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Abstract
Berries are delicious and nutritious, making them among the popular fruits. There are various types of berries, the most 
common ones include blueberries, strawberries, raspberries, blackberries, grapes, and currants. Fresh berries combine high 
nutritional value and perishability. The processing of berries ensures high quality and enhanced marketability of the product. 
Sorting, disinfection, and decontamination are essential processes that many types of fruits such as citrus fruits, berries, 
pomes, and drupes must undergo to ensure improved quality, uniformity, and microbiological safety of the product. Drying 
and freezing are excellent processing methods to extend the shelf life of berries which also provide new options to the con-
sumer of a wide variety of berries. With the demand for high quality and automatic high-throughput detection of the quality 
of fruit products, intelligent and rapid detection of various parameters during processing has become the development direc-
tion of modern food processing. Therefore, this paper reviews the application of advanced detection technologies, artificial 
intelligence-based methods for detection and prediction during berry sorting, drying, disinfecting, sterilizing, and freezing 
processing. These advanced detection techniques include computer vision system, near infrared, hyperspectral imaging, 
thermal imaging, low-field nuclear magnetic resonance, magnetic resonance imaging, electronic nose, and X-ray computed 
tomography. These artificial intelligence methods include mathematical modeling, chemometrics, machine learning, deep 
learning, and artificial neural networks. In general, advanced detection techniques incorporating artificial intelligence have 
not yet penetrated into all aspects of commercial berry processing, which include drying, disinfecting, sterilizing, and freez-
ing processes.
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Abbreviations
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FCN  Fully convolutional network
FEM  Finite element modeling
FFBP  Feed forward back propagation
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FL  Fuzzy logic
FNN  Feedforward neural network
FTIR  Fourier transform infrared spectroscopy
GAN  Generative adversarial network
GGCM  Gray level-gradient co-occurrence matrix
GLCM  Gray level co-occurrence matrix
HSI  Hyperspectral imaging
iPLSR  Interval partial least squares regression
KNN  K-nearest neighbors
LDA  Linear discriminant analysis
LF-NMR  Low-field nuclear magnetic resonance
LIBS  Laser-induced breakdown spectroscopy
LR  Linear regression
LS-SVM  Least-squares support vector machine
LS-SVR  Least-squares support vector regression
LWR  Locally weighted regression
MLP  Multi-layer perceptron
MRAFC  Model reference adaptive fuzzy control
MRI  Magnetic resonance imaging
NIR  Near infrared
OES  Optical emission spectrometry
PCA  Principal components analysis
PLS  Partial least squares
PLSR  Partial least squares regression
PNN  Probabilistic neural network
RBFNN  Radial basis function neural network
RF  Random forest
RFR  Random forest regression
RMSE  Root mean square error
RNN  Recurrent neural network
RPD  Residual prediction deviation
RT-qPCR  Real-time quantitative PCR
SMO  Sequential minimal optimization
SPA  Successive projection algorithm
SSC  Soluble solid content
SVM  Support vector machine
SVR  Support vector regression
UVE  Uninformative variable elimination
VC  Vitamin C
WT  Wavelet transform

Introduction

Berry fruits represent a very diverse group, such as grape, 
currant, goji (wolfberry), blueberry, strawberry, raspberry, 
cranberry, mulberry, blackberry, gooseberry, chokeberry, 
bayberry, bilberry, and cherry tomato among many more [1]. 
Berry fruits are rich in a wide variety of nutritious bioactive 
compounds, such as vitamins, anthocyanins, polyphenols, 
and organic acids [2, 3]. Many berries can be consumed 
directly as fresh foods; however, due to their perishable and 
seasonal nature, many berries are processed after harvest 

into a variety of more storable products such as frozen ber-
ries, dried berries, berry juice, and berry jams.

Berries have high water content and contain sugars which 
make them susceptible to contamination from spoilage bac-
teria and viruses during and after harvest [1]. Sorting is one 
of the essential berries processing procedures. This work 
is performed based on quality parameters such as ripeness, 
size, shape, damage, and decay of raw berries. Sorting oper-
ations can reduce the impact of inconsistent appearance, vul-
nerability, and perishable nature of raw berries on the berry 
processing and consumption system. In general, after the 
sorting step, raw berries must be cleaned, disinfected, and 
inspected to ensure cleanliness and microbiological safety 
before they are suitable for consumption as ready-to-eat 
fresh berries or for undergoing further processing. Several 
outbreaks in Europe linked to berries have been attributed 
to the presence of norovirus [4], hepatitis A virus [5], and 
other food-borne pathogens [6] on berry products, which is 
a reminder to pay more attention to the microbial inactiva-
tion of berries. Drying and freezing of berries is an excel-
lent processing method that extends the shelf life of berry 
products and also brings popular and novel processed berry 
products to consumers.

During processing, effects can occur on the color, texture, 
structure, chemical content, and biological activity of berries, 
which determine the quality of the product. Detecting and 
analyzing the influence of different processing methods on 
these parameters can contribute to ensuring high overall qual-
ity of the end products, improving processing techniques, and 
enhancing processing efficiency. Because of rising labor costs 
as well as inherent subjectivity and inconsistency in human 
handling, intelligent detection technology can provide rapid 
and accurate results, which guarantees high quality products. 
For high-capacity processing of berries, current trend in mod-
ern food processing industry is to monitor the parameters of 
the process with intelligent and efficient detection technol-
ogy and to further optimize control of the process. Use of 
advanced detection equipment (ADE) and artificial intelli-
gence (AI) will soon accelerate this trend. In this review, ADE 
is defined as a category of non-destructive rapid detection 
equipment, which distinguishes them from traditional physical 
and chemical analytical methods. These ADEs are generally 
implemented by electromagnetic spectrum-based detection 
equipment and sensor devices to obtain appropriate physical 
and chemical information during berry processing. However, 
the information obtained by ADE is often multi-dimensional, 
complex, and does not present the final detection results in 
a straightforward manner. Chemometrics, machine learning, 
and deep learning methods based on AI techniques can mine 
physicochemical characteristics by analyzing and reducing 
the dimensionality of the vast amount of data generated from 
ADE [7]. In addition, mathematical modeling and computer 
simulations are applied to analyze and predict parameters 

Food Engineering Reviews  (2022) 14:176–199 177



during berry drying, disinfecting, and freezing processing. 
AI, as a tool that can be run independently, allows the use of 
data obtained by traditional detection means as input variables 
for modeling and prediction using AI models [8]. Soft sensing 
is the concept of AI technology applied in the field of meas-
urement and control engineering, which can be used as an 
alternative for process variables that cannot be measured at all 
or only by very sophisticated equipment because of technical 
limitations, measurement delays, and complicated environ-
ments [8, 9]. In general, the collaboration between ADE and 
AI is the trend of intelligent detection in modern food pro-
cessing. That is, the detection data of berries are obtained by 
ADE, and then analyzed and processed using smart AI-based 
algorithms to get the expected detection results.

The content and status of important parameters (internal 
moisture of berries, microorganisms) in the processing of 
berries determine the processing performance and product 
quality. However, real-time, non-destructive, and accurate 
detection of internal moisture and microorganisms still pre-
sent some challenges for current detection equipment and 
technologies. Therefore, fewer ADEs and AI are needed for 
detecting purposes in berry drying, freezing, and disinfect-
ing processing as opposed to the varied intelligent detection 
techniques in sorting.

Detection Technologies

In modern processing of berries, ADE is gradually replac-
ing traditional experimental measurements as the newer 
detection techniques save labor and cost while providing 
better precision. These advanced detection methods cover 
a wide range from computer vision systems (CVSs), near 
infrared (NIR), hyperspectral imaging (HSI), thermal imag-
ing, nuclear magnetic resonance (NMR) to X-ray computed 
tomography (CT). In addition, sensor technologies such 
as electronic nose (E-nose) and sound sensors also play 
an important role in berry processing [10]. In the follow-
ing section, we summarize briefly key features of these 
technologies.

Computer Vision Systems

Computer vision system, also commonly referred to as 
machine vision system, is being used extensively for post-
harvest fruit quality measurements [11, 12]. CVS consists 
of an integrated mechanical-optical-electronic-software sys-
tem that includes mechanical devices, optical instruments, 
electromagnetic sensing, and image processing [13]. CCD 
digital camera is a common image acquisition device in 
CVS, and the wavelength operating range almost overlaps 
with the visible spectrum [14]. CVS first acquires digitized 
images of food materials through cameras, and then inputs 

them into a computer for image processing and analysis to 
detect the appearance characteristics of the food [13]. It 
mainly focuses on applications in quality inspection and 
sorting of products, including foreign materials, shape [15], 
size, color [16, 17], ripeness [18, 19], rottenness [20], and 
external damage. However, the narrow working range of the 
visible spectrum makes it impossible for CVS to detect the 
internal structure of food. Although the skin of blueberries is 
thin, the high absorption and scattering of the skin prevents 
the spectrum between 500 and 700 nm from penetrating to 
the interior, which makes it difficult to use to differentiate 
internal bruises [21].

Near Infrared

NIR refers to the absorption spectrum between the visible 
spectrum and the mid-infrared, in the wavelength range of 
780–2526 nm. NIR spectroscopy is an analytical method 
suitable for the prediction of both chemical and physical 
properties of samples. The change in NIR-active compounds 
(same or a class of structurally similar) concentration cor-
relates with the amount of change in NIR spectral data [22]. 
The absorption of the NIR spectrum is related to the vibra-
tion of hydrogen-containing groups (O–H, N–H, C–H) in 
organic molecules, which can indicate the chemical compo-
sition in food materials [23]. Therefore, NIR spectroscopy 
can be performed for the quantitative determination of the 
chemical composition of berries. However, due to the low 
penetration depth of NIR radiation, the NIR technique is not 
well suited to measure quality attributes such as sugars or 
acids in fruits with thick skin or complex internal structure 
[24]. In addition, NIR can be applied to the detection of 
hardness or internal bruises. The principle that NIR spec-
troscopy can distinguish blueberry hardness is that different 
structures of berries change the path of incident light and 
further change the NIR spectral pattern [25].

Hyperspectral Imaging

HSI systems measure data from hundreds of narrow spec-
tral bands. Unlike common 3-channel cameras, which return 
three data points from each pixel, hyperspectral cameras can 
collect hundreds of data points per pixel. The spectral reso-
lution of hyperspectral is usually less than 10 nm, which not 
only provides a wealth of information but also results in the 
generation of a large amount of redundant data [26, 27]. In 
the application, the redundant hyperspectral data need to be 
downscaled to select representative key wavelengths relevant 
to the detection target, and then fed into the prediction model 
[28, 29]. In addition, it is also available to perform automatic 
feature extraction and prediction of HSI data using deep 
learning approaches such as convolutional neural network 
(CNN) [30, 31]. HSI can be used to detect product quality in 
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sorting processes, as well as quantitative detection of nutri-
ent content. The detection HSI spectra provide complex 
information generally related to the vibrational behavior of 
the chemical bonds associated with food components [32].

Thermal Imaging

The basic feature of thermal imaging is to capture the 
infrared radiation emitted, transmitted, and reflected by 
the object, and to analyze and use the received infrared 
radiation data of the object and its surroundings to build 
a pseudo-color image. The visual imaging feature of prod-
uct temperature monitoring makes it feasible to use thermal 
imaging for monitoring the body temperature of berries in 
thermal processing, such as the decontamination process 
of berries using the microwave plasma torch [33]. Thermal 
imaging could also be performed for the detection of internal 
bruises of berries. The principle that thermal imaging can be 
employed to detect bruises is that bruised tissues have higher 
thermal diffusivity than healthy tissues [34]. During the 
heating phase of thermal imaging detection, thermal radia-
tion first reaches the surface of the berry and then conducts 
to the relatively cooler internal tissues. In healthy berries, 
intact cell walls and organized cell layers impede this heat 
transfer. In contrast, in berries with bruises, the ruptured 
cell walls and tissues provide a better conductive medium 
and ultimately more heat is absorbed internally, resulting 
in lower berry skin temperatures. These inferences can be 
explained by the thermal window theory [34].

Low‑Field Nuclear Magnetic Resonance (LF‑NMR) 
and Magnetic Resonance Imaging (MRI)

LF-NMR is a time-domain NMR measurement that exploits 
the differences in molecular mobility between different food 
components, as reflected in the transverse relaxation times  (T2) 
of protons (usually the hydrogen nuclei of water) [35]. MRI is 
a pseudo-color imaging that can show the density of hydrogen 
protons in water and is used to reflect images of water content 
in food, water distribution, and its texture. Moreover, MRI 
can present the signals of different water phases (free water/
bound water) in food [36]. Water is contained in all foodstuffs, 
which has an important influence on the physical properties of 
food during processing. The physical properties and content 
of water compared to other food components determine the 
dominance of water in food composition [37]. LF-NMR is an 
emerging tool for non-destructive detection of moisture con-
tent, moisture migration, water status, and distribution during 
food processing and storage. The applications of LF-NMR in 
berries processing detection discussed in this paper cover the 
processing of drying [38–41] and freezing [42, 43] as well as 
the analysis of decay [44, 45], during which water undergoes 
various changes.

Miscellaneous Techniques

E-nose is a non-destructive and rapid detection technique 
that uses sensor arrays, chemometrics, and AI algorithms for 
odor detection and identification. The application of E-nose 
in fresh food covers food classification, flavor detection, and 
spoilage evaluation [46]. Fruits are rich in volatile aromas 
and the E-nose allows to detect changes or distinguish differ-
ences in volatile compounds in fruits. Application scenarios 
of E-nose in berries include ripeness detection [47], disease 
detection [48], producing area identification [49], volatile 
odor change monitoring during drying [50], and others.

X-ray CT or X-ray micro-computed tomography (μCT 
or micro-CT) is a technique for non-destructive visualiza-
tion of internal structures. The resolution of X-ray μCT can 
be as high as several hundred nanometers. X-ray CT shows 
the structure of a cross-section of food tissue based on its 
absorption of different radiation doses of X-rays or presents 
a three-dimensional structure by computer 3D reconstruction 
[51]. For example, X-ray micro-CT quantified the growth of 
3D ice crystals in frozen carrots [52], and synchrotron X-ray 
CT scanners showed the 3D microstructure of ice crystals 
and air cells in ice cream in real-time imaging [53]. In berry 
processing, desktop X-ray CT and synchrotron X-ray CT 
were used to detect ice crystals and microstructures in the 
frozen processing of strawberries [54].

These aforementioned ADEs provide a large amount of 
data on berries, but these data are usually high-dimensional, 
complex, and difficult to understand intuitively. AI-based 
algorithms can analyze and interpret this intricate first-hand 
data from ADE, and model predictions based on conven-
tional parameters.

Artificial Intelligence‑Based Techniques

In scientific terms, AI is a wide-ranging branch of computer 
science that includes time-honored simple linear regression 
(mathematical models), not just most of the AI examples one 
hears about today such as autonomous driving and intelligent 
robots. Many AI algorithms have been successfully applied 
in berry processing; they include mathematical regression 
models, chemometrics, machine learning, artificial neural 
network (ANN), and deep learning, and the relationships 
between these AI subfields are presented in Fig. 1.

Mathematical Modeling

Mathematical models are based on description of complex 
scientific processes through concise mathematical equations 
and are generally useful in scenarios where detection and/or 
desired performance is difficult to achieve. With the devel-
opment of mathematical modeling software and computer 
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technology, the ability of mathematical modeling to describe 
complex problems has become reliable. Food processing is 
complex but validated mathematical models can now be 
developed and used with confidence to describe the kinetics, 
heat transfer, mass transfer, heat treatment at high and low 
temperatures, non-thermal decontamination, etc. [55–58]. 
Furthermore, computational fluid dynamics (CFD) also 
provides a valuable tool for simulation of various food pro-
cessing operations. Several reviews have appeared in recent 
years on the application of mathematical models (e.g., fruit 
drying [59, 60], vacuum cooling [61], freezing [62, 63], 
and microbial inactivation [64–67]) and CFD simulations 
(drying [68–70], chilling and freezing [71], and microbial 
inactivation [72, 73]) in food processing. Real-time qualita-
tive and quantitative measurements of moisture, microor-
ganisms, ice crystals, and microstructure changes in berry 
drying, disinfecting, and freezing processing, respectively, 
all pose great challenges to ADE. Mathematical models can 
provide a viable tool to tackle complex scenarios, although 
literature on the application of CFD in berry processing is 
still rather limited. Several research papers have proposed 
and tested mathematical models for the prediction of the 
dynamics of moisture content in berry drying with multiple 
drying condition parameters as input variables [39, 74–76]. 
For example, Sun et al. [59] summarized nine mathematical 
models reported in the literature for the berry drying pro-
cess, most of which are exponential family nonlinear models. 
The prediction of microbial inactivation curves and decon-
tamination time in berry disinfecting was also achieved with 

the assistance of mathematical models [77–80]. Zhao et al. 
[81] used mathematical models to analyze the heat trans-
fer during freezing of bayberry, and predicted the freezing 
time–temperature curve.

Chemometrics

Chemometrics can be classified as a machine learning. It 
is basically a set of tools that use mathematics, statistics, 
and computing to process data generated by chemical pro-
cesses and to maximize the extraction of useful chemical 
information. Modern testing instruments generate massive 
amounts of data, but the accuracy of prediction models may 
be reduced due to too much redundant data and similar data 
[82]. The dimensionality reduction algorithm in chemomet-
rics solves the curse of dimensionality by feature selection 
and feature extraction [31], which is important for the sim-
plification and robustness improvement of the model [28]. 
The common feature selection methods include competitive 
adaptive reweighted sampling (CARS), successive projec-
tion algorithm (SPA), and uninformative variable elimi-
nation (UVE), and the reduced dimensional variables are 
a subset of the original feature variables. There are com-
mon feature extraction methods such as linear discriminant 
analysis (LDA), principal components analysis (PCA), and 
partial least squares (PLS), which achieve dimensionality 
reduction by converting the original feature variables into 
new feature variables. A large variety of chemometric-based 
feature selection and feature extraction methods are applied 
to the dimensionality reduction of the electromagnetic spec-
trum in berry sorting processes [28, 29, 44]. There are also 
some other ways of dimensionality reduction based on tra-
ditional machine learning. In addition to the chemometric 
dimensionality reduction algorithm, there are some other 
dimensionality reduction methods, which are given together 
in Table 1.

Traditional Machine Learning

Machine learning is the core of AI and allows the construc-
tion of models for detection and prediction [83]. Figure 2 
presents the classification of machine learning and its rel-
evant applications in berry processing. Machine learning 
can be classified into unsupervised learning with dimen-
sionality reduction and clustering as subsets, and super-
vised learning with classification and regression as subsets 
[84]. Unlike deep learning algorithms, traditional machine 
learning techniques usually need to be supplemented with 
additional feature selection or feature extraction methods. 
After the dimensionality reduction process, the data are 
fed to classification or regression models for prediction. 
Classification and regression are used for qualitative detec-
tion of categorical variables and quantitative prediction of 

Fig. 1  The relationship between AI, machine learning, mathematical 
model, chemometrics, ANN, and deep learning. AI, artificial intelli-
gence; ANN, artificial neural network
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continuous variables, respectively. In the berry processing, 
applications of classification include detection of berry 
traits, bruise, decay, and maturity, and the results are clas-
sified into two to multiple classes (binary classification and 
multinomial classification, respectively). The application of 
regression includes the detection of berry chemical compo-
nents content, moisture content, pesticide residue content, 
microbial content, processing time prediction, and kinetic 
simulation. A variety of classification and regression model 
algorithms based on traditional machine learning are listed 
in Table 1. However, probably due to the lack of relevant 
ADEs, there are fewer traditional machine learning algo-
rithms applied in berry drying, decontamination, and freez-
ing processing except for some mathematical models. The 
performance of classification models is mainly evaluated 
by accuracy, precision, recall, and F1-score [30], while the 
performance of regression models is mainly evaluated by 
R2, root mean square error (RMSE), and residual predic-
tion deviation (RPD) [38]. Figure 3 shows the traditional 
machine learning for classification of thermal image data 
after feature extraction and feature selection in blueberry 
bruise detection.

ANNs and Deep Learning

ANN and deep learning are at the forefront of AI technology 
development, and have penetrated into various areas includ-
ing intelligent food processing [85]. ANN is a simplified 
algorithmic model of biological neurons, and ANN consists 
of an input layer, one or more hidden layers, and an output 
layer [86]. Deep learning is a form of machine learning that 
uses ANN as the underlying architecture and has multiple 
hidden layers. Deep learning has powerful feature learning 
(automatic feature extraction), classification, and regression 
capabilities, which are more advantageous than traditional 
machine learning algorithms and manual feature extractors 
(chemometrics-based dimensionality reduction algorithms, 
etc.) [31, 87]. Deep learning can be categorized into three 
main types: CNN, recurrent neural network (RNN), and 

generative adversarial network (GAN) [88]. Wang et al. 
[30] quickly detected internal damage of blueberry with 
the help of CNN and HSI, where CNN not only implicitly 
extracted image features through the convolutional layer 
but also acted as a classifier. Fully convolutional networks 
(FCNs) can learn information in both the spectral and spatial 

Fig. 2  The classification of 
machine learning and its rel-
evant detection applications in 
berry processing

Fig. 3  Digital processing flow for blueberry bruise detection by ther-
mal imaging [34]
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dimensions, whereas support vector machine (SVM) clas-
sifiers are limited to learning information from predefined 
features [89].

Moreover, with the advancement of ANN research, 
some common neural networks such as back-propagation 
neural network (BPNN), radial basis function neural net-
work (RBFNN), probabilistic neural networks (PNNs), and 
extreme learning machine (ELM) [90] have been developed. 
Various ANN and deep learning specific algorithms provide 
an excellent tool for berry sorting, quantitative detection of 
chemical composition, and prediction of key parameters in 
drying and freezing processing (Tables 1, 2 and 4). How-
ever, ANN and deep learning require a large amount of data 
for training to get a good prediction performance, so it is 
also not a general-purpose algorithm, especially when the 
amount of training data is quite limited.

Miscellaneous

Fuzzy logic (FL) simulates the process of human reasoning 
without requiring precise inputs and is suitable for systems 
that are difficult to model mathematically [91]. The main 
mechanism of FL is If–Then rule, and FL are considered as 
AI, but not machine learning. Rad et al. [74] predicted the 
moisture ratio of white mulberry fruit using the FL model 
with conventional parameters from the convective-infrared 
drying process as input.

Adaptive neuro fuzzy inference system (ANFIS) inte-
grates the principles of ANN and FL and has the advantages 
of both. Taghinezhad et al. [92] used ANFIS to predict the 
energy and exergy parameters during drying of blackberries 
by combined hot air-infrared dryer with ultrasound pretreat-
ment, where the ANFIS method was more accurate than 
ANN. ANFIS is also an effective controller for complex 
systems. Riverol et al. [93] reported the adaptive advanced 
control of ANFIS in a fluidized bed freezer for strawberry 
freezing process, which performed better than the classical 
state feedback controller.

Processing Applications

This paper provides a comprehensive yet concise review of 
the intelligent detection technologies and AI methodologies 
applied in four distinct processing procedures for berries: 
sorting (Table 1), drying (Table 2), disinfection (Table 3), 
and freezing (Table 4). The quantitative detection of the 
chemical composition of various berries is generally car-
ried out for fresh berries. Pesticide residue detection can be 
used as an indicator of the effectiveness of washing/disin-
fecting. In this paper, the quantitative detection of chemical 
components and pesticide residue detection were classified 

into sorting (Table 1) and disinfection (Table 3) of berry 
processing procedures, respectively.

Sorting

During the berry harvest season, manual harvesting or rapid 
harvesting using large agricultural machinery can result in 
inconsistent quality of the collected berries. The fragile skin 
and juicy nature of berries also pose challenges in their sta-
ble storage. The sorting of berries is therefore an important 
part of the berry pretreatment process and the first step in 
berry quality control.

The application of intelligent detection technologies and 
AI methods in sorting of berry fruits is showed in Table 1. 
The detection in the berries sorting can be broadly divided 
into two major aims: classification of physical characteristics 
and quantification of chemical composition. The detection 
aims of physical characteristics include trait (shape, size, 
color, hardness), bruise, decay, and maturity. On the other 
hand, the quantitative detection of chemical nutrient compo-
nents includes soluble solid content (SSC) [95–97], vitamin 
C (VC) [98], pH [98], chlorophylls [99], anthocyanins [100], 
polysaccharides [101, 102], flavonoids [31], and phenolic 
[31, 103].

A typical full sorting system includes a product flow 
conveyor, detection equipment, AI algorithms, and removal 
mechanics. Detection technology is the key to any sorting 
system, as its accuracy and speed of detection determine 
the overall performance and efficiency as well as cost-
effectiveness of the whole sorting system. In the sorting 
processes, almost all of these ADEs are based on electro-
magnetic spectroscopy, such as CVS, NIR, HSI, thermal 
imaging, and LF-NMR. In addition, a variety of AI-based 
dimensionality reduction algorithms, and classification and 
regression models are used to process data from detection 
devices. The coupling of these ADE and AI technologies 
gives the sorting system the advantage of being accurate, 
non-destructive, non-contact, and fast, ensuring a high-
throughput sorting process. Figure 4 shows the process of 
blueberry decay detection, which can represent the general 
ADE and AI-based classification modeling process [44]. 
Firstly, the raw spectral information and relaxation param-
eters information of blueberries were obtained by HSI and 
LF-NMR, respectively. Then, the CARS algorithm and SPA 
algorithm were used to dimensionality reduction of the raw 
spectral information to obtain the characteristic wavelength, 
and use it and the selected LF-NMR parameters by Pearson 
correlation and Spearman correlation as input variables. 
Finally, these input variables were put into PLS-DA, PNN, 
and BPNN three models for classification modeling, and 
then the decay of blueberry was detected.
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Drying

Drying is one of the most common methods for preserv-
ing berries [59]. A variety of traditional and emerging 
drying techniques are used for berry drying, including hot 
air convection drying [39, 105, 106], vacuum drying [40, 
75], fluidized bed drying [107], freeze drying [108, 109], 
and various physical field-assisted drying methods [38, 
92]. Freeze drying is generally considered to be the best 
method of dehydration, but it is also an energy-intensive 
and lengthy process [94, 104]. The low moisture content 
and low water activity properties imparted by drying bring 
many advantages to dried food products, including long-
term storage, novel product formats, convenient handling, 
and reduces cost of transportation [114]. However, there are 

also potential product defects such as shrinkage, discolora-
tion, case hardening, flavor, and thermosensitive components 
loss [122, 130]. The parameters such as moisture content, 
moisture distribution, drying temperature, drying rate, and 
drying end-point during the berry drying process affect the 
final quality of the dried product [41]. In summary, the dry-
ing process is complex, dynamic, unsteady, highly nonlinear, 
strongly interactive, successively interconnected, and mul-
tivariable thermal process whose underlying mechanisms 
are not yet perfectly understood [110]. Therefore, rapid and 
intelligent detection of drying conditions and drying food 
parameters during drying is very important to ensure the 
quality of dried products. The detection of berry moisture 
information (content, types, migration, etc.) during the dry-
ing process is the most valuable aspect in monitoring the 

Fig. 4  Flowchart of detecting 
decayed blueberry [44]. HSI, 
hyperspectral imaging; LF-
NMR, low-field nuclear mag-
netic resonance;  T2, transverse 
relaxation time; PLS-DA, par-
tial least squares discriminate 
analysis; PNN, probabilistic 
neural network; BPNN, back-
propagation neural network
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drying process. LF-NMR technology has become a novel 
detection tool in the field of food drying with the advan-
tage of specific detection of water hydrogen nuclei. Figure 5 
shows the application of LF-NMR and MRI in detecting 
the drying of mulberries. The MRI images visualized the 
process of moisture content reduction in drying. The trans-
verse relaxation parameters of LF-NMR can be used as input 
variables for predictive models: for drying kinetic simula-
tions [39], and for prediction of drying end-points [38] and 
sublimation/desorption drying transition points [41] in the 
berry freeze-drying process.

Table 2 presents several advanced detection techniques 
and AI-based methods applied in berry drying. The detec-
tion techniques used in the drying process can be broadly 
classified as LF-NMR/MRI [38–41], NIR [41, 111], CVS 
[112, 113], capacitor microphone [10], and directly giving 
the conventional parameters related to drying. The obtained 
detection data are then used for predictive modeling using 
ANN, mathematical models, and other AI-based algorithms 
to detect key points, moisture information, nutrient com-
ponents content, changes in appearance, crispiness, drying 
efficacy, and drying kinetic simulations during the berries 
drying process.

Disinfection and Decontamination

Berries that have not undergone microbial inactivation 
procedures can cause various decay problems and a short 
shelf life. Also, pathogenic viruses are able to survive on 
unsterilized berries, which would pose a health risk to 
humans [6]. Frozen berries have been implicated as the food 
vehicle in outbreaks of hepatitis A virus [5] and norovirus 
[115] infections in recent decades. Berry disinfection and 
decontamination options can be categorized as disinfectant 
decontamination, thermal decontamination, and non-thermal 
decontamination. Disinfectant decontamination includes 
gaseous chlorine dioxide [116, 117], acetic acid [118], per-
acetic acid [119], and others [120]. Thermal decontamina-
tion is rarely applied due to the richness of the heat-sensitive 
components of berries. Much research has been devoted to 
developing novel non-thermal decontamination methods that 
allow microorganisms to be inactivated under mild condi-
tions, thereby better preserving the sensory and nutritional 
activity of the fruits. Some of the non-thermal decontami-
nation methods of fruits listed here include application of 
plasma [121], microwave [33], high hydrostatic pressure 

[123], irradiation [124], pulsed light [125], ozone [126], 
ultraviolet [127], and hydrothermodynamic cavitation [128]. 
Perez-Lavalle et al. [129] have reviewed the individual and 
combined non-thermal and physical techniques for micro-
bial inactivation applied to fresh blueberries which are also 
applicable to most other berries as well.

Due to the nature of microorganisms that are not eas-
ily detected quickly and accurately, the assessment of the 
microbial inactivation performance of berries has been 
dominated by the traditional time-consuming plate counts 
[77, 131–135]. Real-time quantitative PCR (RT-qPCR) is a 
standard method for the detection of hepatitis A virus and 
norovirus in berry fruit [136, 137]. However, a full RT-
qPCR procedure can take several hours and does not allow 
for true real-time detection [128]. The increasing concerns 
over food-borne outbreaks necessitate rapid, on-site, and 
sensitive methods for the detection of microorganisms in 
food matrices [138, 139]. In recent years, biosensors have 
become a hot topic of research in the field of food safety test-
ing [140, 141]. However, these fast and sensitive biosensors 
are hardly employed in berry decontamination, probably due 
to the complexity of sample pretreatment. In addition to the 
detection in the microbiological field, the decontamination 
process also has an impact on the biochemical substances of 
the berries [142, 143]. Park et al. [77] found that cold plasma 
treatment of chokeberries resulted in a significant decrease 
in anthocyanin content, while soluble solids content and pH 
were not affected. In berry processing, decontamination of 
berries includes washing and disinfection, and is always per-
formed together. Sarangapani et al. [144] found that cold 
plasma application has the ability to eliminate microorgan-
isms from blueberries and also degrade residues of the pes-
ticides boscalid and imidacloprid. Therefore, the pesticide 
residue content on the berry surface might also be an indica-
tor for the evaluation of the washing and sterilizing effect.

Selected articles on mathematical modeling of disinfec-
tion kinetic curves, parameter monitoring of plasma disin-
fection, and pesticide residue content detection about berries 
were reviewed and are summarized briefly in Table 3. As of 
now, the presentation of ADE-based intelligent detection in 
fruit disinfection/decontamination processes is rare.

Freezing

Freezing is a common method of preserving berry fruits to 
maintain freshness and nutrition and to achieve increased 
shelf life. The freezing process is a complex, multi-stage 
process that basically follows five basic steps: cooling 
period, supercooling period, ice nucleation, latent heat ther-
mal storage process, and ice sensible heat thermal storage 
process [145]. Typical temperature–time curves for typical 
food freezing are displayed in Fig. 6 [145]. The freezing 
conditions and physical field-assisted freezing determine the 

Fig. 5  Application of LF-NMR and MRI in the detection of mul-
berries drying [39].  T2 curves for mulberries dried at different tem-
peratures: A 40  °C; B 50  °C; C 60  °C; and D 70  °C. MRI images 
of mulberries dried at 50 °C: E longitudinal section; F cross section. 
LF-NMR, low-field nuclear magnetic resonance; MRI, magnetic res-
onance imaging;  T2, transverse relaxation time

◂

Food Engineering Reviews  (2022) 14:176–199192



final status of the ice crystals formed, whose structure and 
distribution have a critical impact on frozen berries quality 
[146, 147]. Freezing causes the berries to dehydrate leading 
to surface frosting; so the berries should be allowed to freeze 
quickly to minimize dehydration losses. Meanwhile, rapid 
freezing can form a large number of small ice crystals that 
do not harm cell membranes [148, 149]. van der Sman [150] 
describes the freezing operation and ice crystal formation, 
how the freezing rate affects the size of the ice crystals and 
thus the quality of the food. Physical field-assisted freez-
ing techniques are considered as a strategy to control the 
freezing method to improve the quality of the frozen prod-
uct [151–154]. These novel aids include pressure transfer, 
magnetic field [146, 155], electric field [156], electrostatic 
[157], microwave [158], radio frequency [159], and ultra-
sound [160].

To obtain good quality frozen berries, the freezing pro-
cess ideally needs much information that should be detected 
dynamically, including freezing temperature curve, freezing 
speed, ice crystal growth process, ice crystal structure and 
distribution, freezing rate, and microstructure. The measure-
ment of the internal temperature of food products during the 
freezing process is the most important measurement, but 
currently, it is almost exclusively performed with invasive 
temperature probes [54, 81]. This method of temperature 
measurement may not be suitable for small, fragile, and juicy 
berries, as it causes significant structural damage and will 
affect the accurate measurement of the internal tempera-
ture. However, as of now, there is no better solution. Table 4 
shows some detection techniques and AI-based methods 
applied in berry freezing. In berry freezing, LF-NMR and 
MRI have been performed to detect the distribution and 

migration of water in blueberries during cold storage and 
freeze–thaw [42, 43]. On the whole, there are still fewer 
studies that use ADE and AI-based methods for frozen berry 
detection.

Recently, several new and improved detection technolo-
gies have demonstrated applicability in food freezing, such 
as LF-NMR/MRI, X-ray CT, and Raman spectroscopy. LF-
NMR and MRI techniques have also been used to evaluate 
the water dynamics [161], water migration [162], and freez-
ing storage time [163] of meat during freezing processing. 
MRI can obtain information about the moisture state of ice 
crystals and demonstrate the structure of ice crystals, which 
is an important detection tool in the freezing process [147, 
164]. X-ray CT can detect and visualize the microstructure 
of frozen foods such as minced beef [165], strawberry [54], 
carrots [52], apples and potatoes [166], bell peppers, and 
cucumbers [167]. Raman spectroscopy allows the rapid 
measurement of sensory and physicochemical properties of 
frozen foods without any pretreatment [168]. In addition, 
mathematical-based methods such as mathematical mod-
eling, finite element modeling (FEM), and CFD provide 
valuable solutions for freezing curves simulation, freez-
ing time prediction, and high-performance freezing system 
design in freezing processes. Zhao et al. [62] have reviewed 
the mechanisms of ice crystal formation, propagation, and 
glass transition during food freezing and discussed math-
ematical models of heat and mass transfer for predicting 
freezing time and optimizing freezing conditions. Rodriguez 
et al. [169] present mathematical simulation modeling of a 
magnetic field-assisted frozen food process to evaluate the 
magnetic field strength and magnetic field distribution in the 
frozen space and frozen material. FEM has become a widely 

Fig. 6  A typical temperature–
time curve for food freezing 
[145]
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used numerical simulation tool for monitoring and control-
ling changes in food quality during freezing and thawing 
processes [170]. CFD models for heat and mass transfer in 
hydrofluidization systems during food chilling and freez-
ing were reviewed by Peralta et al. [71]. Differential scan-
ning calorimetry (DSC) [164], various microscopes [164, 
171, 172], etc. are also used to detect the physicochemical 
or structural properties of frozen foods for the purpose of 
frozen product quality and freezing damage assessment. 
Nonetheless, DSC and various microscopic structural deter-
mination techniques are in use although they require some 
degree of destructive pretreatment of the sample prior to 
measurement.

Conclusion and Future Trends

Berries are one of the most popular fruits. Their perish-
ability and seasonality requires processing of fresh berries 
to improve quality, shelf life, and market value. This paper 
reviews various smart detection techniques and methods in 
berry sorting (trait classification, defect detection, chemi-
cal component quantification), drying, disinfection/decon-
tamination, and freezing. Rapid non-destructive testing of 
product quality and process parameters in berry process-
ing provides a reference for improving product quality, 
understanding processing principles, and optimizing the 
processing conditions. These modern intelligent detection 
technologies and methods cover a diverse range of ADEs 
and AI-based methods. Hardware-based detection equipment 
gives first-hand data on berries, and AI-based methods use 
this raw data to then perform classification or regression 
modeling predictions. Some mathematical models and ANN 
algorithms use conventional detection parameters for mod-
eling predictions. In addition, some novel advanced com-
putational tools such as deep learning, FEM, and CFD also 
provide viable solutions for intelligent detection and simula-
tion in berry processing. Following are some recommenda-
tions based on this review. For the quantitative detection 
of chemical composition, almost all detection targets were 
performed on fresh berries. Considering the principles and 
the non-destructive and rapid advantages of these ADE and 
AI-based methods, it is feasible to monitor changes in nutri-
ent composition during drying, disinfection, and freezing 
of berries in future studies. The monitoring of changes in 
the chemical components of berry processing will provide a 
reference for the design and improvement of berries process-
ing systems. The powerful feature learning and prediction 
capabilities of deep learning tend to perform better com-
pared to traditional machine learning when a large amount 
of data is available for training. With enhanced computer 
performance, the application of deep learning in berry detec-
tion should be explored more widely and actively. The most 

urgent problem to be solved is the serious lack of detection 
equipment in the fields of drying, disinfecting, and freezing 
processing, which requires the equipment manufacturers and 
researchers to make efforts to develop and explore novel 
rapid and non-destructive tools. Finally, validated computer 
simulation techniques as CFD should be utilized in the opti-
mization and design of berry processing systems.
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