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Abstract
Today in the agricultural industry, many defects affect production efficiency; this paper aims to show how the combination of 
machine vision (MV) and image processing (IP) helps to detect the defective areas of products. Defects generally appear due 
to insect damage, scarring, product decay, and so on. In this review, the importance of quality inspection in the agricultural 
industry and its effect on worldwide markets are highlighted and the ways which help to categorize the products by their 
defections. In the first step, as long as agricultural products are harvested, in a suitable condition with good illumination, 
they are photographed by special cameras and evaluated by the IP science. In the next step, they can be classified based on 
the detected defection. Many classification algorithms allow us to categorize products based on the quality and type of their 
defects. Using a combination of MV and IP, followed by the use of special classification algorithms, helps to have more 
efficiency in the detection of defects in harvested products.
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Introduction

Computer vision technology corresponds to the effect of 
the human vision in inspecting the quality of fruit and veg-
etables by electronically perceiving an image, interpreting, 
and recognizing the characters, and finally, information is 
provided for the quality grading and sorting machine. By 
combining machine vision (MV) and image processing (IP), 
with the technological advances in computers, such systems 
have found the capability to be applied in the different fields 
of food engineering to accurately identify product features 
in on-line, in-line, at-line, and off-line approaches. Today, 
researchers use a combination of the features including 
color, morphology, and texture to extract and analyze the 
desired data and achieve higher accuracies and efficiencies 
than to the cases where these features are applied, individu-
ally [1, 2].

Based on the IP procedures, the MV systems are used 
to extract quantitative information from digital images 

captured by cameras for rapid and non-contact qualitative 
evaluation. By MV applications as non-destructive and fast 
systems, destructive testing methods in quality assessment 
of the products would be avoided. Therefore, quality 
assessment is performed in highly controlled conditions 
in terms of lighting and photography, using algorithms 
and mathematical relations, etc. [3, 4]. In the traditional 
methods, only the external information of a product could 
be accessed, but with the advancement of science and 
technology, in addition to external information such as color, 
the internal features such as texture can be extracted to have 
a better defect detection to products. It should be noted 
that it is not possible to access internal information using 
the RGB image acquisition systems, but some researchers 
used alternative methods such as multispectral technology, 
NIR imaging [5], thermal imaging [6], X-ray [7], magnetic 
resonance imaging [8, 9], fluorescence imaging [10], and 
hyperspectral imaging [11, 12] methods to create a solution 
for extracting internal information. However, these methods 
are facing some challenges such as speed limitation and 
being required expensive systems.

RGB images are used for physical information such 
as color, shape, and size, but compared to hyperspectral 
images, they cannot provide compositional properties, 
and instead, hyperspectral images can reflect chemical 
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information, in addition to extracting the characteristics 
of position, shape, and size. Therefore, by using MV 
systems, a non-destructive method can be developed for 
better defect detection in food products [13–15]. Various 
parameters are involved in classifying and grading 
agricultural products. These parameters are color, size, 
maturity, defects, shape, etc., which are the chemical 
and physical parameters of the product [16]. Analysis 
of the texture is helpful for defect detection due to the 
discrimination among defective and healthy regions of 
products,also, an appropriate method is a combination 
of color and texture features to increase the accuracy of 
defect detection applications [17].

Defect in fruit and vegetables is defined as “an 
imperfection or abnormality causes fruit and vegetables to 
be less healthy and valuable, while impairing their quality 
and utility.” Defects are one of the most common causes of 
fruit and vegetable quality loss in the agricultural industry. 
Degradation of nutrients and appearance of the product due 
to the defects would affect the market and the price of the 
product. To overcome these problems, defect detection is 
considered as one of the best approaches in current state of 
the art. Defect detection is a process to identify the defects 
or damages in fruit and vegetables, based on the shapes, 
colors, textures, etc. [18]. One of the important issues in 
the field of defect detection of fruit and vegetables is the 
amount of impact on their market value, which is directly 
related to how consumers choose the product. Today, with 
the advancement of science and technology in the field of 
agriculture, defects are detected with greater accuracy than 
the traditional methods which cause economic growth and 
improve the quality of products. It should be also noted that 
the color, size, regular shape, and other quality parameters 
are the most important indicators for customers to choose 
a product. Due to preharvest and postharvest processing 
and storage conditions, fruit and vegetables are prone to 
various defects leading to losses through the food chain. 
The defects can be divided into internal and external ones; 
therefore, due to the nature of the defect, detection methods 
may differ from one case to another. Therefore, the  
correct choice of detection systems and technologies helps to 
have a more accurate defect detection procedure that brings  
a high-quality product to market.

In this review, we focus on the application of computer 
vision systems (CVSs) in non-destructive defect detection 
approaches and the issues existing in this field. We focus on 
fruit and vegetables from a variety of horticulture products, 
since they are important parts of agricultural production and 
the detection of defects is a major challenge for this category 
of products, and separation of defective products can play a 
significant role in reducing losses and increasing quality and 
consumer satisfaction. Therefore, this paper aims to give a 

survey of IP techniques and computer vision applications in 
the field of fruit and vegetables and also to review various 
(CVSs) types of segmentation, image features, and quality 
analysis of fruit and vegetables based on color, shape, size 
and texture, and the type of their defects. Additionally, the 
principal components, basic theories, and corresponding 
analysis and processing methods are reviewed. We put one’s 
finger on the hurdles that scientists are trying to overcome 
and discuss future trends for the research and development 
of CVSs.

Accordingly, the review is organized as follows: “Types 
of Defects” describes types of defects followed by “Com-
puter Vision System”, which broadly and deeply describes 
the computer vision systems (CVSs) applied for fruit and 
vegetables. Further, in “Basic Steps in Computer Image Pro-
cessing”, the basic procedure in IP is presented. In “Stem-
Calyx Problems” and “Defects in Fruits and Vegetables”, 
external and internal defects detected by CVS in fruit and 
vegetables are respectively reviewed. In “Future Trends” and 
“Conclusion”, the future scope and conclusion are presented.

Types of Defects

Defect detection has three overall results, ensuring con-
sistently high-quality products, reducing food losses, and 
enhancing profitability for the industry [19]. The com-
mon involved defects in fruit and vegetables are internal 
defects,morphological disorders like deformation and 
irregular shapes; pathological disorders; mechanical dam-
ages during harvest and processing; and physiological terms 
such as metabolic changes (Fig. 1) [20].

However, there are no accurate and comprehensive data 
on fruit and vegetable losses arising from defects in the 
literature and studies that have addressed this issue have 
provided different and inconsistent information on fruit and 
vegetable losses. Nevertheless, Gustavsson et al. [22] have 
provided useful information in this regard which is presented 
in Fig. 2.

Figure 2 shows a series of pie charts corresponding to 
the initial production lost or wasted at different stages of 
the food supply chain (FSC) for fruit and vegetables in 
worldwide.

In the FSC, five segmentations have been distinguished 
for fruit and vegetables loss/waste as follows [22]:

• Production: During harvest operation, losses can be 
occurred due to spoilage or mechanical damage. In this 
section, morphological disorders, mechanical damages, 
and pathological disorders are considered.

• Storage: During handling, storage and transportation 
spillage and degradation can cause losses to the prod-
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uct between farm and distribution. Internal defects and 
mechanical damages can be considered in this part.

• Processing: Industrial or domestic processing such as 
grading and sorting, and washing can cause losses to the 
product. Crops may also break or injured and bruised in 
industrial processes.

• Distribution: losses in stores distributing products. In 
industrialized and developed countries, there will not be 
many losses in the distribution of products to consumers 
due to special facilities. But in non-industrialized coun-
tries, these losses may be significant.

• Consumption: Losses at household section, physiological 
disorders may cause fruit and vegetable losses

In the sector of fruit and vegetables, the disease is a 
major factor for quality losses, leading to economic losses. 
Although many diseases and pests can be prevented by uti-
lizing pesticides and fertilizers, in many cases, such diseases 
are not completely prevented, and therefore, more inspec-
tions should be done in postharvest processes to separate the 
diseased crop, as early as possible. An important issue is that 
the disease may be spread over the part of the image of fruit  

and vegetables within short spam [23]. Therefore, the appli-
cation of CVSs for detection of different type of diseases 
is crucial in the sector of fruit and vegetables. Nowadays, 
so much research is conducted to propose robust CVSs to 
overcome such challenges. Table 1 represents the recent 
advances of the CVS technology in detecting different types 
of defects.

Morphological Disorders

Deformation of the product so that it takes on an irregular 
shape is one of the morphological disorders that can prevent 
the diagnosis of defects and diseases by creating shadows 
or due to its distortions, so it may have an adverse effect on 
the results obtained from CVS. Because the damaged areas 
may not be identified, the product would be considered as 
a healthy product [34, 35]. Image processing may be help-
ful to detect the irregular shapes of products. Jahanbakhshi 
and Kheiralipour [36] used the image processing technique 
to discriminant between the regular and irregular shape of 
carrots, they extracted the features including length, width,  
perimeter, and compactness to classify with the linear 

Fig. 1  The defects that are com-
monly found in fresh fruit and 
vegetables [20]

Type of defects

Morphological 
disorders (Momeny et 

al., 2020)

Physiological 
disorders (Zheng et 

al., 2020)

Internal defects 
(Huang et al., 2020)

Pathological 
disorders (Hanssen et 

al., 2010)

Mechanical Damages 
(López-García et al., 

2010)
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Fig. 2  The initial production 
lost or wasted at different stages 
of the food supply chain (FSC) 
for fruit and vegetables in 
worldwide [22]
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discriminant analysis (LDA) and quadratic discriminant 
analysis (QDA) methods and reported the classification  
accuracies of 92.59% and 96.30% LDA and RDA, 
respectively.

Internal Defects

For internal defects, special cameras have been introduced 
to detect the defects of agricultural products. These cameras 
explore latent damages and disorders including physiological 
and pathological disorders and mechanical damages. The 
ability of CVSs to detect such latent defects is of great 
importance along the food chain. Diagnosis of internal 
diseases prevents the spread of disease, food losses, and 
consumer dissatisfactions [31, 37–39]. X-ray radiography 
was suggested by van Dael et al. [31] to detect the internal 
defects of citrus which resulted in 93.6% accuracy for 
lemons and 95.7% accuracy for oranges. Hyperspectral 
imaging was also used to detect internal defects in cucumber 
which obtained 91.1% accuracy reported by Cen et al. [32].

Pathological Disorders

Another parameter is pathological damages which are asso-
ciated with attacks by fungi, viruses, bacteria, or microbial 
pathogens [20]. Many disorders of pathological nature exist, 
and their manifestations in agricultural products may be 
visually similar regardless of the type of infection or prod-
uct [40]. Thus, the ability to detect the infecting agent and/
or chemical reactions there associated helps to identify the 
causal effects and accurately determine the specific disor-
der [41]. Sun et al. [42] suggested hyperspectral imaging 
to detect fungal disease based on the chlorophyll content of 
peaches that gives 98.75% accuracy.

Mechanical Damages

Another factor that affects the quality and shelf life of the 
product is mechanical damages arising from impacts, wind 
forces, and environmental conditions. Mechanical dam-
ages lead to metabolic changes, tissue failure, and crushing, 
scratches, pigment deterioration, etc., on the surface or inner 
tissues of the product [43, 44]. Some of the mechanical dam-
age to citrus fruit is bruising, cuts, and compression. Various 
factors, especially in the harvest stage, affect the sensitivity 
of the fruit. High relative humidity can increase the sen-
sitivity of the fruit to mechanical damage. Environmental 
factors include hail and rain damage. Also, insect damage 
is one of the most serious problems of the citrus industry. 
For example, in oranges, damage to the surface of the fruit 
can be referred to as insect injury, wind scarring, scarring, 
scale infestation, canker spot, dehiscent fruit, copper burn, 
and phytotoxicity [45]. A suitable technique for mechanical 

damage detection is to use thermography which uses infra-
red radiation emitted by a heated object to provide good 
quantitative information about damage depth and damage 
size [46]. Hyperspectral imaging was also suggested by Cui 
et al. [47] which was used to detect the mechanical damages 
with 87% accuracy for blueberry.

Physiological Disorders

Sunburn, superficial scald, watercore, internal dryness, 
granulations, mealiness, browning, bitter pit, etc., occur 
due to physiological stresses related to temperature, respi-
ration, transpiration, and nutrition of the product at different 
stages of growth, harvest, and postharvest processing [48, 
49]. Therefore, due to these disorders, the commercial value 
of the product would decrease [31]. Near-infrared shows the 
ability to detect the physiological disorders in melons as 
reported by Ito et al. [50]. Thermography is considered as 
another technology to be able to detect the watercore occur-
rence in apples as reported by Baranowski and Mazurek 
[51].

Computer Vision System

The traditional methods of defect detection are usually based 
on the diagnosis of experts. These methods are inconsist-
ent, fickle, time-consuming, and costly. Human error due 
to fatigue and distraction is also inevitable. CVS can help 
to solve such challenges. In the analysis of fruits and veg-
etables, the light systems are structured as front and back-
lighting. To inspect the surface quality, attributes like color, 
texture, and skin defect front lighting are defined. However, 
to inspect the boundary quality, attributes like size and shape 
backlighting are defined. The traditional, multispectral, and 
hyperspectral computer vision systems are defined exten-
sively for the quality analysis of food and agricultural prod-
ucts [52].

In general, as shown in Fig. 3, a CVS consists of these 
main components: camera, illumination, an image capture 
board, and a computer system. For hyperspectral and multi-
spectral photography, a spectrometer and a sample displace-
ment mechanism are normally used.

Types of CVSs can be divided into three categories: tra-
ditional CVS (T-CVS), hyperspectral CVS (H-CVS) and 
multispectral CVS (M-CVS). Table 2 represents different 
MV systems and their applications in the literature for defect 
detections in fruit and vegetables.

Traditional Computer Vision System

As the human eye is sensitive to the basic colors of red, 
green, and blue (RGB), T-CVSs act like the human eye, and 
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their photography is based on the three colors mentioned. 
Low-cost and easy-to-use are the most important advantages 
of these systems. T-CVSs can be used to identify foreign 
diseases by extracting features such as color, size, and shape. 
However, T-CVSs have some weaknesses, but a significant 
part of those identification problems can be resolved with 
the help of artificial intelligence algorithms. One of these 
problems is the inability to recognize the damaged areas 
that appear in the same color as healthy areas on the product. 
Also, it can be noted that these types of CVS are unable to 
detect the internal damages of the products because it does 
not have the ability to penetrate into products. T-CVS is lim-
ited to capture only three monochromatic images centered 
at 700.0 nm (red, R), 546.1 nm (green, G), and 435.8 nm 
(blue, B) which are very close to the colors received by the 
human eye. Therefore, T-CVSs are merely based on a visual 
imaging system, meaning that they can only provide limited 
information, which limits the application of CV for defect 
detections, especially for early-stage internal defects [62]. 
Some disadvantages of T-CVS are low accuracy for clas-
sifications and weak ability comparing to the newer systems 
or methods. Figure 4 shows an RGB color image of peach 
and its components images.

Hyperspectral Computer Vision System

Hyperspectral imaging acts based on molecular vibrations, 
which makes it an attractive method to simultaneously 
achieve both spectral and spatial data for fruit and vegeta-
bles. H-CVS is mainly used for mechanism researches and 
selecting efficient wavelengths. Unlike the T-CVS, which 
can only capture three monochromatic images to imitate the 
vision of humans, H-CVS or hyperspectral imaging system 
combines both imaging techniques and spectroscopic into 
one system to get a set of monochromatic images at almost 
continuous hundreds of thousands of wavelengths. In hyper-
spectral imaging, the recorded spectra have fine wavelength 
resolution and cover a wide range of wavelengths.

The data structure of hyperspectral images is commonly 
called hypercube, or data cube. For a hyperspectral image 
cube, three methods can be used to acquire: point scanning, 
line scanning, and area scanning. As shown in Fig. 5, in 
point scanning, the object or camera is moved in x and y 
directions to capture the entire surface of the object. For  
the third dimension of this cube, different wavelengths 
can be applied, it should be noted that the method is time- 
consuming. In-line scanning, the object, or camera is moved 
in only one direction to capture the entire surface. In area 
scanning, the entire surface of the body is imaged in an 
instant and is completed with different wavelengths of the 
third dimension of the cube; this method works faster than 
the mentioned methods.

The greatest advantage of an H-CVS is providing wide 
ranges of information in the hyperspectral image. Some 
external quality characters are always unclear in traditional 
digital images, so it is making the detection impossible or 
difficult such as early bruising, rottenness, and some other 
diseases. Also, some defects are identical to the skin of the 
product due to texture and color which is a challenging task 
to detect. Unlike images in the T-CVS, where spectrum 
information is limited to three color channels, hyperspec-
tral images contain hundreds of thousands of monochrome 
images in the spectral domain, when the data cube is large, 
significant storage capacity is needed which can be consid-
ered as a challenge. As another advantage, it also can be 
noted that with the help of the spatial relationships among 
the different spectra, accurate classification and segmenta-
tion of the images can be achieved [64]. Some of the disad-
vantages of the H-CVS are complexity and cost. Figure 6 
shows the conceptual view of a hyperspectral image with 
spectral and spatial domains.

Multispectral Computer Vision System

M-CVS differs from the hyperspectral imaging system in 
the number of monochromatic images in the spectral range. 
One of the advantages of the M-CVS is that the wavelengths 

Fig. 3  A typical vision system 
for traditional, hyperspectral, 
and multispectral CVSs
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of the monochromatic images captured can be chosen freely 
by using narrowband filters. Spectral imaging can allow the 
extraction of additional information that the human eye fails 
to capture with its visible receptors for red, green, and blue. 
Multispectral imaging measures light in a small number 
(typically 3 to 15) of spectral bands. M-CVSs are used for 
fast in-line applications. Figure 7 shows the apple images 
with different filters and manual segmentation.

Using multispectral systems, in the discussion of exter-
nal quality inspection of products, it is possible to identify 
damages that were not visible by RGB cameras at specific 
wavelengths with special filters. Some disadvantages of 
this system are that it must be manually programmed, 

calibration should be severally repeated, and the problems 
such as camera lens distortion should be resolved, and so 
on.

A comparison between the hyperspectral and the mul-
tispectral imaging is shown in Fig. 8, as it is obvious, the 
number of the captured images in the hyperspectral system 
is much more than the multispectral ones, so the response 
of them is also different, hyperspectral gives a continuous 
spectrum, but multispectral has been created by several 
spectral bands.

Basic Steps in Computer Image Processing

A typical CVS task can be grouped into three major ones 
as shown in Fig. 9, which includes the image acquisition 
that deals with the components such as camera, illumina-
tion, and digitizer, and in the next step, IP are divided into 
three items containing preprocessing, segmentation, and 
feature extraction, and at the end image understanding that 
entails image recognition and interpretation.

The success of a CVS task can be achieved while all 
three sub-tasks of IP work well, but if a single sub-task is 
disrupted, then it will not have the desired result.

Image Acquisition

Image acquisition for processing is the main activity in 
MVSs. A good light source or lighting system and a proper 
camera are the most important tools to achieve a good 
digital image for processing.

Fig. 4  An RGB color image of peach and its components images [63]

Fig. 5  Methods of acquir-
ing the hyperspectral image 
cube [63]; (a) Point scanning 
approach, (b) Line scanning 
approach, (c) Area scanning 
approach
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Camera

In the first step, the right camera should be chosen to 
take images under controlled conditions in terms of 
illumination and photography. The most common cameras 
applied in MVSs are charged coupled devices (CCD), 
complementary metal–oxide–semiconductor (CMOS), 
magnetic resonance imaging (MRI), electrical tomography, 
and computed tomography (CT). The CCD cameras have 
been used for nearly all computer imaging applications since 
their introduction in the early 1960s and according to its 
advantages, it can be connected directly to a computer, can 
be highly sensitive to low-light levels and their images are 
instantly available without film or dark-room processing, 
CMOS cameras were introduced in the mid-1990s, and in the 
comparison between CCD and CMOS, it can be mentioned 
that CMOS sensors are faster than their CCD counterparts, 

which allows for higher video frame rates, CMOS imagers 
provide higher dynamic ranges and require less current and 
voltage to operate, Therefore, to choose the right camera 
for the CVS task, the specific conditions and requirements 
of a task must be weighed, and then, the camera should 
be selected, In addition, other factors that are important 
in this selection are resolution, analog or digital output, 
signal-to-tone ratio, minimum brightness required, signal 
output, and additional camera adjustment [52]. In the field 
of hyperspectral and multispectral imaging, the used camera 
can analyze a wide spectrum of light instead of just assigning 
primary colors (red, green, blue) to each pixel, these cameras 
work by imaging different wavelengths of light, the number 
of wavelengths used for hyperspectral is way to more than 
multispectral, and the main difference between multispectral 
and hyperspectral imaging is the number of wavebands being 
imaged and how narrow the bands are.

Fig. 6  The conceptual view of a 
hyperspectral image with spec-
tral and spatial domains [65]

Fig. 7  Examples of apple 
images and their manual 
segmentations. The first four 
columns present images from 
different filters, while the last 
one shows corresponding 
manual segmentations. Rows 
display apples damaged by dif-
ferent defect types [54]
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Fig. 8  The difference between 
hyperspectral and multispectral 
imaging [66]

Object Image Processing

Image 
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Fig. 9  Basic steps in IP
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Illumination

The illumination source is the crucial factor in acquiring 
informative and high-quality images. Any vision application 
requires that the examined features are well seen in the image. 
With advances in image analysis and processing algorithms, 
illumination can affect camera performance on the success and 
reliable performance of computer vision applications. Proper 
illumination improves detection and discrimination between 
sample features and reduces processing time. Therefore, it is 
preferable to improve the lighting conditions instead of writing 
complex algorithms to reduce the cost and reduce the execu-
tion time.

In general, computer vision applications in the agricultural 
industry face more challenges than other industries such as the 
automotive industry. The problems such as overlapping and 
shading are examples of these challenges that can be overcome 
with proper lighting; Designing a proper lighting system and 
tailoring the lighting conditions to the environmental condi-
tions and the product under study is one of the important prin-
ciples of computer vision applications. Lighting will shine on 
the product from the front and back, front-lighting used for 
surface features and backlighting used for subsurface features. 
The light reflected from the object passes through an RGB 
glass filter to simulate the standard functions of an observer for 
a particular illuminator. An optical detector beyond each filter 
detects the amount of light passing through each filter, and 
these signals are displayed as X, Y, and Z values. When light 
shines on an object, it passes through three red, green, and blue 
filters. The detector creates an image for each filter, which is a 
two-dimensional matrix. Each image is a gray image individu-
ally, and the combination of these three images presents a color 
image; according to the standard of the Commision de Inter-
national de I’Eclairage (CIE), X, Y, and Z values are obtained 
from Eq. (1) that make up the colors. The tristimulus value for 
the color with a spectral radiance Le.Ω.λ is given in terms of a 
standard observer; λ is the wavelength of the monochromatic 
light with the [380, 780] limits; the factors x, y, z  are three 
curves in this standard according to the filters used and the 
light received [52].

Therefore, the color matrices namely x, y, and z can be 
obtained by Eq. (2):

(1)
X = ∫

�
Le.Ω.� (�) xd �

Y = ∫
�
Le.Ω.� (�) yd �

Z = ∫
�
Le.Ω.� (�) zd �

(2)
x =

X

X+Y+Z

y =
Y

X+Y+Z

z =
Z

X+Y+Z

Image Processing

IP operates on acquired images and results in images, 
which can enhance the visibility of the existing features 
and facilitate further analysis. As mentioned, IP is divided 
into three main parts: image preprocessing, image segmen-
tation, and feature extraction, each of which is described 
in detail below [52].

Preprocessing

The purpose of preprocessing is to enhance the quality of 
the acquired image in the IP field, which is often degraded 
by distortion and noise in the optical and electronic sys-
tems of the input device. In the IP section, this action 
makes the desired and important features ready for further 
processing by improving the existing image; geometric 
transformations of images such as rotation and scale are 
considered as preprocessing operations [67].

In the preprocessing phase, the taken images should 
be improved in terms of quality and readability. These 
improvements aim to eliminate noise and to solve prob-
lems such as blurring of photos taken from moving objects 
on the rails and lack of lightning. Two main approaches 
in preprocessing are pixel preprocessing and local pre-
processing. The first approach converts the acquired image 
into an output image, while each output pixel is correlated 
to the input one having the corresponding coordinates. 
While, local preprocessing uses a small neighborhood 
of a pixel to produce a new brightness value in the out-
put image [68]. With filters and masks, anomalies would 
be identified and solved. Some useful low-pass filters 
in the field of image preprocessing are the average fil-
ter, Gaussian filter, and median filter, which are always 
used to remove the blur and noise of the captured images. 
Rong et al. [45] used the median filter for filling holes 
and removing the region of the stem end. Mittal et al. [3] 
used a median filter with a 5 × 5 pixel size to remove the 
noises. In the field of vegetables and fruits, because of 
uneven illumination, low-level contrast will be obtained 
which can be solved by increasing the brightness level,one 
of the methods is histogram equalization which is a non-
linear technique that makes the histogram to be flatted; in 
fact, it increases the value of the brightness of the pixels. 
Another field of image preprocessing is image distortion 
that also can be corrected with some geometric transforms, 
such as image rotation, mirroring the object, translation, 
transpose, and scaling. The most important drawback of 
pre-processing is that it is time-consuming and success in 
further phases heavily depends on this stage.
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Segmentation

Segmentation is used to divide or separate the areas in an 
image. White and black background colors make segmen-
tation easier because, in the histogram, thresholding would 
be easier to calculate. Other applications of segmentation 
can be used to diagnose diseases and defects. RGB color 
images are far more complex than gray images, depend-
ing on the software used in the algorithms. But using 
gray images, it is easier and faster to identify samples for 
removing the background.

Gray-level thresholding is the simplest segmentation 
process method that can easily be performed in real-time. 
Many image regions or objects can be identified by the 
constant reflectivity or light absorption of their surface; 
then, a threshold can be determined to segment objects and 
background. Thresholding is computationally inexpensive, 
fast, and also the oldest segmentation method which is still 
widely used in simple CVS tasks. According to Eq. (3) 
thresholding is the transformation of an input image (A) 
to an output (segmented) binary image (B):

where (i, j) represents the pixels of a two-dimensional image 
and threshold acts as a limitation for segmenting the object 
from the background. In segmentation, according to the 
mentioned equation, the algorithm searches across the entire 
pixels in the image and compares them with the threshold 
value, and then decides to consider as the background (value 
0 or black) or object (value 1 or white). A proper threshold 
selection is necessary for a successful segmentation, this 
method is suitable for those images in which the objects do 
not touch each other, and their gray levels are distinct from 
background gray levels.

As mentioned, the thresholding operation based on the 
histogram diagrams, because of the large color differences 
between the background and the sample, separation would 
be done with high accuracy. Rong et al. [45] used a histo-
gram thresholding technique selecting a white background 
for better clarity between the sample and the background. 
Mittal et al. [3] used a dark background for rice to have 
a precise segmentation. Therefore, according to the sam-
ple color, a suitable color for the background should be 
selected to perform a better segmentation. Ireri et al. [61] 
have chosen a black non-reflective background for the red 
sample.

To subtract the background from the image, differ-
ent strategies are proposed by researchers, which the 
segmented techniques in one color space are preferred. 
The most useful methods of image segmentation are pre-
sented following with the description, advantages, and 

(3)
B(i, j) = 1 if A(i, j) > Threshold,

B(i, j) = 0 if A(i, j) ≤ Threshold

disadvantages: thresholding method, edge-based method, 
region-based method, traditional segmentation algorithms, 
watershed method, artificial neural networks, k-means, and 
Otsu’s thresholding [69].

The thresholding method focuses on looking for peak 
values based on the histogram of the image to find simi-
lar pixels; it does not require complicated pre-processing; 
simple but many details can get omitted and threshold 
errors are common. The edge-based method is based on 
discontinuity detection unlike similarity detection; it is 
well for images having better contrast between objects but 
not suitable for noisy images. The region-based method is 
based on partitioning an image into homogeneous regions; 
it works really well for images with a considerate amount 
of noise, can take user markers for fast evaluation, but is 
time– and memory–consuming. Traditional segmentation 
algorithms divide an image into k number of homogenous, 
mutually exclusive clusters – hence obtaining objects. The 
watershed method is based on topological interpretation 
of image boundaries, segments obtained are more stable, 
detected boundaries are distinct, but gradient calcula-
tion for ridges is complex. Artificial neural networks are 
based on deep learning algorithms – convolutional neural 
networks (CNNs); they are easy to implement, no need 
for following any complicated algorithms, ready–made 
libraries available in Python, more practical applications, 
but training the model for custom and business images is 
time-consuming and resource costly [69]. When it comes 
to the unlabeled data, k-means clustering is one of the best 
ways to be used as a segmentation algorithm. k–means 
clustering algorithm is an unsupervised algorithm and is 
used to segment the interest area from the background. 
Unlabeled data can be explained as a bunch of data that 
are ungrouped or undefined categories. This algorithm 
will cluster, or partitions the given data into K–clusters 
or parts based on the K–centroids. Other clustering algo-
rithms with better features tend to be more expensive. In 
this case, the k-means clustering algorithm is a great solu-
tion for pre-clustering, reducing the space into disjoint 
smaller sub-spaces where other clustering algorithms can 
be applied. K–means in the field of implement and run 
is the simplest method. Otsu thresholding method is one 
of the simplest and easiest ways to segment an image and 
divides it into foreground and background. It is a global 
thresholding technique that uses the histogram of the 
picture to do the threshold searching process. For object 
segmentation using global thresholding, limitations will 
decrease the accuracy of the work; some of the limitations 
are a large amount of noise, the small mean difference 
between foreground and background pixels, and also large 
variances of the pixels that belong to the object and those 
that belong to the background [70].
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Feature Extraction

After the segmentation process, the features of the sample 
are extracted. These descriptors are usually applied for 
image recognition; they represent useful information of 
an image, while the redundant one is left out [20, 71]. 
These features can be categorized in the areas of color, 
morphology, and texture. As a crucial step of the defect 
detection process in fruit and vegetables, feature extraction 
aims to manage data, while feature selection aims to reduce 
features to the most important without loss or minimal 
loss of information [72]. This helps to develop more agile 
detecting models by selecting the lowest possible number 
of features resulting in the lowest error and the highest 
correct classification rate. Color as a most basic feature 
descriptor is extracted by various techniques comprising 
RGB histogram, hue histogram, opponent histogram, 
and transform color distribution [73]. Mean, variance, 
correlation, entropy, energy, and contrast are the main 
texture descriptors widely used in MV applications. High 
efficiency, ease of extraction, and powerful representation 
of visual content of images are the main advantages of 
the color features. Some color features are color coherence 
vector, color histogram, color correlogram, and color 
moments. Color moments are effective and simple features. 
Mean, skewness, and standard deviation are the most 
common moments [68]. Space and Fourier descriptors as 
well as image moment and angular transform are applied 
as shape descriptors [74].

Deep learning also can be applied to provide integration 
of feature extraction resulting in superior performance over 
conventional IP techniques which subsequently enhances 
the performance of defect detection systems for fruit and 
vegetable applications [20]. The method of deep feature 

extraction based on a deep neural network would be use-
ful when the data is complex or when the training set is of 
limited size [75]. The conformation of CNNs consists of 
stages starting from the convolutional layer which detects 
local connections of features from the previous layer and 
pooling layers which semantically merges similar features 
into one [20, 76]. Cen et al. [32] introduced a combina-
tion of a stacked sparse auto-encoder (SSAE) with CNN, 
naming CNN-SSAE system, for learning spectral and spa-
tial features for defect detection in a cucumber, leading to 
higher accuracy and shorter processing times of detection 
than that achieved with spectral data alone [32].

Therefore, success in developing algorithms and models 
for grading and classifying fruits and vegetables is a function 
of the feature extraction strategies. Due to the tremendous 
importance of feature extraction in the success of MVS-
based detecting models, researchers have emphasized the 
development of feature extraction techniques [20].

Color Features

In this area, some of the useful color spaces such as RGB, 
HSV, and LAB are widely used in researches. RGB is a 
three-dimensional color space consisting of red, green, and 
blue. It is like a three-dimensional matrix; each matrix rep-
resents pixel values in the color space. In RGB color photos, 
each pixel is a combination of the three primary colors red, 
green, and blue. The different combinations of these three 
primary colors create different colors. RGB color spaces are 
well for capturing, storing, and displaying images, but in 
terms of IP, information about this color space is incom-
prehensible and requires complex algorithms to understand. 
The RGB and HSV color spaces are shown in Fig. 10.

Fig. 10  RGB (A) and HSV (B) 
color spaces [77]
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For RGB to HSV conversion, Eq. (4) can be used: 

(4)

V = max = max (R, G, B), min = min (R, G, B),

S = (max −min)∕ max (or S = 0, if V = 0),

H = 60 ×

⎧
⎪
⎨
⎪
⎩

0 +
G−B

max−min
if max = R

2 +
B−R

max−min
if max = G

4 +
R−G

max−min
if max = B

H = H + 360, if H < 0

HSL (hue, saturation, lightness) and HSV (hue, satura-
tion, value, also known as HSB or hue, saturation, bright-
ness) are alternative representations of the RGB color 
model. In these models, colors of each hue are arranged 
in a radial slice, around a central axis of neutral colors that 
range from black to white. The HSV is a cylindrical color 
model that remaps the RGB primary colors into dimen-
sions that are easier for humans to understand, the three 
dimensions of the HSV color model are interdependent. 
HSL is another cylindrical color model that shares two 
dimensions with HSV while replacing the value dimen-
sion with a lightness dimension. L*A*B* is one of the 
most widely used color spaces having three dimensions as 
shown in Fig. 10. L* indicates lightness intensity, which 
value of 100 gives the white and 0 is black. +a* is the red 
axis, −a* is the green axis, +b* is the yellow axis, and −b* 
is the blue axis. Figure 11 represents the CIELAB color 
space.

The mentioned color spaces are widely used in defects 
detection, grading, and other postharvest processing appli-
cations. Table 3 shows a summary of studies about the 
color inspection of fruits and vegetables.

Morphological Features

Binary images may contain many imperfections. The binary 
regions extracted by a simple segmentation method like 
thresholding are distorted by noise. Morphological IP can 
help to remove these imperfections according to the form 
and structure of the image. Morphological IP is a collection 
of non-linear operations related to the shape or morphol-
ogy of features in an image. Morphological operations rely 

Fig. 11  Representation of the CIELAB color space [78]

Table 3  A summary of 
some studies about the color 
inspection of fruits and 
vegetables

Product Application Color Space Accuracy References

Apple Grading by external quality RGB 78% Leemans et al. [79]
Apple Defect detection RGB—HSI 89% Xiao-bo et al. [53]
Apple Maturity detection CIE LAB 100% Cárdenas-Pérez et al. [80]
Apple Color classification HSI 100% Chauhan and Singh [81]
Banana Quality evaluation RGB − Wang et al. [82]
Carambola Maturity discriminant HSI 95.3% Abdullah et al. [83]
Citrus Grading by color RGB 93% Dorj et al. [84]
Malting barley Quality evaluation CIE LAB − Ramirez-Paredes and 

Hernandez-Belmonte [4]
Mushroom Defect detection CIE LAB −  Vízhányó and Felföldi [85]
Oil palm Ripeness inspection HSI 90% Abdullah et al. [86]
Papaya Grading by color RGB 94.3% Santos Pereira et al. [87]
Peach Color and size HSI 90% Esehaghbeygi et al. [88]
Pepper Sorting by color and defect HSI 96% Shearer and Payne [89]
Potato Blemish detection RGB 89.6% Barnes et al. [90]
Strawberry Grading by external quality CIE LAB 88.8% Liming and Yanchao [91]
Tomato Defect discriminant – Grading CIE LAB  > 95% Ireri et al. [61]
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only on the relative ordering of pixel values, not on their 
numerical values. Morphological operations by applying a 
structuring element to an input image will create an output 
image of the same size, and the value of each pixel in the 
output image is based on a comparison of the corresponding 
pixel in the input image with its neighbors.

The morphological features (shape, size, …) are used for 
classification and grading applications. The shape is a key 
factor for consumers; fruits and vegetables are expected to 
have a regular shape without any morphological disorders; 
the irregular shape will lower the price of the product [92]. 
Morphological features with their mathematical formula are 
represented in Table 4.

With the help of CVS, several features help to meas-
ure the shape of the products, namely, Fourier descriptor, 
invariant moments, boundary encoding, and size-dependent. 
Boundary encoding describes the shape by using a chain 
code vector which records the sequence of coordinates of 
pixels on the boundary. Invariant moments describe the 
shape by their magnitudes which are invariant under transla-
tion, rotation, and also changes in scale. Fourier descriptors 
describe the shape by taking the Fourier transform of the 
boundary of the two-dimensional object in the image. Size-
dependent shape measurements use one single size param-
eter or combine two or more different size parameters to 
form dimensionless expressions for shape description. Due 
to the irregular shape of the fruits and vegetables, for acquir-
ing better accuracy in the sorting of agricultural products, it 
is recommended to use more than one feature.

Besides, size is one of the effective factors in the pricing 
of agricultural products. Size can be measured with some 
parameters such as area, perimeter, major and minor axes, 
length, and width, which can be calculated after the seg-
mentation stage. The longest and smallest lines across the 
object indicate the major and minor axes which are per-
pendicular. The general basis of the morphological discus-
sion is to transform the image into a structure in which the 
information displayed is more understandable. It is used 
in the field of image geometric structure, which includes 

the size, shape, and distribution of sample particles. The 
researches indicate that the size-independent method is the 
most accurate inspection for quality evaluation compared to 
the size-dependent. Kondo [94] used the maximum length 
and diameter to measure fruit size. Chen et al. [60] used the 
large diameter of an ellipse to identify broken rice grains. 
Also, applying other geometric features such as perimeter, 
area, and aspect ratio to identify broken grains, one can refer 
to van Dalen [95] and Zareiforoush et al. [96] researches.

Texture Features

The texture of an image is a set of criteria and gives informa-
tion about the spatial arrangement of color or its intensity in 
an image or the desired area in an image. There are also two 
types of textures: region-based and boundary-based, which 
are not good criteria for segmentation, but if used in con-
junction with other criteria such as color, they can help to 
have a better segmentation for an image.

The image texture will be divided into four categories: 
statistical texture which contains gray-level co-occurrence 
matrix (GLCM), grey-level pixel-run length matrix, and 
neighboring grey-level dependence matrix which the texture 
will be obtained based on the orders of the intensity values 
of pixels across images [97]. Table 5 represents the GLCM 
equations in the field of texture features.

For the transform-based, convolution masks can be used as 
a small matrix which applied to the image and slide across the 
entire pixels until the full of an image to be covered; one of 
the uses of the masks is to determine the edges of the objects 
inside of an image; therefore, in the statistical methods, convo-
lution mask, Fourier and wavelet transform, and texture can be 
extracted in corresponding spatial frequency domain images. 
The other two types of image texture are model-based which 
contains fractal and autoregression methods, also the structural 
texture that is rarely used in the field of agriculture. The statis-
tical texture is the most used method in the texture analysis and 
evaluation of fruits and vegetables due to its low computational 
cost and high accuracy, transform-based texture, and model-
based texture are used in the evaluation and inspection of the 
external quality of fruits and vegetables [100].

Regarding the texture, Kavdir and Guyer [101] used texture  
features based on spatial gray-level dependence matrices for 
processing monochrome images of apples to detect defects 
and bruises on skin of apples as well as differentiation 
between stem-calyx methods; they used backpropagation  
artificial neural network (BPANN), decision tree (DT),  
and k-nearest neighbor (K-NN). Ramirez-Paredes and 
Hernandez-Belmonte [4] used local binary pattern (LBP), 
median ternary pattern (MTP), local phase quantization 
(LPQ), etc., as texture descriptors, along with color and 
shape properties to extract barely malting properties.

Table 4  Morphological features with their mathematical formula [93]

Morphological feature Formula

Compactness 4×�×Area

Perimeter2
 

Convexity Convex_Perimeter

Perimeter2
 

Eccentricity
√

(MajorAxis2−MinorAxis2)

MajorAxis  
Elongation 1 −

MinorAxis

MajorAxis
 

Rectangularity Area

MajorAxis×MinorAxis
 

Roundness 4×π×Area

Convex_Perimeter2
 

Solidity Area

Convex_Area
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Defect Detection

In the diagnosis of peel diseases, it should be borne 
in mind that the entire surface of the product should be 
examined, and if no damage is identified in the hidden part 
of the imaging, the product would be considered a healthy 
product. Accordingly, Bennedsen et al. [102] suggest that 
multiple images can be obtained from the product rotating 
by conical rollers so that the entire surface can be imaged 
and explored.

In citrus, the color of the product is one of the main 
parameters in the disease diagnosis. Because the color of 
the affected area on fruit may be known as a healthy area 
in another fruit, the systems should be chosen to assess the 
products and to diagnose their defects should be well trained, 
so choosing a trainable system is essential to examine a wide 
range of fruits to avoid identification problems [103]. Since 
the disease usually occupies a smaller area on the surface 
of a product than the healthy area, Blasco et al. [104] used 
an MV system that uses the unsupervised growing region 
algorithm.

As mentioned, defects can be separated into two groups, 
external and internal defects. For the external defects, the 
surface of a product and image acquisition procedure are 
important factors in Defect Detection; the entire surface of 
the peel should be photographed. But for the internal defects, 
choosing the correct camera for seeking inside the texture 
is important to diagnose the defects, because agricultural 
products are almost all opaque.

Stem‑Calyx Problems

As mentioned, a problem in diagnosing diseases is the pres-
ence of stem and calyx, which may be diagnosed as defects 
in products. Rong et al. [45] used a method which after 
applying median filtering and segmentation, the number of 
regions is counted,if the number of regions is more than or 
equal to 2, that orange would be defective, but if it is one 
region, the border of 450 pixels is considered, and if the area 
of the region is more than or equal to 450 pixels, that orange 
would be considered defective. The average accuracy of this 
study for 8 types of diseases was 97%. Li et al. [105] used 
the BPANN algorithm with one hidden layer to detect stem 
and calyx from defective areas with an accuracy of 93%. 
Ireri et al. [61] used the values of mean g-r in histogram 
thresholding, the areas related to the presence of stem and 
calyx were identified with 95% accuracy. Also, in the YCbCr 
color space, different calyxes in apples were detected by the 
k-means clustering method [35]. Liming and Yanchao [91] 
also used the values of mean g-r in thresholding in straw-
berry fruit.

In the study of Xiao-bo et al. [53], the sample was apple 
and they paid attention to the number of regions. Since stem 
and calyx should not be inside a photo, if each photo has two 
or more detected areas, it is considered a defective apple. 
This method did not use a special and complicated algorithm 
and is proper to count the region of interest.

As shown in Fig. 12, the calyx and stem of the tomato 
samples have been detected and removed; Ireri et al. [61] 
implemented the segmentation process before classifying to 
achieve better accuracies,by applying 50 images of tomato, 
the detection algorithm was developed; they realized that the 
average value of g-r of the calyx-stalk scar (CS) was greater 
than the fruit so; by a histogram threshold, the CS has been 
precisely detected and removed.

Defects in Fruits and Vegetables

A useful parameter to obtain more accurate segmentation 
results is measuring the contrast between defective and 
sound products. Rong et al. [45] proposed sliding compari-
son window local segmentation for oranges, which allows 

Table 5  GLCM feature with their mathematical formula [98]

Vi, j is the value in the cell (i, j) (row i and column j) for the moving 
window, and N is the number of cells, Pi, j =

Vi, j

N−1∑

i, j=0

Vi, j

 [99]

GLCM feature Formula
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the division of defects such as insect injury, wind scarring, 
thrips scarring, scale infestation, canker spot, dehiscent 
product, copper burn, and phytotoxicity,they achieved detec-
tion accuracy of 97% for defective oranges. After applying a 
median filter, the region number of an image was measured 
to discriminate the stem end from a defect area. They set a 
limitation criteria (450 pixels) to be a boundary between 
stem end and defective area; once the region number was 
equal or greater than 2, the pixels would demonstrate the 
existence of defects; the used method obtained 93.8% accu-
racy to discriminant stem end.

With the help of the invariant moment ellipse major 
axis, the broken rice grains were identified with 99% accu-
racy by the SVM classifier according to their length [60]. 
The length parameter played an important role in discri-
minant between sound and broken kernels,furthermore, 
chalky areas were detected by centroid distance constraint 
and pixel positioning with 96.3% accuracy. The damaged 
and spotted areas were identified by edge detection and 
morphological processing, which resulted in 93.6% accu-
racy. The average running time of the method for detecting 
four types of defects at one-time was 0.15 s which shows 
the great potential for fast and accurate quality inspection 
for rice.

Ramirez-Paredes and Hernandez-Belmonte [4] proposed 
a method by combining color and shape with several tex-
ture descriptors about malting barley grains,they identified 
defective samples based on the obtained F1 score which is 
the number of a harmonic mean of recall and precision; they 
achieved an accuracy of over 99%. The best texture descrip-
tor was related to LPQ, which achieved 95.65% accuracy 
with linear SVM and 99.96% accuracy with radial basis 
function SVM (RBF-SVM). The best performance of this 
method resulted in the use of a combination of color his-
togram feature, LPQ texture descriptor, and shape descrip-
tors. Furthermore, SVM-RBF shows significant potential for 
rapid and accurate algorithm for classification.

In another study by Xiao-bo et  al. [53], three-color 
cameras have been used to photograph the surface of the 
apples,by rotating the apples using rollers, the entire surface 
was photographed and nine images were captured from one 
apple; after the diagnosis, it was concluded that the use of 
three cameras increases the accuracy to an acceptable level 
and reduces the error rate from 21.8 to 4.2%. The classifica-
tion error rate would also be reduced from 15 to 11%. But 
this method cannot be widely used. Regions of interest were 
counted for every nine images and because stem end and 
calyx may not be at least in one image, therefore the sample 

Fig. 12  Calyx and stalk scar detection and segmentation: the original RGB images in the first row, detected calyx and stalk scar in the middle 
row, and calyx and stalk scar segmentation in the last row [61]
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image which has two or more regions of interest would be 
considered as a defective sample. In another way, regions of 
interest are a key factor to detect the defects in apples. One 
of the concerns in photographing agricultural products is 
the curvature or sphericity of fruits and vegetables, which 
makes the reflected light have not a uniform distribution 
which makes the results to be less accurate [59, 106, 107].

Ireri et al. [61] proposed an RGB imaging system for 
tomatoes which its stem-calyx were removed using histo-
gram mean g-r value with 95% accuracy to avoid them being 
identified as a defect,also, the damaged areas in the LAB 
space were identified with 98.9% accuracy. Using RBF-
SVM, the highest accuracy was obtained, which was 97% 
for the diagnosis of healthy and defective groups. As the 
number of available groups increases, the accuracy could 
decrease. As shown in Fig. 13, the histogram indicates that 
the healthy tomatoes have higher pixel intensity than defec-
tive ones. The histogram is a rapid technique to detect the 
defective regions of products, but it should be considered 
that all of the conditions such as illumination and a proper 
camera have to be provided. Improper illumination affects 
the imaging procedure, and thereby, the incorrect result 
would be obtained.

Zhang et al. [11] used hyperspectral in the visible-near 
infrared (Vis–NIR) spectral region to detect mandarin 
defects. The identification accuracy with 5 different 
peel conditions (sound and four types of defects) was 
about 96.63%. The results of this study also showed that 
multispectral imaging based on band ratio and principal 

component analysis (PCA) can be used to diagnose 
defects,two wavelengths have been used as a multispectral 
imaging system, 680 nm, and 715 nm; also, ratio image 
and second principal component image were used to detect 
the defects by using two selected wavelengths; the result 
demonstrates that multispectral imaging system can be 
considered as a fast method in grading the mandarins.

Xiong et al. [108] applied a lab hyperspectral imaging 
system to acquire the hyperspectral images of litchi fruit for 
micro-mechanical damage detection. They used GLCM to 
extract the dimensional texture features, including contrast, 
correlation, energy, homogeneity, variance, mean value, 
and entropy. The partial least squares discriminant analysis 
(PLS-DA) method was used for analyzing the hyperspectral 
data to establish a prediction model. The proposed method 
showed recall and precision equal to 94.10% and 93.95%, 
respectively. They established the LS-SVM model based on 
the dimensional texture features of GLCM representing aver-
age accuracy of 95%. The proposed future work focusing 
on the exploration of improved techniques for application 
to achieve the on-line damage detection of litchi fruit. It is 
highly recommended that hyperspectral technology in com-
bination with deep learning techniques can be effectively 
used to detect mechanical damage of litchi fruit to bring the 
system accuracy closer to 100%.

Bruising arising from mechanical impact is a very com-
monly occurring defect in fruits and vegetables. Early detec-
tion of bruises is useful for screening applications. The 
early invisible bruises that are not usually detectable with 

Fig. 13  Pixel intensity differences distinguishing the background, defective, transition, and healthy tomato regions [61]
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digital cameras can be identified by hyperspectral imaging. 
However, the challenge of fast detection of such defects at 
the early stages of development for automatic applications 
remains. Nturambirwe et al. [109] proposed a hyperspectral 
imaging system for detecting latent bruise damage and deter-
mining the state of bruise latency using classification learn-
ers of hyperspectral imaging data in “Golden Delicious”  
apples.

Artificial Intelligence in Defect Detection

With the advancement in artificial intelligence and its appli-
cation in various sections, including agriculture, due to its 
high accuracy and time savings, this technology can also 
be used to detect defects of fruits and vegetables. Several 
studies on defect detection of fruit and vegetables have been 
performed using artificial intelligence, which have yielded 
promising results with very high accuracy. Artificial intelli-
gence can be used for classification or regression, data analy-
sis and feature extraction, data clustering, etc., For example, 
discriminant analysis, K-nearest neighbors, nonlinear regres-
sion, neural networks, support vector machine, and decision 
trees have been widely used for classification and regression 
applications in supervised learning. In the other hand, prin-
cipal component analysis, fuzzy c-means, k-means cluster-
ing, Gaussian mixture model, and factor analysis have been 
used for clustering and dimensionality reduction of data in 
unsupervised learning.

CNN is one of the novel artificial intelligence methods 
applied in agriculture science which used to detect a wide 
range of defects for example physiological disorders [33] 
and mechanical defects [25]. When photos of the product 
were taken, they would be processed by segmentation 
algorithms to detect defects. The processed images are 
considered as the input of the artificial neural network, 
which would test the available data by back-propagation 
algorithms and recognizes fruit and vegetable defects with 
a high percentage of accuracy and less time than human 
inspectors. CNN as a new formulation of neural networks 
has been very successful in the field of pattern recognition 
in images “called as deep learning,” with the help of layers 
interconnectivity,, and automatic parameter extraction. CNN 
has different architectures for different applications, which 
are AlexNet [110], ResNet [111], GoogLeNet [112], VGG 
Net [113], ZF Net [114], Region-based CNN (R-CNN), and 
LeNet-5 [115]. A typical CNN architecture including simple 
convolutional and pooling layers represented in Fig. 14.

Wu et al. [116] used CNN and light backscattering to 
detect apple defects. The Alex-net model was taught with 
an 11-layer structure. ReLU function was also used to pre-
vent over-fitting and improve pragmatism. Fan et al. [117] 
provided 92% accuracy for defective apple samples using 
CNN, which, after learning, was much more accurate than 
the SVM method, which analyzed area counts. CNN is 
one of the deep learning algorithms which is used in clas-
sification and recognition applications because of its high 

Fig. 14  The diagram of the convolutional neural networks
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accuracy,each input image passes through a series of con-
volution layers with filters, pooling and fully connected lay-
ers (FC) and applies the SoftMax function to classify an 
object with probabilistic values between 0 and 1. As shown 
in Fig. 14, the diagram of the CNN model is displayed; an 
input image is converted to a range of other images using 
convolution masks which these masks slide over the original 
image matrixes and create a new image with new matrix 
values; pooling the new extracted matrix is to be smaller 
in size for faster processes, until the data would be flatten 
for classification or recognition using the SoftMax function.

Benefits and Drawbacks

The most important capability of CVSs for the fruit and 
vegetable industry is implementing the grading and classifi-
cation processes in a non-destructive, more rapid, and more 
safe manner than to the conventional methods leading to a 
reduction in the employment of laborers. However, illumina-
tion, dusty condition, positioning, and partial osculation are 
the main challenging issues. The accuracy of such CVSs is 
generally high; however, in most cases, 100% accuracy can-
not be achieved. In contrast, workers conduct surveys more 
confidently, and grading and classification of fruit and veg-
etables are implemented with almost 100% accuracy. But, 
operator tiredness and distraction can significantly affect the 
accuracy.

Today, with the development of digital MVSs and ultra-
fast computers, the time required for IP has been signifi-
cantly reduced; it is clear that this technological advance-
ment is very useful for automated machine-based grading 
which allows these systems to be applied in the continuous 
and at high-speed mode.

The price of imaging systems such as MRI and HSI 
equipment is an important factor that should be considered. 
Also, there are some challenges in integrating the imaging 
devices with automatic sorting lines. The most important 
issue is the synchronization of the mechanisms of the screen-
ing system and response of CVS because new CVSs require 
a long time for image acquisition, IP, and decision making 
[62].

In the development of IP algorithms in the fruit and veg-
etable grading systems, it is necessary to pay attention to the 
fact that the procedure of the algorithm should be correctly 
and accurately designed and developed. If each of the steps: 
preprocessing, segmentation, feature extraction, and selec-
tion, and the artificial intelligence-based models have some 
bugs, these imperfections unfavorably affect the next steps 
and ultimately reduce system performance. Therefore, it is 
better to develop these steps individually, to identify and fix 
probable bugs, and finally to integrate the overall algorithm.

The major issue is that unlike industrial products, fruit 
and vegetables are very non-uniform and heterogeneous and 

are a function of various factors such as climate, cultiva-
tion area, variety, and growing conditions, so, the variations 
and heterogeneities in a particular product are so great that 
in many cases automatizing the defect detection process 
by CVSs faces serious challenges. Consequently, the same 
approach of a typical CVS probably produces different accu-
racy on the same product. However, real-time defect detec-
tion has been recently developed based on CVSs [117–119], 
but there is still a long way to go before their commercial 
application.

Future Trends

Defect detection in fruit and vegetables is still a difficult pro-
cess due to the huge variation of defect types [68, 120]. In 
the future, more research should be conducted to propose 
solutions to the current challenges in the detection of defects 
in fruits and vegetables. The main involved challenges are 
uniform light distribution on the arch surface, stem/calyx 
recognition, powerful and proper wavelength selection for 
different products, image acquisition and processing times 
for spectral image, and defect discrimination. Deep learn-
ing as a new approach in the field of IP attracts the attention 
of many researchers, which may be one of the future works 
for defect detection tasks in fruit and vegetables. In future 
works, applying the deep learning concept in combination 
with MVSs helps to overcome many of the problematic issues 
in detecting defects of fruit and vegetables. The development 
of low-price CVSs based on hyperspectral and multispectral 
imaging at lower prices and miniaturization of such equip-
ment while maintaining performance can help them to be 
commercialized and used in the industry. The research on 
the integration of CVSs with automatic screening lines is 
also helpful. Scanning the entire surface of the product is 
essential to accurately detect defects. Fruits and vegetables 
are usually close to elliptical, spherical, and conical in shape, 
leaving half of the surface hidden from the camera. A rotating 
device would be helpful to provide a thorough scanning to 
take several images from different angles.

In many cases of research, a single background is con-
sidered to have an easy and rapid separation of fruit or veg-
etables from the background. In the industry, the presence 
of dust, noise, etc., affects the performance of these simpli-
fied laboratory systems. Therefore, future research should 
expand the training dataset comprising other aspects, such 
as various backgrounds and catching angles for light during 
scanning. Future works can focus on improving the gener-
alization ability of models by implementing data augmen-
tation methods to new data and on applying cutting edges 
classification methods such as deep learning techniques to 
constitute a more compact pipeline for image processing and 
classification applications [109].
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Conclusion

This study provides basic definitions of MV and IP, and 
their use in the agricultural industry to assess product qual-
ity, defect detection, grading, and classification applications. 
The different types of CVSs and the scope of their use are 
discussed, and then, the accuracy of these types of systems 
is compared with the methods selected by researchers for 
different products. The CVSs including T-CVS, H-CVS, and 
M-CVS have been widely used in the quality evaluation and 
inspection of agricultural products which can provide a non-
destructive, rapid, and accurate assessment.

We have found that CVSs plays a significant role to have a 
great potential in meeting the challenges related to the defect 
detection of fruit and vegetables. CVSs are scientific and 
powerful tools for the accurate and rapid automatic external 
quality inspection of fruits and vegetables. Also, with the 
advancement of technology, traditional methods are not very 
efficient today and should be replaced with novel methods 
such as deep learning or spectral images, because these new 
methods have higher accuracy and speed than the traditional 
ones. We have given a comprehensive survey on the techni-
cal and technological aspects of different systems employed 
for defect detection of fruit and vegetables; we also discuss 
different types of defects present in fruit and vegetables, and 
explore in detail the challenges and issues related to each 
of the types of defects. Most of the challenges are because 
agricultural products do not have the same external, inter-
nal, and physicomechanical properties even in one type of 
fruit or vegetable, which severely affect the performance of 
algorithms and defect detection systems.

Proposing novel methods of defect detection in the fruit 
and vegetable sector should be considered from two main 
aspects: the technological development of instruments with 
new capabilities being able to overcome the existing chal-
lenges and developing data processing and analysis algo-
rithms. Establishing a connection between these two aspects 
can solve many challenges. However, the development of 
high-speed computer systems capable of storing large 
amounts of information should not be overlooked.

Online defect detection is one of the most desirable appli-
cations of nondestructive techniques towards grading and 
sorting fruit and vegetables. However, MVSs are still some-
what ineffective for internal quality and defects detecting 
applications. To promote the performance of such a sys-
tem, other emerging technologies, as well as hyperspectral 
imaging, are introduced having desirable capabilities for 
exploring internal defects in fruits and vegetables. But these 
systems are slow, and further efforts are needed to develop 
high-speed algorithms to match this emerging technology to 
the industrial online grading applications. However, further 
research on advanced learning algorithms with reduced IP 

time improved feature selection, and robust preprocessing 
techniques are essential. Although to develop online sys-
tems, applying a proper learning algorithm is a prerequisite 
for successful defect detection. Therefore, standardizing 
and providing a framework for machine learning techniques 
that have been developed so far for different products would 
be very helpful in industrializing online defect detection 
systems.

However, the most successful technology is MVS for 
nondestructive rapid defect detection in the fruit and veg-
etable industry, but it faces challenges in identifying inter-
nal defects that require further research. For surface defects, 
MVS in combination with deep learning represents suc-
cessful results by reducing the required time of IP and a 
more effective feature extraction procedure. However, more 
research is essential for the improvement of this method 
to apply to all products. The development of new strate-
gies in the innovative use of machine vision-based systems 
would be very effective in the development and improve-
ment of these systems. One strategy may be that by apply-
ing high-speed computers and the possibility of storing big 
data, a comprehensive database of images from all defects 
in fruits and vegetables would be made to be used for deep 
learning models which can be applied in automatic grading 
applications.
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