples, respectively

Jayasena et al. [30]

25 Fresh lettuce Escherichia coli O157:H7 and 
SalmonellaTyphimurium

MP Effective in reduction of 
microbial growth

Song et al. [97]



564	 Food Engineering Reviews (2022) 14:555–578

1 3

plasma source, the food products, mode of exposure, and 
other treatment parameters have been observed to be critical 
for the impact of CP on polyphenolic compounds. Effects of 
CP application on the polyphenols/antioxidant components 
of food matrix are tabulated in Table 3.

Pesticide Degradation

Pesticides present in the food stuff are difficult to degrade 
and eliminate. As a result, they enter the food chain and 
accumulate in the bodies of the animals, soil, and water 
bodies. This process is termed as “bioaccumulation” and 
is regarded as an ecological hazard due to the toxic nature 
of the pesticides. Importantly, the source gas composition 
and the overall plasma energy are critical to be involved 

in plasma-mediated pesticide degradation [117]. Organic 
molecules of the pesticides possessed similar ionization 
and dissociation energies to those of the electrons in CP. 
Therefore, they are easily dissociated upon plasma applica-
tions [118, 119]. In addition, the high oxidizing potential of 
free radicals in the plasma also makes them to participate in 
the degradation of pesticide molecules, and releasing fewer 
toxic compounds [118].

Different plasma species show varied efficacies on dif-
ferent types of pesticides. For instance, in the degradation 
of dichlorvos and organophosphorus pesticides, free radi-
cals and electrons have been deemed to be most effective 
[118–120]. Several methods of pesticide degradation, such 
as photocatalysis, adsorption, ultrasound, Fenton oxidation, 
and membrane filtration, have been explored [121–125]. 

Table 2   Effect of CP on enzymes

DBD dielectric barrier discharge, RFP radiofrequency plasma, MCPT microwave-combined plasma treatment, MPT microwave-driven plasma 
torch

Sr. no Food product Enzyme Plasma source Observation Reference

1 Green coconut water Peroxidase DBD Inactivation of peroxidase 
enzymeon application of higher 
frequencies

Porto et al. [38]

2 Amazonia juices Peroxidase and polyphenol oxidase Glow plasma Higher reduction in enzyme 
activity

Castro et al. [109]

3 Potato Polyphenol oxidase MCPT Inactivation of polyphenol oxidase 
by 49.5%

Kang et al. [37]

4 Tender coconut water Peroxidase and polyphenol oxidase DBD Inactivation of both enzymes. 
Peroxidase was found more 
resistant than polyphenol 
oxidase

Chutia et al. [180]

5 Blueberry Peroxidase activity and ascorbate 
peroxidase

DBD Initially increased and then 
decreased in stored blueberries

Zhou et al. [99]

6 Wheat germ Lipase and lipoxygenase DBD Higher voltage and treatment time 
led to higher inactivation

Tolouie et al. [40]

7 Apples Polyphenol oxidase DBD Decrease in the level of browning Tappi et al. [181]
8 Tomato slices Polyphenol oxidase DBD Inactivation of peroxidase enzyme 

by more than 90%
Khani et al. [182]

9 Apple slices, potato cubes Polyphenol oxidase, Peroxidase MPT Polyphenol oxidase activity was 
reduced by about 62% and 77%, 
respectively, and peroxidase 
activity reduced by about 65% 
and 89%, respectively

Bußler et al. [36]

10 Orange juice Pectin methylesterase DBD Reduction in pectin methylesterase 
activity by 74% in air and 82% in 
modified atmosphere packaging

Xu et al. [94]

11 Germinating mung beans Phytase RFP Amylases and proteases activity 
got enhanced after the treatment

Sadhu et al. [169]

12 Melons Peroxidase DBD Exposure time-dependent decrease 
in activity

Tappi et al. [39]

13 Melons Pectin methylesterase DBD 94% residual activity after 30 + 
30-min treatment

Tappi et al. [39]

14 Mushrooms Superoxide dismutase Plasma jet Increase in activity during storage Xu et al. [112]
15 Raw milk Alkaline phosphatase DBD 90% inactivation of enzyme Segat et al. [111]
16 Brown rice Lipoxygenase DBD 9.2% inactivation of enzyme Chen et al. [183]
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However, these methods are not feasible for industrial appli-
cations due to either incomplete pesticide degradation or 
generation of undesirable by-products. Recently, the focus 
has been turned in this regard to the plasma technique.

The use of “plasma-activated water” (PAW) has been 
reported effective in the degradation of pesticides on tan-
gerine and grapes [119, 126]. Also, the reduction of pes-
ticides like chloropyrifos, carbaryl, and cypermethrin has 
been documented by DBD plasma [71, 127, 128]. Further-
more, Mousavi et al. [129] showed a complete degradation 
of organophosphorus pesticides in cucumbers and apples 
using CP treatment. Similarly, use of high efficiency of CP at 
atmospheric pressure has been suggested in the degradation 
of paraoxon and parathion [130]. It has been suggested that 
hydroxide radical, molecular nitrogen, and atomic oxygen 
are the primary plasma species responsible for achieving 
such effects. A mixture of fludioxonil, pyriproxyfen, cypro-
dinil, and azoxystrobin pesticides applied on strawberries 
and subjected them to in-package plasma exposure at various 
voltages and treatment durations. The plasma treatment of 
80 kV for 5 min could effectively decrease the fludioxonil, 
azoxystrobin, pyriproxyfen, and cyprodinil by 71%, 69%, 
56%, and 45% respectively [118]. Sarangapani et al. [117] 

achieved an 80.18% and 75.62% decomposition of boscalid 
and imidacloprid, respectively, in blueberries upon DBD 
plasma treatment without any changes in their color or other 
physical attributes. Similarly, the efficacy of CP in degrada-
tion of several pesticides, including 17β-Estradiol, endosul-
fan, organophosphate, and dichlorvos/omethoate, has been 
revealed [131, 132].

All these reports have suggested that plasma-triggered 
pesticide degradation is mainly affected by gas composi-
tion, input voltage, treatment duration, and plasma power. 
Some of the studies reporting the effects of CP on different 
pesticides are listed in Table 4.

Food Allergen Degradation

After pesticides, food allergens are considered the most haz-
ardous contaminants of food products. Food allergens are 
the compounds that are naturally present in food products 
but induce the allergic reactions in certain individuals [16]. 
Some of the most commonly consumed food products that 
have been reported to elicit allergic reactions include milk, 
egg, soybean, nuts, and fish. However, the tricky part of 
the management of food allergens is that the food products 

Table 3   Effect of CP on polyphenols

DBD dielectric barrier discharge, APP atmospheric pressure plasma

S. no Food material Plasma source Observation Reference

1 Tofu APP Retention of 80% of total phenolic content Frías et al. [28]
2 Camu-camu juice DBD Significant increase in phenolic compounds de Castro et al. [110]
3 Strawberry fruit DBD Increase in concentration of individual and 

total polyphenolic compounds
Rana et al. [115]

4 Green coconut water DBD Slight changes in phenolic compounds Porto et al. [38]
5 Strawberry juice DBD Increased concentration of individual and total 

polyphenolic compounds when coupled with 
hydrothermal treatment

Mehta and Yadav [69]

6 Apple juice Spark and glow discharge plasma Increment in total phenolic content Illera et al. [184]
7 Olive oil Plasma jet No adverse changes in phenolic content Amanpour et al. [185]
8 Tomato-based beverage DBD Enhanced individual and total phenolic 

content
Mehta et al. [62]

9 Siriguela juice Glow discharge plasma Increased total phenolic content Paixão et al. [86]
10 Blueberry juice Plasma jet Enhanced phenolic content Hou et al. [74]
11 Fresh-cut apples DBD Increment in phenolic compounds after 

10-min treatment
Tappi et al. [186]

12 Apple, orange, tomato 
juices, and sour cherry 
nectar

Plasma jet Higher phenolic content in comparison with 
untreated

Dasan and Boyaci [187]

13 Cashew apple juice Indirect plasma mode Higher polyphenolic content after longer 
exposure

Rodríguez et al. [116]

14 White grape juice DBD Decrease in total phenolic content Pankaj et al. [114]
15 Blueberries DBD Increased polyphenolic content Sarangapani et al. [117]
16 Chokeberry juice Gas phase plasma Increased concentration of hydroxycinnamic 

acids
Kovačević et al. [188]

17 Orange juice DBD No changes in total phenolic content Almeida et al. [113]
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inducing allergic reactions in some individuals may be 
highly beneficial in some other aspects like soybean is rich 
in protein. However, such allergens are difficult to be elimi-
nated using conventional techniques. In addition, the use of 
conventional treatments often leads to undesirable changes 
in the food product itself. Similar to the microbial decon-
tamination and pesticide degradation, the composition of gas 
used to produce plasma is the key factor that determines the 
efficacy of plasma in allergen removal [133, 134]. Changes 
in the linear and the conformational epitopes of the aller-
gen and their reactivity have been proposed to be the major 
mechanisms of plasma-induced allergen inactivation. The 
reactive species in the CP degrade the linear epitopes and 
trigger the structural changes in the proteinaceous conforma-
tional epitopes that cause the deactivation of allergens [135]. 
Furthermore, various oxygen, nitrogen, and hydroxyl radi-
cals have been shown to adversely affect the protein structure 
that renders the allergen molecules ineffective [1, 136].

Recently, effects of CP have been studied against sev-
eral allergens, such as glycinin, conglycinin, β-conglycinin, 
α-lactalbumin, and β-lactoglobulin [51, 136, 137]. Degrada-
tion of food allergens by cold plasma like tropomyosin in 
prawns and anacardic acids in cashew nuts has been doc-
umented [51, 138]. Moreover, Venkataratnam et al. [139] 
reported the decrease in allergenicity of peanut after cold 

plasma treatment. CP exposure has completely eliminated the 
primary allergenic components of soy protein, glycinin, and 
β-conglycinin by converting them into insoluble aggregates 
[136, 140]. In soymilk, the CP-triggered oxidative reactions 
and conformational changes led to an 86% decrease in the 
activity of soybean trypsin inhibitor [137]. Similarly, CP 
effect has also been studied on allergenic compounds present 
in milk, such as α-lactalbumin, α-casein, and β-lactoglobulin 
[141]. Table 5 presents the effect of CP on food allergens.

Food Packaging

Packaging of food materials has always been an important 
part of food industries. Efficient food packaging is crucial 
to enhance the shelf life, while maintaining physical and 
chemical attributes and preventing microbial contamination 
of food products. In the past few decades, the conventional 
packing materials have been replaced by polymeric materi-
als that offer more advantages in terms of functionality and 
stability of food stuffs. However, the polymeric materials 
are often hydrophobic in nature and have low surface ener-
gies [24]. Plasma-induced changes in packaging films are 
classified in two mechanisms: surface activation and surface 
deposition [142].

Table 4   Effect of CP on pesticides

APRF atmospheric pressure radiofrequency, DBD dielectric barrier discharge, GAD gliding arc discharge, RF radiofrequency, PAW plasma-
activated water

S. no Target sample Pesticide Plasma source Observation Reference

1 Tangerine Cypermethrin PAW Significantly reduce from 1 to 
0.25 ppm

Sawangrat et al. [119]

2 Grapes Phoxim PAW Reduction of pesticide by 
73.60%

Zheng et al. [126]

3 Tomatoes Chlorpyrifos DBD Reduction of 89.18% in the 
pesticide concentration was 
observed

Ranjitha Gracy et al. [128]

4 Maize Chlorpyrifos and carbaryl DBD Degradation of chlorpyrifos 
and carbaryl, up to 91.5% and 
73.1%, respectively

Feng et al. [127]

5 Wolfberry Omethoate and dichlorvos DBD plasma Time- and voltage-dependent 
pesticide degradation

Zhou et al. [120]

6 Mango Chlorpyrifos and cypermethrin GAD plasma 74% and 63% degradation of 
chlorpyrifos and cypermethrin, 
respectively

Phan et al. [71]

7 Blueberries Boscalid and imidacloprid DBD Degradation achieved was 80% 
for boscalid and 76% for 
imidacloprid

Sarangapani et al. [117]

8 Apple Paraoxon DBD RF plasma 84–100% pesticide degradation 
depending on initial pesticide 
concentration

Heo et al. [130]

9 Water Endosulfan DBD Degradation was reported Reddy et al. [132]
10 Strawberry Pyriproxyfen, fluidoxonil, and 

cyprodinil
DBD in-package plasma Time- and voltage-dependent 

pesticide degradation
Misra et al. [118]
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During surface activation, plasma modifies the barrier 
properties of the polymeric film that essentially reduces the 
hydrophobicity and permeability of the film. This, in turn, 
increases the shelf-life of the food product while decreasing 
the chances of contamination during storage and transport. 
In this direction, the plasma exposure causes the formation of 
cross-linked or polar groups on the film surface. During sur-
face deposition, the packing film is coated with desired ele-
ments that alter its thickness as well as affect its properties. 
As with other substances, the plasma-induced changes in the 
film properties are largely dependent on the type of plasma, 
gas source, gas composition, plasma power, and treatment 
duration. On the contrary, a study has reported no effect of 
plasma-induced changes in the packaging films on shelf-life 
improvement upon extended periods of storage [143].

Recently, CP technique is gaining immense interest in the 
sterilization and enhancement of the functionality of food 
packaging materials. The main advantage of CP is its effect 
on the entire surface of the packing material and, therefore, 
reduces the chance of the shadow effect or non-exposure 
of parts of material to sterilizing agent [53]. CP has also 
reported changes in crystal structure, improvement in barrier 
properties, and mechanical strength in casein- or protein-
based edible films [43, 144]. Also, enhancement in surface 
roughness and microorganism inhibition properties in new 
kind of antimicrobial active packaging has been observed 
after application of capacitively coupled plasma treatment 
[76]. Plasma treatment is found to be partially cleaved acy-
loamino groups of zein film, making it more tensile and 
robust film [145]. Application of CP on fish protein films 
has improved their color, mechanical, and barrier properties 
[146, 147]. CP has also decreased the sensitivity of films 

to water and decreased water vapor permeability and their 
solubility. Furthermore, surface activation has been defined 
as the formation of polar groups or cross-linked molecules 
that enhance the properties of the packaging film’s surface, 
such as hydrophobicity and oxygen and moisture perme-
ability [148]. An increase in surface hydrophobicity and 
antimicrobial characteristics of films has been reported fol-
lowing treatment with DBD plasma in the presence of ZnO. 
This could be due to incorporation of oxygen-containing 
functional groups on the surface [149]. Some of the stud-
ies focused on effects of CP of most commonly used food 
packaging films are tabulated (Table 6).

Effect of CP on Starch, Vitamins, and Lipids

Carbohydrates and lipids are among the most important bio-
molecules present in food products. Ozonolysis caused by 
the plasma species has been considered as the major path-
way of breakdown of the glycosidic bonds that led to the 
depolymerization of the carbohydrate molecules and subse-
quent oxidation of its breakdown products to form CO2, car-
boxyl and carbonyl compounds, lactones, and hydroperox-
ides [113]. Plasma-induced structural modifications in starch 
molecules have altered their properties, such as pasting char-
acteristics, swelling power, water absorption, solubility, and 
enzyme susceptibility [48, 150, 151]. These changes have 
been attributed to cross linking, increase in surface energy, 
depolymerization, change in hydrophilic nature, and incor-
poration of functional groups [48, 150, 152].

Nowadays, modified starch is used as a prominent food 
additive and CP is being employed to modify starch. Starch 
is usually modified via cross-linking and depolymerization. 

Table 5   Effect of CP on food allergens

DBD dielectric barrier discharge, MCPT microwave-combined plasma treatment, RF radio-frequency

Sr. no Food product Food allergen Plasma source Observation Reference

1 King prawn Tropomyosin Plasma jet Level of α-helix structures 
declined while levels of 
β-sheets and random coils 
increased

Ekezie et al. [51]

2 Cashew nuts Anacardic acids and other 
allergens

Glow plasma discharge Did not affect allergenicity Alves Filho et al. [138]

3 Peanut Ara h 1 DBD Decreased antigenicity Venkataratnam et al. [139]
4 Soymilk and soybean Trypsin inhibitor and 

Kunitz-type trypsin
DBD Decreased activity of soybean 

trypsin and Kunitz-type 
trypsin inhibitors

Li et al. [137]

5 Pure Aflatoxin B1 Aflatoxin DBD 76% degradation Shi et al. [189]
6 Soy protein isolate β-conglycinin and glycinin DBD, MCPT Reduced immunoreactivity 

by 89 to 100%
Meinlschmidt et al. [136]

7 Milk α-casein and whey proteins RF 25% allergenicity reduction 
for α-casein and 27.7% 
allergenicity reduction for 
whey fractions

Tammineedi et al. [141]
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Changes in gelatinization and crystallinity of starch have 
been reported upon CP treatment [48]. Moreover, improve-
ment in paste-cooling stability and reduced retrograda-
tion in corn starch has also been reported on cold plasma 

treatment [153]. CP treatment enhanced the water uptake 
rate in black gram. It has been suggested that CP treatment 
increased the number of water binding sites and surface 
etching because of protein and starch fragmentation [47]. 

Table 6   Effect of CP on food packaging material

APP atmospheric pressure plasma, DBD dielectric barrier discharge, MP microwave plasma, MCPT microwave-combined plasma treatment, 
RFP radiofrequency plasma, PLA polylactic acid, PCL polycaprolactone, PET polyethylene terephthalate, PE polyethylene, PP polypropylene, 
CCP capacitively coupled plasma

S. no Packaging material Plasma source Observation Reference

1 Casein edible films DBD Little change in crystal structure, tensile 
strength, elongation, thermo stabilization, 
and barrier property were improved

Wu et al. [43]

2 Protein-based films Glow plasma The mechanical properties of protein films 
improved, also affected surface roughness 
of the protein films

Moosavi et al. [144]

3 Antimicrobial active packaging film CCP The surface roughness of films increased; 
growth of microorganisms is inhibited 
when the concentration is 1% or above

Wong et al. [76]

4 Zein films Airglow discharge plasma Plasma treatment partly destroyed the 
acylamino groups of film, a more robust 
surface, and increased tensile strength

Li et al. [145]

5 Zeinfims (via composting with chitosan and 
plasma treatment)

DBD Enhances flexibility and barrier properties Chen et al. [41]

6 Fish protein films Glow plasma Improved mechanical, barrier, and color 
properties of films

Romani et al. [146]

7 Cassava + PLA + PCL DBD Increase of the surface roughness and 
decrease of the water contact angle. Also, 
water vapor barrier was also improved

Heidemann et al. [190]

8 Fish protein films Glow plasma Decreased the sensitivity to water of fish 
protein films. Also, decrease in water 
vapor permeability and solubility in water

Romani et al. [147]

9 Zein films DBD Decreased water contact angles, improvement 
in surface-free energy, modified surface 
roughness, and improved cytocompatibility

Dong et al. [191]

10 PVA thin films DBD Contact angle decreased, increase in the 
surface roughness, exhibited excellent 
antifogging and highly transparent features

Paneru et al. [192]

11 Zein films DBD Surface hydrophilicity and mechanical 
strength were significantly increased

Dong et al. [193]

12 Carboxymethyl cellulose-coated  
polypropylene films

APP Films had improved mechanical and water 
vapor permeability properties

Honarvar et al. [194]

13 Chitosan films DBD Significant increase in the surface roughness 
and in the thymol diffusion after plasma 
treatment

Pankaj et al. [54]

14 Defatted soybean meal-based edible film MCPT Tensile and moisture barrier properties 
increased, film roughness improved 
printability and biodegradability

Oh et al. [81]

15 PLA film MCPT Surface roughness, printability and water 
contact angle of PLA films increased. 
Also, photodegradation, thermal, and 
microbial biodegradable properties of the 
films were remarkably improved

Song et al. [82]

16 High amylose corn starch film DBD Enhanced surface roughness, oxygenated 
compounds and hydrophilicity

Pankaj et al. [195]

17 PLA film RFP Reduced water permeability Tenn et al. [148]
18 PP and PE films APP jet Enhanced hydrophobicity Kostov et al. [196]
19 Chitosan film Low-pressure plasma Enhanced anti-bacterial efficiency Ulbin-Figlewicz et al. [197]
20 PP film DBD Enhanced hydrophilicity Paisoonsin et al. [149]
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CP treatment has also been reported to reduce the cook-
ing time of brown rice due to inclusion of polar groups 
between starch molecules [154]. In rice, CP treatment 
modified the starch that led to decrease in gelatinization 
and pasting temperatures, degree of hydrolysis, amylose 
content, and retrogradation tendency [155].

In lipids, the major effect of plasma has been observed 
for their oxidation. However, plasma effects on lipid oxi-
dation are variable and inconclusive. Few studies have 
observed no effect of plasma on oxidation of lipid mol-
ecules [156, 157]. Nevertheless, CP has been employed 
for the production of partially hydrogenated oils or trans-
free oils. Hence, more studies are needed to further elu-
cidate the exact mechanism of CP on lipids and the util-
ity of plasma-generated partially hydrogenated oils. With 
respect to food products, lipid oxidation poses a major 
problem as it leads to changes in the shelf-life, odor, and 
taste. Hence, it is important to elucidate the effects of oxi-
dizing elements of CP with respect to lipids present in 
the food items. Previous studies have reported no marked 
changes in the lipid oxidation status of CP-treated food 
items, including sushi, raw pork, fresh pork, and beef jerky 
[73, 158]. On the contrary, a significant lipid oxidation has 
been reported in CP-treated mackerel fillets [159]. Also, 
lipid oxidation has been documented in several CP-treated 
dairy and meat fats [160]. A new technique of producing 
partially hydrogenated soybean oil has been devised using 
hydrogen plasma [50]. This study has opened up a new 
domain of CP application in hydrogenation of oils and 
considered to be a desirable characteristic as performed at 
atmospheric pressure in the absence of a catalyst. Hence, 
more experimental evidences are required for a conclusive 
effect of CP on lipids of food stuffs. Some of the effects of 
CP on food characteristics are tabulated (Table 7).

Among vitamins, the effect of CP has been evaluated 
on the stability and levels of vitamin C in food products. 
Analysis on whole vegetables and fruits, such as radish 
sprout, lettuce, and kiwifruit, has shown no significant 
impact of CP on their vitamin C content [97, 98]. On the 
contrary, Hosseini et al. [161] reported reduction in the 
level of vitamin C in sour cherry juice after treatment with 
plasma. A few other studies also reported the reduction in 
vitamin C content of cashew apple juice and orange juice 
upon CP treatment [94, 116]. Decrease in vitamin C con-
tent is attributed to the interaction with oxidizing species of 
plasma. In addition, few studies have shown enhancement 
in other vitamins after cold plasma treatment [86, 162].

Seed Germination

An enhanced rate of seed germination has been observed 
following plasma treatment. The reactive species of plasma 
are known to be able to penetrate the seed coat and directly 

influence the cells inside. In addition, exposure to plasma 
leads to surface ablation on the seed coat that promotes 
the penetration of moisture and oxygen to the embryo and 
enhances seed germination [53, 163]. Exposure to plasma 
has also been observed for the disruption of the cell wall, 
and affects on the enzyme activity that brings the seed out 
of the dormant phase and promotes germination.

Plasma treatment has generally been associated with a 
more rapid germination of seeds owing to several factors. 
Recently, Dawood [164] and Billah et al. [165] have reported 
enhanced seed germination in moringa seeds and black gram 
seeds, respectively, after cold plasma treatment. Moreover, 
plasma-activated water (PAW) also showed positive effect on 
seed germination in black gram, radish, tomato, and sweet 
pepper [46, 166]. Fenugreek seeds and wheat seeds have 
been observed for enhanced germination rate upon argon 
plasma jet [167, 168]. Also, CP treatment has increased 
the germination rate (102%), seed conductivity (20%), and 
radical root (36.2%) of mung bean seeds [169]. These find-
ings have suggested that CP treatment enhances the water 
inhibition capacity of seeds, which not only enhances the 
germination rate but also inhibits the growth of microbes 
and enhances other growth aspects. An increase in the dem-
ethylation levels of ATP, growth regulators, and rapamycin 
has been observed in argon plasma-treated soybean sprouts 
[170]. Also, an 80% increase in germination rate of radish 
and enhancement in stem elongation by 60% in tomatoes 
have been reported after treatment with DBD PAW [46]. 
Few studies have also observed negligible effect of cold 
plasma on seed germination of mung beans [44] and grain 
seeds [171]. Some studies reporting the effect of cold plasma 
on seed germination are tabulated for reference (Table 8).

Limitations and Future of Non‑thermal 
Plasma

From the discussion, cold plasma has been observed as a 
disruptive technology for the many food processes. How-
ever, adoption of cold plasma for food-manufacturing and 
food-processing might face one of more of the followings 
major challenges like design and source of plasma, control 
of cold plasma process, and regulatory aspects. Though the 
conditions of cold plasma process can be tuned to maximize 
the production of desired component from the agricultural 
or food commodities, focus is required to design the cold 
plasma for scale-up as well as on commercialization of the 
in-package plasma technology.

Even with a plethora of studies, several aspects of the CP 
technique with respect to food industry are still not known. 
For instance, there are still some gaps in the research con-
cerning the effects of CP on allergens and antioxidants. 
Moreover, studies need to be conducted on the safety, tox-
icity, and/or health effects of CP-treated food products in 
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humans. Furthermore, the applicability of CP technique 
on fatty products is still unresolved, owing to the possibil-
ity of increased oxidation in such products and subsequent 
decrease of their nutritional value.

Due to variable effects of different plasma components on 
different food products, optimization studies are needed with 
respect to the type, intensity, and duration of plasma treatments 
as well as the food types. Recent few studies have reported the 

Table 7   Effect of CP on food components like starch, lipids, and vitamins

DBD dielectric barrier discharge, RFP radiofrequency plasma, PAW plasma-activated water, HVACP high-voltage atmospheric cold plasma, MP 
microwave plasma

S. no Food product Plasma source Observation Reference

1 Waxy and normal maize starch PAW Crystallinity of starches got increased; changes in 
gelatinization temperatures and resistant starch 
content got increased

Yan et al. [48]

2 Sour cherry juice Plasma jet Vitamin C got decreased but less than thermal 
processing

Hosseini et al. [161]

3 Camu-camu juice DBD Vitamin C bioavailability got increased de Castro et al. [110]
4 Vegetable oil Plasma jet Significant changes in content of conjugated dienoic 

acid and moisture content got decreased
Na et al. [49]

5 Strawberry juice DBD Vitamin C retention was maximum in comparison 
with other techniques used

Mehta and Yadav [69]

6 Tomato-based beverage DBD Vitamin C retention was maximum in comparison 
with other techniques used

Mehta et al. [62]

7 Corn starch Plasma jet Improved paste-cooling stability and reduced 
retrogradation of corn starch

Wu et al. [153]

8 Siriguela juice Glow discharge plasma Vitamin B got increased Paixão et al. [86]
9 Acerola juice Glow discharge plasma Increased vitamin A content, maximum retention of 

vitamin C, and carotenoid content got improved
Fernandes et al. [162]

10 Corn and tapioca starch RFP Water binding capacity, swelling power, and viscosities 
of both starches got increased

Banura et al. [152]

11 Sushi DBD No changes in fatty acid composition of sushi Kulawik et al. [158]
12 Fresh mackerel fillets DBD Increased lipid oxidation Albertos et al. [159]
13 Rice starch DBD Increase in pasting and final viscosities Thirumdas et al. [150]
14 Banana starch Corona discharge plasma Increase in pasting temperature Wu et al. [151]
15 Orange juice DBD Reduced vitamin C content Xu et al. [94]
16 Cashew apple juice Indirect plasma mode Increased vitamin C content Rodríguez et al. [116]
17 Radish sprouts MP No change in ascorbic acid Oh et al. [98]
18 Beef and dairy lipids DBD Oxidation of lipids and formation of typical 

oxidation products like ozonides, aldehydes, and 
carboxylic acids along with hydroperoxides

Sarangapani et al. [160]

19 Pork Plasma jet No significant change in lipids Choi et al. [198]
20 Soyabean oil HVACP Changes in the fatty acid composition. Reflected 

iodine value similar to a commercial hydrogenated 
oil

Yepez and Keener [50]

21 Zein DBD Decrease of surface hydrophobicity; increase in 
tensile strength and solubility

Dong et al. [108]

22 Rice flour RFP Enhanced hydration Thirumdas et al. [199]
23 Brown rice RFP Increase in amylase activity Lee et al. [200]
24 Brown rice DBD Decrease in cooking time; increase in water uptake Thirumdas et al. [154]
25 Pea protein DBD Increase in water-binding capacity Bußler et al. [140]
26 Fish oil DBD-plasma jet Accelerated lipid oxidation Vandamme et al. [157]
27 Parboiled rice RFP Reduced cooking time; enhanced water absorption Sarangapani et al. [201]
28 Milk DBD Lipid oxidation of milk was slightly changed Kim et al. [156]
29 Basmati rice RFP Reduced cooking time; enhanced water absorption Thirumdas et al. [202]
30 Lettuce MP No change in vitamin C content Song et al. [97]
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effect of CP on firmness, discoloration, and pH of vegetables 
and fruits.

One of the major limitations of CP efficiency is its depend-
ency on the surface topography of the target. At present, the 
cold plasma technology has limited penetration depth, and in 
order to maintain the product quality, interactions between 
product and processes should be minimum. Cold plasma 
technology has recently gained the pace in the improvement 
of food processing and food quality. Cold plasma has already 
crossed the technology readiness level (TRL5). Also, present 
scale of operation is at gram or kilogram scale. However, fur-
ther work is essential to design systems that are scalable to 
industrial requirements. Hence, efforts need to be initiated for 
the scale-up of CP techniques for larger food commodity at 
industrial scale. For this, more intensive and focused efforts 
are required to exploit the use of plasma technique at com-
mercial level.

Conclusions

Cold plasma (CP) technique is a non-conventional, non-
thermal technique that has been demonstrated to exhibit high 
potential in enhancing food quality, ensuring better food 
safety, and facilitating better packaging of food products. 
CP technique has been shown to be extremely beneficial in 

the areas where the applications of conventional techniques 
are not feasible. Since CP technique can be implemented at 
atmospheric pressure and ambient temperature, its use could 
be safe on food products without or minimal loss of their 
nutritional and sensory characteristics. Food processing sector 
and agricultural industries need to understand the importance 
of CP and make sincere efforts for its applicability at com-
mercial level for the benefit of society in large.
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