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Abstract

Berries are delicious and nutritious, making them among the popular fruits. There are various types of berries, the most
common ones include blueberries, strawberries, raspberries, blackberries, grapes, and currants. Fresh berries combine high
nutritional value and perishability. The processing of berries ensures high quality and enhanced marketability of the product.
Sorting, disinfection, and decontamination are essential processes that many types of fruits such as citrus fruits, berries,
pomes, and drupes must undergo to ensure improved quality, uniformity, and microbiological safety of the product. Drying
and freezing are excellent processing methods to extend the shelf life of berries which also provide new options to the con-
sumer of a wide variety of berries. With the demand for high quality and automatic high-throughput detection of the quality
of fruit products, intelligent and rapid detection of various parameters during processing has become the development direc-
tion of modern food processing. Therefore, this paper reviews the application of advanced detection technologies, artificial
intelligence-based methods for detection and prediction during berry sorting, drying, disinfecting, sterilizing, and freezing
processing. These advanced detection techniques include computer vision system, near infrared, hyperspectral imaging,
thermal imaging, low-field nuclear magnetic resonance, magnetic resonance imaging, electronic nose, and X-ray computed
tomography. These artificial intelligence methods include mathematical modeling, chemometrics, machine learning, deep
learning, and artificial neural networks. In general, advanced detection techniques incorporating artificial intelligence have
not yet penetrated into all aspects of commercial berry processing, which include drying, disinfecting, sterilizing, and freez-
ing processes.
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Freezing
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FL Fuzzy logic

FNN Feedforward neural network

FTIR Fourier transform infrared spectroscopy
GAN Generative adversarial network

GGCM Gray level-gradient co-occurrence matrix
GLCM Gray level co-occurrence matrix

HSI Hyperspectral imaging

iPLSR Interval partial least squares regression
KNN K-nearest neighbors

LDA Linear discriminant analysis

LF-NMR Low-field nuclear magnetic resonance
LIBS Laser-induced breakdown spectroscopy

LR Linear regression

LS-SVM  Least-squares support vector machine
LS-SVR  Least-squares support vector regression
LWR Locally weighted regression

MLP Multi-layer perceptron

MRAFC  Model reference adaptive fuzzy control
MRI Magnetic resonance imaging

NIR Near infrared

OES Optical emission spectrometry

PCA Principal components analysis

PLS Partial least squares

PLSR Partial least squares regression
PNN Probabilistic neural network
RBFNN Radial basis function neural network

RF Random forest

RFR Random forest regression
RMSE Root mean square error

RNN Recurrent neural network

RPD Residual prediction deviation
RT-gPCR Real-time quantitative PCR
SMO Sequential minimal optimization
SPA Successive projection algorithm
SSC Soluble solid content

SVM Support vector machine

SVR Support vector regression

UVE Uninformative variable elimination
vC Vitamin C

WT Wavelet transform
Introduction

Berry fruits represent a very diverse group, such as grape,
currant, goji (wolfberry), blueberry, strawberry, raspberry,
cranberry, mulberry, blackberry, gooseberry, chokeberry,
bayberry, bilberry, and cherry tomato among many more [1].
Berry fruits are rich in a wide variety of nutritious bioactive
compounds, such as vitamins, anthocyanins, polyphenols,
and organic acids [2, 3]. Many berries can be consumed
directly as fresh foods; however, due to their perishable and
seasonal nature, many berries are processed after harvest

into a variety of more storable products such as frozen ber-
ries, dried berries, berry juice, and berry jams.

Berries have high water content and contain sugars which
make them susceptible to contamination from spoilage bac-
teria and viruses during and after harvest [1]. Sorting is one
of the essential berries processing procedures. This work
is performed based on quality parameters such as ripeness,
size, shape, damage, and decay of raw berries. Sorting oper-
ations can reduce the impact of inconsistent appearance, vul-
nerability, and perishable nature of raw berries on the berry
processing and consumption system. In general, after the
sorting step, raw berries must be cleaned, disinfected, and
inspected to ensure cleanliness and microbiological safety
before they are suitable for consumption as ready-to-eat
fresh berries or for undergoing further processing. Several
outbreaks in Europe linked to berries have been attributed
to the presence of norovirus [4], hepatitis A virus [5], and
other food-borne pathogens [6] on berry products, which is
a reminder to pay more attention to the microbial inactiva-
tion of berries. Drying and freezing of berries is an excel-
lent processing method that extends the shelf life of berry
products and also brings popular and novel processed berry
products to consumers.

During processing, effects can occur on the color, texture,
structure, chemical content, and biological activity of berries,
which determine the quality of the product. Detecting and
analyzing the influence of different processing methods on
these parameters can contribute to ensuring high overall qual-
ity of the end products, improving processing techniques, and
enhancing processing efficiency. Because of rising labor costs
as well as inherent subjectivity and inconsistency in human
handling, intelligent detection technology can provide rapid
and accurate results, which guarantees high quality products.
For high-capacity processing of berries, current trend in mod-
ern food processing industry is to monitor the parameters of
the process with intelligent and efficient detection technol-
ogy and to further optimize control of the process. Use of
advanced detection equipment (ADE) and artificial intelli-
gence (AI) will soon accelerate this trend. In this review, ADE
is defined as a category of non-destructive rapid detection
equipment, which distinguishes them from traditional physical
and chemical analytical methods. These ADEs are generally
implemented by electromagnetic spectrum-based detection
equipment and sensor devices to obtain appropriate physical
and chemical information during berry processing. However,
the information obtained by ADE is often multi-dimensional,
complex, and does not present the final detection results in
a straightforward manner. Chemometrics, machine learning,
and deep learning methods based on Al techniques can mine
physicochemical characteristics by analyzing and reducing
the dimensionality of the vast amount of data generated from
ADE [7]. In addition, mathematical modeling and computer
simulations are applied to analyze and predict parameters
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during berry drying, disinfecting, and freezing processing.
Al, as a tool that can be run independently, allows the use of
data obtained by traditional detection means as input variables
for modeling and prediction using AI models [8]. Soft sensing
is the concept of Al technology applied in the field of meas-
urement and control engineering, which can be used as an
alternative for process variables that cannot be measured at all
or only by very sophisticated equipment because of technical
limitations, measurement delays, and complicated environ-
ments [8, 9]. In general, the collaboration between ADE and
Al is the trend of intelligent detection in modern food pro-
cessing. That is, the detection data of berries are obtained by
ADE, and then analyzed and processed using smart Al-based
algorithms to get the expected detection results.

The content and status of important parameters (internal
moisture of berries, microorganisms) in the processing of
berries determine the processing performance and product
quality. However, real-time, non-destructive, and accurate
detection of internal moisture and microorganisms still pre-
sent some challenges for current detection equipment and
technologies. Therefore, fewer ADEs and Al are needed for
detecting purposes in berry drying, freezing, and disinfect-
ing processing as opposed to the varied intelligent detection
techniques in sorting.

Detection Technologies

In modern processing of berries, ADE is gradually replac-
ing traditional experimental measurements as the newer
detection techniques save labor and cost while providing
better precision. These advanced detection methods cover
a wide range from computer vision systems (CVSs), near
infrared (NIR), hyperspectral imaging (HSI), thermal imag-
ing, nuclear magnetic resonance (NMR) to X-ray computed
tomography (CT). In addition, sensor technologies such
as electronic nose (E-nose) and sound sensors also play
an important role in berry processing [10]. In the follow-
ing section, we summarize briefly key features of these
technologies.

Computer Vision Systems

Computer vision system, also commonly referred to as
machine vision system, is being used extensively for post-
harvest fruit quality measurements [11, 12]. CVS consists
of an integrated mechanical-optical-electronic-software sys-
tem that includes mechanical devices, optical instruments,
electromagnetic sensing, and image processing [13]. CCD
digital camera is a common image acquisition device in
CVS, and the wavelength operating range almost overlaps
with the visible spectrum [14]. CVS first acquires digitized
images of food materials through cameras, and then inputs
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them into a computer for image processing and analysis to
detect the appearance characteristics of the food [13]. It
mainly focuses on applications in quality inspection and
sorting of products, including foreign materials, shape [15],
size, color [16, 17], ripeness [18, 19], rottenness [20], and
external damage. However, the narrow working range of the
visible spectrum makes it impossible for CVS to detect the
internal structure of food. Although the skin of blueberries is
thin, the high absorption and scattering of the skin prevents
the spectrum between 500 and 700 nm from penetrating to
the interior, which makes it difficult to use to differentiate
internal bruises [21].

Near Infrared

NIR refers to the absorption spectrum between the visible
spectrum and the mid-infrared, in the wavelength range of
780-2526 nm. NIR spectroscopy is an analytical method
suitable for the prediction of both chemical and physical
properties of samples. The change in NIR-active compounds
(same or a class of structurally similar) concentration cor-
relates with the amount of change in NIR spectral data [22].
The absorption of the NIR spectrum is related to the vibra-
tion of hydrogen-containing groups (O-H, N-H, C-H) in
organic molecules, which can indicate the chemical compo-
sition in food materials [23]. Therefore, NIR spectroscopy
can be performed for the quantitative determination of the
chemical composition of berries. However, due to the low
penetration depth of NIR radiation, the NIR technique is not
well suited to measure quality attributes such as sugars or
acids in fruits with thick skin or complex internal structure
[24]. In addition, NIR can be applied to the detection of
hardness or internal bruises. The principle that NIR spec-
troscopy can distinguish blueberry hardness is that different
structures of berries change the path of incident light and
further change the NIR spectral pattern [25].

Hyperspectral Imaging

HSI systems measure data from hundreds of narrow spec-
tral bands. Unlike common 3-channel cameras, which return
three data points from each pixel, hyperspectral cameras can
collect hundreds of data points per pixel. The spectral reso-
lution of hyperspectral is usually less than 10 nm, which not
only provides a wealth of information but also results in the
generation of a large amount of redundant data [26, 27]. In
the application, the redundant hyperspectral data need to be
downscaled to select representative key wavelengths relevant
to the detection target, and then fed into the prediction model
[28, 29]. In addition, it is also available to perform automatic
feature extraction and prediction of HSI data using deep
learning approaches such as convolutional neural network
(CNN) [30, 31]. HSI can be used to detect product quality in
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sorting processes, as well as quantitative detection of nutri-
ent content. The detection HSI spectra provide complex
information generally related to the vibrational behavior of
the chemical bonds associated with food components [32].

Thermal Imaging

The basic feature of thermal imaging is to capture the
infrared radiation emitted, transmitted, and reflected by
the object, and to analyze and use the received infrared
radiation data of the object and its surroundings to build
a pseudo-color image. The visual imaging feature of prod-
uct temperature monitoring makes it feasible to use thermal
imaging for monitoring the body temperature of berries in
thermal processing, such as the decontamination process
of berries using the microwave plasma torch [33]. Thermal
imaging could also be performed for the detection of internal
bruises of berries. The principle that thermal imaging can be
employed to detect bruises is that bruised tissues have higher
thermal diffusivity than healthy tissues [34]. During the
heating phase of thermal imaging detection, thermal radia-
tion first reaches the surface of the berry and then conducts
to the relatively cooler internal tissues. In healthy berries,
intact cell walls and organized cell layers impede this heat
transfer. In contrast, in berries with bruises, the ruptured
cell walls and tissues provide a better conductive medium
and ultimately more heat is absorbed internally, resulting
in lower berry skin temperatures. These inferences can be
explained by the thermal window theory [34].

Low-Field Nuclear Magnetic Resonance (LF-NMR)
and Magnetic Resonance Imaging (MRI)

LF-NMR is a time-domain NMR measurement that exploits
the differences in molecular mobility between different food
components, as reflected in the transverse relaxation times (T,)
of protons (usually the hydrogen nuclei of water) [35]. MRI is
a pseudo-color imaging that can show the density of hydrogen
protons in water and is used to reflect images of water content
in food, water distribution, and its texture. Moreover, MRI
can present the signals of different water phases (free water/
bound water) in food [36]. Water is contained in all foodstuffs,
which has an important influence on the physical properties of
food during processing. The physical properties and content
of water compared to other food components determine the
dominance of water in food composition [37]. LF-NMR is an
emerging tool for non-destructive detection of moisture con-
tent, moisture migration, water status, and distribution during
food processing and storage. The applications of LF-NMR in
berries processing detection discussed in this paper cover the
processing of drying [38—41] and freezing [42, 43] as well as
the analysis of decay [44, 45], during which water undergoes
various changes.

Miscellaneous Techniques

E-nose is a non-destructive and rapid detection technique
that uses sensor arrays, chemometrics, and Al algorithms for
odor detection and identification. The application of E-nose
in fresh food covers food classification, flavor detection, and
spoilage evaluation [46]. Fruits are rich in volatile aromas
and the E-nose allows to detect changes or distinguish differ-
ences in volatile compounds in fruits. Application scenarios
of E-nose in berries include ripeness detection [47], disease
detection [48], producing area identification [49], volatile
odor change monitoring during drying [50], and others.

X-ray CT or X-ray micro-computed tomography (pCT
or micro-CT) is a technique for non-destructive visualiza-
tion of internal structures. The resolution of X-ray pCT can
be as high as several hundred nanometers. X-ray CT shows
the structure of a cross-section of food tissue based on its
absorption of different radiation doses of X-rays or presents
a three-dimensional structure by computer 3D reconstruction
[51]. For example, X-ray micro-CT quantified the growth of
3D ice crystals in frozen carrots [52], and synchrotron X-ray
CT scanners showed the 3D microstructure of ice crystals
and air cells in ice cream in real-time imaging [53]. In berry
processing, desktop X-ray CT and synchrotron X-ray CT
were used to detect ice crystals and microstructures in the
frozen processing of strawberries [54].

These aforementioned ADEs provide a large amount of
data on berries, but these data are usually high-dimensional,
complex, and difficult to understand intuitively. Al-based
algorithms can analyze and interpret this intricate first-hand
data from ADE, and model predictions based on conven-
tional parameters.

Artificial Intelligence-Based Techniques

In scientific terms, Al is a wide-ranging branch of computer
science that includes time-honored simple linear regression
(mathematical models), not just most of the Al examples one
hears about today such as autonomous driving and intelligent
robots. Many Al algorithms have been successfully applied
in berry processing; they include mathematical regression
models, chemometrics, machine learning, artificial neural
network (ANN), and deep learning, and the relationships
between these Al subfields are presented in Fig. 1.

Mathematical Modeling

Mathematical models are based on description of complex
scientific processes through concise mathematical equations
and are generally useful in scenarios where detection and/or
desired performance is difficult to achieve. With the devel-
opment of mathematical modeling software and computer
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Fig. 1 The relationship between Al, machine learning, mathematical
model, chemometrics, ANN, and deep learning. Al, artificial intelli-
gence; ANN, artificial neural network

technology, the ability of mathematical modeling to describe
complex problems has become reliable. Food processing is
complex but validated mathematical models can now be
developed and used with confidence to describe the kinetics,
heat transfer, mass transfer, heat treatment at high and low
temperatures, non-thermal decontamination, etc. [55-58].
Furthermore, computational fluid dynamics (CFD) also
provides a valuable tool for simulation of various food pro-
cessing operations. Several reviews have appeared in recent
years on the application of mathematical models (e.g., fruit
drying [59, 60], vacuum cooling [61], freezing [62, 63],
and microbial inactivation [64—-67]) and CFD simulations
(drying [68-70], chilling and freezing [71], and microbial
inactivation [72, 73]) in food processing. Real-time qualita-
tive and quantitative measurements of moisture, microor-
ganisms, ice crystals, and microstructure changes in berry
drying, disinfecting, and freezing processing, respectively,
all pose great challenges to ADE. Mathematical models can
provide a viable tool to tackle complex scenarios, although
literature on the application of CFD in berry processing is
still rather limited. Several research papers have proposed
and tested mathematical models for the prediction of the
dynamics of moisture content in berry drying with multiple
drying condition parameters as input variables [39, 74-76].
For example, Sun et al. [59] summarized nine mathematical
models reported in the literature for the berry drying pro-
cess, most of which are exponential family nonlinear models.
The prediction of microbial inactivation curves and decon-
tamination time in berry disinfecting was also achieved with
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the assistance of mathematical models [77-80]. Zhao et al.
[81] used mathematical models to analyze the heat trans-
fer during freezing of bayberry, and predicted the freezing
time—temperature curve.

Chemometrics

Chemometrics can be classified as a machine learning. It
is basically a set of tools that use mathematics, statistics,
and computing to process data generated by chemical pro-
cesses and to maximize the extraction of useful chemical
information. Modern testing instruments generate massive
amounts of data, but the accuracy of prediction models may
be reduced due to too much redundant data and similar data
[82]. The dimensionality reduction algorithm in chemomet-
rics solves the curse of dimensionality by feature selection
and feature extraction [31], which is important for the sim-
plification and robustness improvement of the model [28].
The common feature selection methods include competitive
adaptive reweighted sampling (CARS), successive projec-
tion algorithm (SPA), and uninformative variable elimi-
nation (UVE), and the reduced dimensional variables are
a subset of the original feature variables. There are com-
mon feature extraction methods such as linear discriminant
analysis (LDA), principal components analysis (PCA), and
partial least squares (PLS), which achieve dimensionality
reduction by converting the original feature variables into
new feature variables. A large variety of chemometric-based
feature selection and feature extraction methods are applied
to the dimensionality reduction of the electromagnetic spec-
trum in berry sorting processes [28, 29, 44]. There are also
some other ways of dimensionality reduction based on tra-
ditional machine learning. In addition to the chemometric
dimensionality reduction algorithm, there are some other
dimensionality reduction methods, which are given together
in Table 1.

Traditional Machine Learning

Machine learning is the core of Al and allows the construc-
tion of models for detection and prediction [83]. Figure 2
presents the classification of machine learning and its rel-
evant applications in berry processing. Machine learning
can be classified into unsupervised learning with dimen-
sionality reduction and clustering as subsets, and super-
vised learning with classification and regression as subsets
[84]. Unlike deep learning algorithms, traditional machine
learning techniques usually need to be supplemented with
additional feature selection or feature extraction methods.
After the dimensionality reduction process, the data are
fed to classification or regression models for prediction.
Classification and regression are used for qualitative detec-
tion of categorical variables and quantitative prediction of
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Fig.2 The classification of
machine learning and its rel-
evant detection applications in

berry processing Unsupervised

Supervised

continuous variables, respectively. In the berry processing,
applications of classification include detection of berry
traits, bruise, decay, and maturity, and the results are clas-
sified into two to multiple classes (binary classification and
multinomial classification, respectively). The application of
regression includes the detection of berry chemical compo-
nents content, moisture content, pesticide residue content,
microbial content, processing time prediction, and kinetic
simulation. A variety of classification and regression model
algorithms based on traditional machine learning are listed
in Table 1. However, probably due to the lack of relevant
ADEs, there are fewer traditional machine learning algo-
rithms applied in berry drying, decontamination, and freez-
ing processing except for some mathematical models. The
performance of classification models is mainly evaluated
by accuracy, precision, recall, and F1-score [30], while the
performance of regression models is mainly evaluated by
R?, root mean square error (RMSE), and residual predic-
tion deviation (RPD) [38]. Figure 3 shows the traditional
machine learning for classification of thermal image data
after feature extraction and feature selection in blueberry
bruise detection.

ANNs and Deep Learning

ANN and deep learning are at the forefront of Al technology
development, and have penetrated into various areas includ-
ing intelligent food processing [85]. ANN is a simplified
algorithmic model of biological neurons, and ANN consists
of an input layer, one or more hidden layers, and an output
layer [86]. Deep learning is a form of machine learning that
uses ANN as the underlying architecture and has multiple
hidden layers. Deep learning has powerful feature learning
(automatic feature extraction), classification, and regression
capabilities, which are more advantageous than traditional
machine learning algorithms and manual feature extractors
(chemometrics-based dimensionality reduction algorithms,
etc.) [31, 87]. Deep learning can be categorized into three
main types: CNN, recurrent neural network (RNN), and

183
- : : Feature Selection
Dimensionality
Reduction ]
Feature Extraction
Clustering
Output Variable Detection Applications
. . | | Qualitative output, || traits, bruise, decay,
Clhssfiitiio categorical variable maturity, etc.
o components content,
Regression - Quar}tltatlve ou.tput, —- time prediction,
continuous variable . ;
kinetic simulation, etc.

generative adversarial network (GAN) [88]. Wang et al.
[30] quickly detected internal damage of blueberry with
the help of CNN and HSI, where CNN not only implicitly
extracted image features through the convolutional layer
but also acted as a classifier. Fully convolutional networks
(FCNs) can learn information in both the spectral and spatial
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Fig. 3 Digital processing flow for blueberry bruise detection by ther-
mal imaging [34]
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dimensions, whereas support vector machine (SVM) clas-
sifiers are limited to learning information from predefined
features [89].

Moreover, with the advancement of ANN research,
some common neural networks such as back-propagation
neural network (BPNN), radial basis function neural net-
work (RBFNN), probabilistic neural networks (PNNs), and
extreme learning machine (ELM) [90] have been developed.
Various ANN and deep learning specific algorithms provide
an excellent tool for berry sorting, quantitative detection of
chemical composition, and prediction of key parameters in
drying and freezing processing (Tables 1, 2 and 4). How-
ever, ANN and deep learning require a large amount of data
for training to get a good prediction performance, so it is
also not a general-purpose algorithm, especially when the
amount of training data is quite limited.

Miscellaneous

Fuzzy logic (FL) simulates the process of human reasoning
without requiring precise inputs and is suitable for systems
that are difficult to model mathematically [91]. The main
mechanism of FL is If-Then rule, and FL are considered as
Al but not machine learning. Rad et al. [74] predicted the
moisture ratio of white mulberry fruit using the FL. model
with conventional parameters from the convective-infrared
drying process as input.

Adaptive neuro fuzzy inference system (ANFIS) inte-
grates the principles of ANN and FL and has the advantages
of both. Taghinezhad et al. [92] used ANFIS to predict the
energy and exergy parameters during drying of blackberries
by combined hot air-infrared dryer with ultrasound pretreat-
ment, where the ANFIS method was more accurate than
ANN. ANFIS is also an effective controller for complex
systems. Riverol et al. [93] reported the adaptive advanced
control of ANFIS in a fluidized bed freezer for strawberry
freezing process, which performed better than the classical
state feedback controller.

Processing Applications

This paper provides a comprehensive yet concise review of
the intelligent detection technologies and Al methodologies
applied in four distinct processing procedures for berries:
sorting (Table 1), drying (Table 2), disinfection (Table 3),
and freezing (Table 4). The quantitative detection of the
chemical composition of various berries is generally car-
ried out for fresh berries. Pesticide residue detection can be
used as an indicator of the effectiveness of washing/disin-
fecting. In this paper, the quantitative detection of chemical
components and pesticide residue detection were classified

@ Springer

into sorting (Table 1) and disinfection (Table 3) of berry
processing procedures, respectively.

Sorting

During the berry harvest season, manual harvesting or rapid
harvesting using large agricultural machinery can result in
inconsistent quality of the collected berries. The fragile skin
and juicy nature of berries also pose challenges in their sta-
ble storage. The sorting of berries is therefore an important
part of the berry pretreatment process and the first step in
berry quality control.

The application of intelligent detection technologies and
Al methods in sorting of berry fruits is showed in Table 1.
The detection in the berries sorting can be broadly divided
into two major aims: classification of physical characteristics
and quantification of chemical composition. The detection
aims of physical characteristics include trait (shape, size,
color, hardness), bruise, decay, and maturity. On the other
hand, the quantitative detection of chemical nutrient compo-
nents includes soluble solid content (SSC) [95-97], vitamin
C (VC) [98], pH [98], chlorophylls [99], anthocyanins [100],
polysaccharides [101, 102], flavonoids [31], and phenolic
[31, 103].

A typical full sorting system includes a product flow
conveyor, detection equipment, Al algorithms, and removal
mechanics. Detection technology is the key to any sorting
system, as its accuracy and speed of detection determine
the overall performance and efficiency as well as cost-
effectiveness of the whole sorting system. In the sorting
processes, almost all of these ADEs are based on electro-
magnetic spectroscopy, such as CVS, NIR, HSI, thermal
imaging, and LF-NMR. In addition, a variety of Al-based
dimensionality reduction algorithms, and classification and
regression models are used to process data from detection
devices. The coupling of these ADE and Al technologies
gives the sorting system the advantage of being accurate,
non-destructive, non-contact, and fast, ensuring a high-
throughput sorting process. Figure 4 shows the process of
blueberry decay detection, which can represent the general
ADE and Al-based classification modeling process [44].
Firstly, the raw spectral information and relaxation param-
eters information of blueberries were obtained by HSI and
LF-NMR, respectively. Then, the CARS algorithm and SPA
algorithm were used to dimensionality reduction of the raw
spectral information to obtain the characteristic wavelength,
and use it and the selected LF-NMR parameters by Pearson
correlation and Spearman correlation as input variables.
Finally, these input variables were put into PLS-DA, PNN,
and BPNN three models for classification modeling, and
then the decay of blueberry was detected.
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Fig.4 Flowchart of detecting
decayed blueberry [44]. HSI,
hyperspectral imaging; LF-
NMR, low-field nuclear mag-
netic resonance; T, transverse
relaxation time; PLS-DA, par-
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Drying

Drying is one of the most common methods for preserv-
ing berries [59]. A variety of traditional and emerging
drying techniques are used for berry drying, including hot
air convection drying [39, 105, 106], vacuum drying [40,
75], fluidized bed drying [107], freeze drying [108, 109],
and various physical field-assisted drying methods [38,
92]. Freeze drying is generally considered to be the best
method of dehydration, but it is also an energy-intensive
and lengthy process [94, 104]. The low moisture content
and low water activity properties imparted by drying bring
many advantages to dried food products, including long-
term storage, novel product formats, convenient handling,
and reduces cost of transportation [114]. However, there are

@ Springer

Establish best model to
detect decayed fruit

also potential product defects such as shrinkage, discolora-
tion, case hardening, flavor, and thermosensitive components
loss [122, 130]. The parameters such as moisture content,
moisture distribution, drying temperature, drying rate, and
drying end-point during the berry drying process affect the
final quality of the dried product [41]. In summary, the dry-
ing process is complex, dynamic, unsteady, highly nonlinear,
strongly interactive, successively interconnected, and mul-
tivariable thermal process whose underlying mechanisms
are not yet perfectly understood [110]. Therefore, rapid and
intelligent detection of drying conditions and drying food
parameters during drying is very important to ensure the
quality of dried products. The detection of berry moisture
information (content, types, migration, etc.) during the dry-
ing process is the most valuable aspect in monitoring the
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«Fig.5 Application of LF-NMR and MRI in the detection of mul-
berries drying [39]. T, curves for mulberries dried at different tem-
peratures: A 40 °C; B 50 °C; C 60 °C; and D 70 °C. MRI images
of mulberries dried at 50 °C: E longitudinal section; F cross section.
LF-NMR, low-field nuclear magnetic resonance; MRI, magnetic res-
onance imaging; T,, transverse relaxation time

drying process. LF-NMR technology has become a novel
detection tool in the field of food drying with the advan-
tage of specific detection of water hydrogen nuclei. Figure 5
shows the application of LF-NMR and MRI in detecting
the drying of mulberries. The MRI images visualized the
process of moisture content reduction in drying. The trans-
verse relaxation parameters of LF-NMR can be used as input
variables for predictive models: for drying kinetic simula-
tions [39], and for prediction of drying end-points [38] and
sublimation/desorption drying transition points [41] in the
berry freeze-drying process.

Table 2 presents several advanced detection techniques
and Al-based methods applied in berry drying. The detec-
tion techniques used in the drying process can be broadly
classified as LF-NMR/MRI [38-41], NIR [41, 111], CVS
[112, 113], capacitor microphone [10], and directly giving
the conventional parameters related to drying. The obtained
detection data are then used for predictive modeling using
ANN, mathematical models, and other Al-based algorithms
to detect key points, moisture information, nutrient com-
ponents content, changes in appearance, crispiness, drying
efficacy, and drying kinetic simulations during the berries
drying process.

Disinfection and Decontamination

Berries that have not undergone microbial inactivation
procedures can cause various decay problems and a short
shelf life. Also, pathogenic viruses are able to survive on
unsterilized berries, which would pose a health risk to
humans [6]. Frozen berries have been implicated as the food
vehicle in outbreaks of hepatitis A virus [5] and norovirus
[115] infections in recent decades. Berry disinfection and
decontamination options can be categorized as disinfectant
decontamination, thermal decontamination, and non-thermal
decontamination. Disinfectant decontamination includes
gaseous chlorine dioxide [116, 117], acetic acid [118], per-
acetic acid [119], and others [120]. Thermal decontamina-
tion is rarely applied due to the richness of the heat-sensitive
components of berries. Much research has been devoted to
developing novel non-thermal decontamination methods that
allow microorganisms to be inactivated under mild condi-
tions, thereby better preserving the sensory and nutritional
activity of the fruits. Some of the non-thermal decontami-
nation methods of fruits listed here include application of
plasma [121], microwave [33], high hydrostatic pressure
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[123], irradiation [124], pulsed light [125], ozone [126],
ultraviolet [127], and hydrothermodynamic cavitation [128].
Perez-Lavalle et al. [129] have reviewed the individual and
combined non-thermal and physical techniques for micro-
bial inactivation applied to fresh blueberries which are also
applicable to most other berries as well.

Due to the nature of microorganisms that are not eas-
ily detected quickly and accurately, the assessment of the
microbial inactivation performance of berries has been
dominated by the traditional time-consuming plate counts
[77, 131-135]. Real-time quantitative PCR (RT-qPCR) is a
standard method for the detection of hepatitis A virus and
norovirus in berry fruit [136, 137]. However, a full RT-
gPCR procedure can take several hours and does not allow
for true real-time detection [128]. The increasing concerns
over food-borne outbreaks necessitate rapid, on-site, and
sensitive methods for the detection of microorganisms in
food matrices [138, 139]. In recent years, biosensors have
become a hot topic of research in the field of food safety test-
ing [140, 141]. However, these fast and sensitive biosensors
are hardly employed in berry decontamination, probably due
to the complexity of sample pretreatment. In addition to the
detection in the microbiological field, the decontamination
process also has an impact on the biochemical substances of
the berries [142, 143]. Park et al. [77] found that cold plasma
treatment of chokeberries resulted in a significant decrease
in anthocyanin content, while soluble solids content and pH
were not affected. In berry processing, decontamination of
berries includes washing and disinfection, and is always per-
formed together. Sarangapani et al. [144] found that cold
plasma application has the ability to eliminate microorgan-
isms from blueberries and also degrade residues of the pes-
ticides boscalid and imidacloprid. Therefore, the pesticide
residue content on the berry surface might also be an indica-
tor for the evaluation of the washing and sterilizing effect.

Selected articles on mathematical modeling of disinfec-
tion kinetic curves, parameter monitoring of plasma disin-
fection, and pesticide residue content detection about berries
were reviewed and are summarized briefly in Table 3. As of
now, the presentation of ADE-based intelligent detection in
fruit disinfection/decontamination processes is rare.

Freezing

Freezing is a common method of preserving berry fruits to
maintain freshness and nutrition and to achieve increased
shelf life. The freezing process is a complex, multi-stage
process that basically follows five basic steps: cooling
period, supercooling period, ice nucleation, latent heat ther-
mal storage process, and ice sensible heat thermal storage
process [145]. Typical temperature—time curves for typical
food freezing are displayed in Fig. 6 [145]. The freezing
conditions and physical field-assisted freezing determine the
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Fig.6 A typical temperature—
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final status of the ice crystals formed, whose structure and
distribution have a critical impact on frozen berries quality
[146, 147]. Freezing causes the berries to dehydrate leading
to surface frosting; so the berries should be allowed to freeze
quickly to minimize dehydration losses. Meanwhile, rapid
freezing can form a large number of small ice crystals that
do not harm cell membranes [148, 149]. van der Sman [150]
describes the freezing operation and ice crystal formation,
how the freezing rate affects the size of the ice crystals and
thus the quality of the food. Physical field-assisted freez-
ing techniques are considered as a strategy to control the
freezing method to improve the quality of the frozen prod-
uct [151-154]. These novel aids include pressure transfer,
magnetic field [146, 155], electric field [156], electrostatic
[157], microwave [158], radio frequency [159], and ultra-
sound [160].

To obtain good quality frozen berries, the freezing pro-
cess ideally needs much information that should be detected
dynamically, including freezing temperature curve, freezing
speed, ice crystal growth process, ice crystal structure and
distribution, freezing rate, and microstructure. The measure-
ment of the internal temperature of food products during the
freezing process is the most important measurement, but
currently, it is almost exclusively performed with invasive
temperature probes [54, 81]. This method of temperature
measurement may not be suitable for small, fragile, and juicy
berries, as it causes significant structural damage and will
affect the accurate measurement of the internal tempera-
ture. However, as of now, there is no better solution. Table 4
shows some detection techniques and Al-based methods
applied in berry freezing. In berry freezing, LF-NMR and
MRI have been performed to detect the distribution and

migration of water in blueberries during cold storage and
freeze—thaw [42, 43]. On the whole, there are still fewer
studies that use ADE and Al-based methods for frozen berry
detection.

Recently, several new and improved detection technolo-
gies have demonstrated applicability in food freezing, such
as LF-NMR/MRI, X-ray CT, and Raman spectroscopy. LF-
NMR and MRI techniques have also been used to evaluate
the water dynamics [161], water migration [162], and freez-
ing storage time [163] of meat during freezing processing.
MRI can obtain information about the moisture state of ice
crystals and demonstrate the structure of ice crystals, which
is an important detection tool in the freezing process [147,
164]. X-ray CT can detect and visualize the microstructure
of frozen foods such as minced beef [165], strawberry [54],
carrots [52], apples and potatoes [166], bell peppers, and
cucumbers [167]. Raman spectroscopy allows the rapid
measurement of sensory and physicochemical properties of
frozen foods without any pretreatment [168]. In addition,
mathematical-based methods such as mathematical mod-
eling, finite element modeling (FEM), and CFD provide
valuable solutions for freezing curves simulation, freez-
ing time prediction, and high-performance freezing system
design in freezing processes. Zhao et al. [62] have reviewed
the mechanisms of ice crystal formation, propagation, and
glass transition during food freezing and discussed math-
ematical models of heat and mass transfer for predicting
freezing time and optimizing freezing conditions. Rodriguez
et al. [169] present mathematical simulation modeling of a
magnetic field-assisted frozen food process to evaluate the
magnetic field strength and magnetic field distribution in the
frozen space and frozen material. FEM has become a widely
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used numerical simulation tool for monitoring and control-
ling changes in food quality during freezing and thawing
processes [170]. CFD models for heat and mass transfer in
hydrofluidization systems during food chilling and freez-
ing were reviewed by Peralta et al. [71]. Differential scan-
ning calorimetry (DSC) [164], various microscopes [164,
171, 172], etc. are also used to detect the physicochemical
or structural properties of frozen foods for the purpose of
frozen product quality and freezing damage assessment.
Nonetheless, DSC and various microscopic structural deter-
mination techniques are in use although they require some
degree of destructive pretreatment of the sample prior to
measurement.

Conclusion and Future Trends

Berries are one of the most popular fruits. Their perish-
ability and seasonality requires processing of fresh berries
to improve quality, shelf life, and market value. This paper
reviews various smart detection techniques and methods in
berry sorting (trait classification, defect detection, chemi-
cal component quantification), drying, disinfection/decon-
tamination, and freezing. Rapid non-destructive testing of
product quality and process parameters in berry process-
ing provides a reference for improving product quality,
understanding processing principles, and optimizing the
processing conditions. These modern intelligent detection
technologies and methods cover a diverse range of ADEs
and Al-based methods. Hardware-based detection equipment
gives first-hand data on berries, and Al-based methods use
this raw data to then perform classification or regression
modeling predictions. Some mathematical models and ANN
algorithms use conventional detection parameters for mod-
eling predictions. In addition, some novel advanced com-
putational tools such as deep learning, FEM, and CFD also
provide viable solutions for intelligent detection and simula-
tion in berry processing. Following are some recommenda-
tions based on this review. For the quantitative detection
of chemical composition, almost all detection targets were
performed on fresh berries. Considering the principles and
the non-destructive and rapid advantages of these ADE and
Al-based methods, it is feasible to monitor changes in nutri-
ent composition during drying, disinfection, and freezing
of berries in future studies. The monitoring of changes in
the chemical components of berry processing will provide a
reference for the design and improvement of berries process-
ing systems. The powerful feature learning and prediction
capabilities of deep learning tend to perform better com-
pared to traditional machine learning when a large amount
of data is available for training. With enhanced computer
performance, the application of deep learning in berry detec-
tion should be explored more widely and actively. The most
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urgent problem to be solved is the serious lack of detection
equipment in the fields of drying, disinfecting, and freezing
processing, which requires the equipment manufacturers and
researchers to make efforts to develop and explore novel
rapid and non-destructive tools. Finally, validated computer
simulation techniques as CFD should be utilized in the opti-
mization and design of berry processing systems.

Acknowledgements We acknowledge financial supports
from the National Key R&D Program of China (Contract No.
2017YFD0400901), Jiangsu Province Key Laboratory Project of
Advanced Food Manufacturing Equipment and Technology (No.
FMZ202003), and Special Funds for Taishan Industry Leading Talents
Project, all of which enabled us to carry out this study.

Declarations

Conflict of Interest The authors declare no competing interests.

References

1. Venskutonis PR (2020) Chapter 5—berries. In: Galanakis CM
(ed) Valorization of fruit processing by-products. Academic
Press, New York, pp 95-125

2. Srdi¢-Raji¢ T, Konic Risti¢ A (2016) Antioxidants: role on health
and prevention. In: Caballero B, Finglas PM, Toldra F (eds)
Encyclopedia of food and health. Academic Press, Oxford, pp
227-233

3. Davidson PM, Cekmer HB, Monu EA, Techathuvanan C (2015)
1—the use of natural antimicrobials in food: an overview. In:
Taylor TM (ed) Handbook of natural antimicrobials for food
safety and quality. Woodhead Publishing, Oxford, pp 1-27

4. Miranda RC, Schaffner DW (2018) Farm to fork quantitative
microbial risk assessment for norovirus on frozen strawberries.
Microb Risk Anal 10:44-53

5. Ruscher C, Faber M, Werber D, Stark K, Bitzegeio J, Michaelis
K, Sagebiel D, Wenzel JJ, Enkelmann J (2020) Resurgence of an
international hepatitis A outbreak linked to imported frozen straw-
berries, Germany, 2018 to 2020. Eurosurveillance 25(37):11-19

6. Ortiz-Sola J, Vinas I, Colas-Meda P, Anguera M, Abadias M
(2020) Occurrence of selected viral and bacterial pathogens and
microbiological quality of fresh and frozen strawberries sold in
Spain. Int J Food Microbiol 314:108392

7. Houhou R, Bocklitz T (2021) Trends in artificial intelligence,
machine learning, and chemometrics applied to chemical data.
Anal Sci Adv 2:128-141

8. Zhu X, Rehman KU, Wang B, Shahzad M (2020) Modern soft-
sensing modeling methods for fermentation processes. Sensors
20(6):1771

9. Assawajaruwan S, Hitzmann B (2019) Process analysis | bio-
process analysis. In: Worsfold P, Poole C, Townshend A, Mird
M (eds) Encyclopedia of analytical science, 3rd edn. Academic
Press, Oxford, pp 377-383

10. Przybyl K, Duda A, Koszela K, Stangierski J, Polarczyk M, Gierz
L (2020) Classification of dried strawberry by the analysis of the
acoustic sound with artificial neural networks. Sensors 20(2):499

11. Blasco J, Munera S, Aleixos N, Cubero S, Molto E (2017)
Machine vision-based measurement systems for fruit and veg-
etable quality control in postharvest. In: Hitzmann B (ed) Meas-
urement, modeling and automation in advanced food processing.
Springer International Publishing, Cham, pp 71-91



Food Engineering Reviews (2022) 14:176-199

195

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Cubero S, Lee WS, Aleixos N, Albert F, Blasco J (2016) Auto-
mated systems based on machine vision for inspecting citrus
fruits from the field to postharvest—a review. Food Bioprocess
Technol 9(10):1623-1639

Patel KK, Kar A, Jha SN, Khan MA (2012) Machine vision sys-
tem: a tool for quality inspection of food and agricultural prod-
ucts. J Food Sci Technol 49(2):123-141

Wu D, Sun D-W (2013) Colour measurements by computer
vision for food quality control—a review. Trends Food Sci Tech-
nol 29(1):5-20

Oo LM, Aung NZ (2018) A simple and efficient method for auto-
matic strawberry shape and size estimation and classification.
Biosyst Eng 170:96-107

Cavallo DP, Cefola M, Pace B, Logrieco AF, Attolico G (2019)
Non-destructive and contactless quality evaluation of table
grapes by a computer vision system. Comput Electron Agric
156:558-564

Zhang M, De Baerdemaeker J, Schrevens E (2003) Effects of
different varieties and shelf storage conditions of chicory on
deteriorative color changes using digital image processing and
analysis. Food Res Int 36(7):669-676

Castro W, Oblitas J, De-la-Torre M, Cotrina C, Bazan K, Avila-
George H (2019) Classification of cape gooseberry fruit accord-
ing to its level of ripeness using machine learning techniques and
different color spaces. IEEE Access 7:27389-27400

Azarmdel H, Jahanbakhshi A, Mohtasebi SS, Munoz AR (2020)
Evaluation of image processing technique as an expert system
in mulberry fruit grading based on ripeness level using artificial
neural networks (ANNs) and support vector machine (SVM).
Postharvest Biol Technol 166:111201

Leiva-Valenzuela GA, Aguilera JM (2013) Automatic detection
of orientation and diseases in blueberries using image analy-
sis to improve their postharvest storage quality. Food Control
33(1):166-173

Zhang M, Li C, Yang F (2019) Optical properties of blueberry
flesh and skin and Monte Carlo multi-layered simulation of
light interaction with fruit tissues. Postharvest Biol Technol
150:28-41

Basile T, Marsico AD, Perniola R (2021) NIR analysis of intact
grape berries: chemical and physical properties prediction using
multivariate analysis. Foods 10(1):113

Wang JY, Zhang M, Gao ZX, Adhikari B (2018) Smart storage
technologies applied to fresh foods: a review. Crit Rev Food Sci
Nutr 58(16):2689-2699

Oliveira GA, Bureau S, Renard CM-GC, Pereira-Netto AB,
Castilhos F (2014) Comparison of NIRs approach for predic-
tion of internal quality traits in three fruit species. Food Chem
143:223-230

Hu MH, Zhai GT, Zhao Y, Wang ZD (2018) Uses of selection
strategies in both spectral and sample spaces for classifying hard
and soft blueberry using near infrared data. Sci Rep 8:6671

Wu D, Sun D-W (2013) Advanced applications of hyperspec-
tral imaging technology for food quality and safety analysis and
assessment: a review—part I: fundamentals. Innovative Food Sci
Emerging Technol 19:1-14

Huang M, Wan X, Zhang M, Zhu Q (2013) Detection of insect-
damaged vegetable soybeans using hyperspectral transmittance
image. J Food Eng 116(1):45-49

Weng SZ, Yu S, Dong RL, Pan FF, Liang D (2020) Nondestruc-
tive detection of storage time of strawberries using visible/near-
infrared hyperspectral imaging. Int J Food Prop 23(1):269-281

Shao YY, Wang YX, Xuan GT, Gao ZM, Hu ZC, Gao C, Wang
KL (2020) Assessment of strawberry ripeness using hyperspec-
tral imaging. Anal Lett 54(10):1547-1560

Wang ZD, Hu MH, Zhai GT (2018) Application of deep learn-
ing architectures for accurate and rapid detection of internal

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

mechanical damage of blueberry using hyperspectral transmit-
tance data. Sensors 18(4):1126

Zhang C, Wu WY, Zhou L, Cheng H, Ye XQ, He Y (2020)
Developing deep learning based regression approaches for
determination of chemical compositions in dry black goji ber-
ries (Lycium ruthenicum Murr.) using near-infrared hyperspec-
tral imaging. Food Chem 319:126536

Huang LX, Zhou YB, Meng LW, Wu D, He Y (2017) Com-
parison of different CCD detectors and chemometrics for pre-
dicting total anthocyanin content and antioxidant activity of
mulberry fruit using visible and near infrared hyperspectral
imaging technique. Food Chem 224:1-10

Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K,
Rusanova M, Atanassov I, Kozakova Z, Krcma F (2018) Micro-
wave plasma torch generated in argon for small berries surface
treatment. Appl Sci 8(10):1870

Kuzy J, Jiang Y, Li CY (2018) Blueberry bruise detection
by pulsed thermographic imaging. Postharvest Biol Technol
136:166-177

Tang F, Vasas M, Hatzakis E, Spyros A (2019) Chapter five—
magnetic resonance applications in food analysis. Annu Rep
NMR Spectrosc 98:239-306

Luo H, Guo C, Lin L, Si Y, Gao X, Xu D, Jia R, Yang W (2020)
Combined use of rheology, LF-NMR, and MRI for character-
izing the gel properties of hairtail surimi with potato starch.
Food Bioprocess Technol 13(4):637-647

Roos YH, Drusch S (2016) Chapter 4—water and phase transi-
tions. In: Roos YH, Drusch S (eds) Phase transitions in foods,
2nd edn. Academic Press, San Diego, pp 79-113

Sun Y, Zhang M, Mujumdar AS, Yu DX (2021) Pulse-spouted
microwave freeze drying of raspberry: control of moisture
using ANN model aided by LF-NMR. J Food Eng 292:110354
Li M, Chen YN, Geng YL, Liu F, Guo LP, Wang X (2021) Con-
venient use of low field nuclear magnetic resonance to determine
the drying kinetics and predict the quality properties of mulber-
ries dried in hot-blast air. LWT-Food Sci Technol 137:110402
Liu ZL, Xie L, Zielinska M, Pan ZL, Wang J, Deng LZ, Wang
H, Xiao HW (2021) Pulsed vacuum drying enhances drying
of blueberry by altering micro-, ultrastructure and water status
and distribution. LWT-Food Sci Technol 142:111013

Liu WC, Zhang M, Bhandari B, Yu DX (2021) A novel com-
bination of LF-NMR and NIR to intelligent control in pulse-
spouted microwave freeze drying of blueberry. LWT Food Sci
Technol 137:110455

Wang Y], Ji SJ, Dai HY, Kong XM, Hao J, Wang SY, Zhou
X, Zhao YB, Wei BD, Cheng SC, Zhou Q (2019) Changes in
membrane lipid metabolism accompany pitting in blueberry
during refrigeration and subsequent storage at room tempera-
ture. Front Plant Sci 10:829

Cao X, Zhang F, Zhao D, Zhu D, Li J (2018) Effects of freezing
conditions on quality changes in blueberries. J Sci Food Agric
98(12):4673-4679

Qiao S, Tian Y, Wang Q, Song S, Song P (2021) Nondestruc-
tive detection of decayed blueberry based on information
fusion of hyperspectral imaging (HSI) and low-field nuclear
magnetic resonance (LF-NMR). Comput Electron Agric
184:106100

Qiao SC, Tian YW, Song P, He K, Song SY (2019) Analysis and
detection of decayed blueberry by low field nuclear magnetic
resonance and imaging. Postharvest Biol Technol 156:110951
Shi H, Zhang M, Adhikari B (2018) Advances of electronic nose
and its application in fresh foods: a review. Crit Rev Food Sci
Nutr 58(16):2700-2710

Aghilinategh N, Dalvand MJ, Anvar A (2020) Detection of ripe-
ness grades of berries using an electronic nose. Food Sci Nutr
8(9):4919-4928

@ Springer



196

Food Engineering Reviews (2022) 14:176-199

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Li CY, Krewer GW, Ji PS, Scherm H, Kays SJ (2010) Gas sen-
sor array for blueberry fruit disease detection and classification.
Postharvest Biol Technol 55(3):144-149

LiQ, Yu X, Xu L, Gao J-M (2017) Novel method for the produc-
ing area identification of Zhongning goji berries by electronic
nose. Food Chem 221:1113-1119

Lopez de Lerma N, Bellincontro A, Mencarelli F, Moreno J, Peinado
RA (2012) Use of electronic nose, validated by GC-MS, to establish
the optimum off-vine dehydration time of wine grapes. Food Chem
130(2):447-452

Schoeman L, Williams P, du Plessis A, Manley M (2016) X-ray
micro-computed tomography (LCT) for non-destructive char-
acterisation of food microstructure. Trends Food Sci Technol
47:10-24

Vicent V, Ndoye FT, Verboven P, Nicolai B, Alvarez G (2019)
Effect of dynamic storage temperatures on the microstructure
of frozen carrot imaged using X-ray micro-CT. J Food Eng
246:232-241

Guo E, Zeng G, Kazantsev D, Rockett P, Bent J, Kirkland M,
Van Dalen G, Eastwood DS, StJohn D, Lee PD (2017) Syn-
chrotron X-ray tomographic quantification of microstructural
evolution in ice cream—a multi-phase soft solid. RSC Adv
7(25):15561-15573

Kobayashi R, Suzuki T (2019) Effect of supercooling accom-
panying the freezing process on ice crystals and the quality of
frozen strawberry tissue. Int J Ref 99:94—-100

Farid MM (2010) Mathematical modeling of food processing,
1st edn. CRC Press, Boca Raton

Erdogdu F, Sarghini F, Marra F (2017) Mathematical modeling
for virtualization in food processing. Food Eng Rev 9(4):295-313
Li L, Zhang M, Bhandari B, Zhou L (2018) LF-NMR online
detection of water dynamics in apple cubes during microwave
vacuum drying. Drying Technol 36(16):2006-2015

Song XJ, Zhang M, Mujumdar AS, Fan L (2009) Drying charac-
teristics and kinetics of vacuum microwave-dried potato slices.
Drying Technol 27(9):969-974

Sun YN, Zhang M, Mujumdar A (2019) Berry drying: mecha-
nism, pretreatment, drying technology, nutrient preservation, and
mathematical models. Food Eng Rev 11(2):61-77

Castro AM, Mayorga EY, Moreno FL (2018) Mathematical
modelling of convective drying of fruits: a review. ] Food Eng
223:152-167

ZhuZ,LiY, Sun DW, Wang HW (2019) Developments of math-
ematical models for simulating vacuum cooling processes for
food products—a review. Crit Rev Food Sci Nutr 59(5):715-727
Zhao Y, Takhar PS (2017) Freezing of foods: mathematical and
experimental aspects. Food Eng Rev 9:1-12

Zhu ZW, Li T, Sun DW (2020) Pressure-related cooling and
freezing techniques for the food industry: fundamentals and
applications. Crit Rev Food Sci Nutr. https://doi.org/10.1080/
10408398.2020.1841729

Evelyn SFVM (2019) Heat assisted HPP for the inactivation of
bacteria, moulds and yeasts spores in foods: log reductions and
mathematical models. Trends Food Sci Technol 88:143-156
Mantoan D, Spilimbergo S (2011) Mathematical modeling of
yeast inactivation of freshly squeezed apple juice under high-
pressure carbon dioxide. Crit Rev Food Sci Nutr 51(1):91-97
Atilgan MR, Yildiz S, Kaya Z, Unluturk S (2021) 2.16—Xkinetic
and process modeling of UV-C irradiation of foods. In: Knoerzer
K, Muthukumarappan K (eds) Innovative food processing tech-
nologies. Academic Press, Oxford, pp 227-255

Simpson R, Nufiez H, Almonacid S (2016) Mathematical esti-
mations of impact of thermal processing on microbial inac-
tivation and quality retention, In: Reference module in food
science, Elsevier, Oxford

@ Springer

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

Ramachandran RP, Akbarzadeh M, Paliwal J, Cenkowski
S (2018) Computational fluid dynamics in drying process
modelling—a technical review. Food Bioprocess Technol
11(2):271-292

Malekjani N, Jafari SM (2018) Simulation of food dry-
ing processes by computational fluid dynamics (CFD);
recent advances and approaches. Trends Food Sci Technol
78:206-223

Kuriakose R, Anandharamakrishnan C (2010) Computational
fluid dynamics (CFD) applications in spray drying of food
products. Trends Food Sci Technol 21(8):383-398

Peralta JM, Zorrilla SE (2019) CFD modeling of heat and mass
transfer in a hydrofluidization system during food chilling and
freezing. In: Sun DW (ed) Computational fluid dynamics in
food processing, 2nd edn. CRC Press, New York, pp 87-104
Park HW, Yoon WB (2018) Computational fluid dynamics
(CFD) modelling and application for sterilization of foods: a
review. Processes 6(6):62

Norton T, Sun DW (2006) Computational fluid dynamics
(CFD)—an effective and efficient design and analysis tool
for the food industry: a review. Trends Food Sci Technol
17(11):600-620

Rad SJ, Kaveh M, Sharabiani VR, Taghinezhad E (2018) Fuzzy
logic, artificial neural network and mathematical model for
prediction of white mulberry drying kinetics. Heat Mass Trans-
fer 54(11):3361-3374

Wang J, Mu WS, Fang XM, Mujumdar AS, Yang XH, Xue
LY, Xie L, Xiao HW, Gao ZJ, Zhang Q (2017) Pulsed vacuum
drying of Thompson seedless grape: effects of berry ripeness
on physicochemical properties and drying characteristic. Food
Bioprod Process 106:117-126

Wray D, Ramaswamy HS (2015) Development of a microwave-
vacuum-based dehydration technique for fresh and microwave-
osmotic (MWODS) pretreated whole cranberries (Vaccinium
macrocarpon). Drying Technol 33(7):796-807

Park YJ, Puligundla P, Mok C (2021) Decontamination of
chokeberries (Aronia melanocarpa L.) by cold plasma treat-
ment and its effects on biochemical composition and storage
quality of their corresponding juices. Food Sci Biotechnol
30(3):405-411

Wang W, Zhou Y, Xiao XN, Yang GL, Wang Q, Wei W, Liu YJ,
Yang H (2018) Behavior of salmonella typhimurium on fresh
strawberries under different storage temperatures and wash treat-
ments. Front Microbiol 9:2091

Rajiuddin SM, Vigre H, Musavian HS, Kohle S, Krebs N, Hansen
TB, Gantzer C, Schultz AC (2020) Inactivation of hepatitis A
virus and murine norovirus on surfaces of plastic, steel and rasp-
berries using steam-ultrasound treatment. Food Environ Virol
12(4):295-309

Trivittayasil V, Tanaka F, Uchino T (2016) Simulation of UV-C
intensity distribution and inactivation of mold spores on straw-
berries. Food Sci Technol Res 22(2):185-192

Zhao YH, Ji W, Guo J, Chen LB, Tian CQ, Wang YT, Wang JJ
(2020) Numerical and experimental study on the quick freezing
process of the bayberry. Food Bioprod Process 119:98-107
Anowar F, Sadaoui S, Selim B (2021) Conceptual and empiri-
cal comparison of dimensionality reduction algorithms (PCA,
KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE).
Comput Sci Rev 40:100378

Saha D, Manickavasagan A (2021) Machine learning techniques
for analysis of hyperspectral images to determine quality of food
products: a review. Curr Res Food Sci 4:28-44

Mohammed M, Khan MB, Bashier EBM (2016) Machine learn-
ing: algorithms and applications. CRC Press, Boca Raton


https://doi.org/10.1080/10408398.2020.1841729
https://doi.org/10.1080/10408398.2020.1841729

Food Engineering Reviews (2022) 14:176-199

197

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Nayak J, Vakula K, Dinesh P, Naik B, Pelusi D (2020) Intelligent
food processing: journey from artificial neural network to deep
learning. Comput Sci Rev 38:100297

Llave YA, Hagiwara T, Sakiyama T (2012) Artificial neural
network model for prediction of cold spot temperature in retort
sterilization of starch-based foods. J Food Eng 109(3):553-560
Zhou L, Zhang C, Liu F, Qiu Z, He Y (2019) Application of
deep learning in food: a review. Compr Rev Food Sci Food Saf
18(6):1793-1811

Theodoridis S (2020) Chapter 18—neural networks and deep
learning. In: Theodoridis S (ed) Machine learning, 2nd edn. Aca-
demic Press, pp 901-1038

Zhang M, Jiang Y, Li C, Yang F (2020) Fully convolutional
networks for blueberry bruising and calyx segmentation using
hyperspectral transmittance imaging. Biosyst Eng 192:159-175
Feng L, Zhang M, Adhikari B, Guo ZM (2019) Nondestructive
detection of postharvest quality of cherry tomatoes using a port-
able NIR spectrometer and chemometric algorithms. Food Anal
Methods 12(4):914-925

Fellows PJ (2017) 1—properties of food and principles of pro-
cessing. In: Fellows PJ (ed) Food processing technology, 4th edn.
‘Woodhead Publishing, Oxford, pp 3—200

Taghinezhad E, Kaveh M, Khalife E, Chen GN (2020) Drying
of organic blackberry in combined hot air-infrared dryer with
ultrasound pretreatment. Drying Technol. https://doi.org/10.
1080/07373937.2020.1753066

Riverol C, Carosi F, Di Sanctis C (2004) The application of
advanced techniques in a fluidised bed freezer for fruits: evalu-
ation of linguistic interpretation vs. stability. Food Control
15(2):93-97

Huang LL, Zhang M, Mujumdar AS, Sun DF, Tan GW, Tang S
(2009) Studies on decreasing energy consumption for a freeze-
drying process of apple slices. Drying Technol 27(9):938-946
Leiva-Valenzuela GA, Lu RF, Aguilera JM (2013) Prediction of
firmness and soluble solids content of blueberries using hyper-
spectral reflectance imaging. J Food Eng 115(1):91-98

Mancini M, Mazzoni L, Gagliardi F, Balducci F, Duca D, Toscano G,
Mezzetti B, Capocasa F (2020) Application of the non-destructive
NIR technique for the evaluation of strawberry fruits quality param-
eters. Foods 9(4):441

Kanchanomai C, Ohashi S, Naphrom D, Nemoto W, Maniwara
P, Nakano K (2020) Non-destructive analysis of Japanese table
grape qualities using near-infrared spectroscopy. Hortic Environ
Biotechnol 61(4):725-733

Weng SZ, Yu S, Guo BQ, Tang PP, Liang D (2020) Non-destructive
detection of strawberry quality using multi-features of hyperspectral
imaging and multivariate methods. Sensors 20(11):3074

Navratil M, Buschmann C (2016) Measurements of reflectance
and fluorescence spectra for nondestructive characterizing ripe-
ness of grapevine berries. Photosynthetica 54(1):101-109
Gales O, Rodemann T, Jones J, Swarts N (2021) Application of
near-infrared spectroscopy as an instantaneous and simultane-
ous prediction tool for anthocyanins and sugar in whole fresh
raspberry. J Sci Food Agric 101(6):2449-2454

Yang L, Gao HQ, Meng LW, Fu XP, Du XQ, Wu D, Huang
LX (2021) Nondestructive measurement of pectin polysaccha-
rides using hyperspectral imaging in mulberry fruit. Food Chem
334:127614

Liu Q, Wei KL, Xiao H, Tu SC, Sun K, Sun Y, Pan LQ, Tu K
(2019) Near-infrared hyperspectral imaging rapidly detects the
decay of postharvest strawberry based on water-soluble sugar
analysis. Food Anal Methods 12(4):936-946

Xiao H, Feng L, Song DJ, Tu K, Peng J, Pan LQ (2019) Grading
and sorting of grape berries using visible-near infrared spectros-
copy on the basis of multiple inner quality parameters. Sensors
19(11):2600

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Wang HC, Zhang M, Adhikari B (2015) Drying of shiitake
mushroom by combining freeze-drying and mid-infrared radia-
tion. Food Bioprod Process 94:507-517

Golpour I, Kaveh M, Chayjan RA, Guine RPF (2020) Optimi-
zation of infrared-convective drying of white mulberry fruit
using response surface methodology and development of a
predictive model through artificial neural network. Int J Fruit
Sci 20:S1015-S1035

Mierzwa D, Szadzinnska J, Pawtowski A, Pashminehazar R,
Kharaghani A (2019) Nonstationary convective drying of
raspberries, assisted by microwaves and ultrasound. Drying
Technol 37(8):988-1001

Yousefi G, Emam-Djomeh Z, Omid M, Askari GR (2014) Pre-
diction of physicochemical properties of raspberry dried by
microwave-assisted fluidized bed dryer using artificial neural
network. Drying Technol 32(1):4-12

Lammerskitten A, Wiktor A, Mykhailyk V, Samborska K,
Gondek E, Witrowa-Rajchert D, Toepfl S, Parniakov O (2020)
Pulsed electric field pre-treatment improves microstructure and
crunchiness of freeze-dried plant materials: case of strawberry.
LWT Food Sci Technol 134:110266

Huang LL, Zhang M, Yan WQ, Mujumdar AS, Sun DF (2009)
Effect of coating on post-drying of freeze-dried strawberry
pieces. J Food Eng 92(1):107-111

Sun Q, Zhang M, Mujunndar AS (2019) Recent developments
of artificial intelligence in drying of fresh food: a review. Crit
Rev Food Sci Nutr 59(14):2258-2275

Sinelli N, Casiraghi E, Barzaghi S, Brambilla A, Giovanelli G
(2011) Near infrared (NIR) spectroscopy as a tool for moni-
toring blueberry osmo-air dehydration process. Food Res Int
44(5):1427-1433

Chen YG, Martynenko A (2013) Computer vision for real-time
measurements of shrinkage and color changes in blueberry
convective drying. Drying Technol 31(10):1114-1123
Khazaei NB, Tavakoli T, Ghassemian H, Khoshtaghaza MH,
Banakar A (2013) Applied machine vision and artificial neu-
ral network for modeling and controlling of the grape drying
process. Comput Electron Agric 98:205-213

Zhang M, Tang J, Mujumdar AS, Wang S (2006) Trends in
microwave-related drying of fruits and vegetables. Trends
Food Sci Technol 17(10):524-534

Miranda R (2019) Understanding and managing risk of noro-
virus contamination on frozen berries from farm to fork. Diss
Abstr Int, B 81-07:22617449

Luu P, Chhetri VS, Janes ME, King JM, Adhikari A (2021)
Efficacy of gaseous chlorine dioxide in reducing Salmo-
nella enterica, E. coli O157:H7, and Listeria monocytogenes
on strawberries and blueberries. LWT-Food Sci Technol
141:110906

Lacombe A, Antosch JG, Wu VCH (2020) Scale-up model of
forced air-integrated gaseous chlorine dioxide for the decontami-
nation of lowbush blueberries. J Food Saf 40(4):e12793
Alvarenga PDL, Vasconcelos CM, Jose J (2021) Application of
ultrasound combined with acetic acid and peracetic acid: micro-
biological and physicochemical quality of strawberries. Mol-
ecules 26(1):16

Singh P, Hung Y-C, Qi H (2018) Efficacy of peracetic acid in
inactivating foodborne pathogens on fresh produce surface. J
Food Sci 83(2):432-439

Li Y, Wu C (2013) Enhanced inactivation of salmonella typh-
imurium from blueberries by combinations of sodium dodecyl
sulfate with organic acids or hydrogen peroxide. Food Res Int
54(2):1553-1559

Rana S, Mehta D, Bansal V, Shivhare US, Yadav SK (2020)
Atmospheric cold plasma (ACP) treatment improved in-package
shelf-life of strawberry fruit. J Food Sci Technol 57(1):102-112

@ Springer


https://doi.org/10.1080/07373937.2020.1753066
https://doi.org/10.1080/07373937.2020.1753066

198 Food Engineering Reviews (2022) 14:176-199
122. Wang HC, Zhang M, Mujumdar AS (2014) Comparison of 138. Summa M, Maunula L (2018) Rapid detection of human norovi-
three new drying methods for drying characteristics and qual- rus in frozen raspberries. Food Environ Virol 10(1):51-60

ity of shiitake mushroom (Lentinus edodes). Drying Technol 139. Jayan H, Pu HB, Sun DW (2020) Recent development in rapid
32(15):1791-1802 detection techniques for microorganism activities in food matri-
123. Huang R, Ye M, Li X, Ji L, Karwe M, Chen H (2016) Evaluation ces using bio-recognition: a review. Trends Food Sci Technol
of high hydrostatic pressure inactivation of human norovirus on 95:233-246
strawberries, blueberries, raspberries and in their purees. Int J 140. Goldschmidt MC (2014) Biosensors—scope in microbiological
Food Microbiol 223:17-24 analysis. In: Batt CA, Tortorello ML (eds) Encyclopedia of food
124. Molina-Chavarria A, Felix-Valenzuela L, Silva-Campa E, Mata- microbiology, 2nd edn. Academic Press, Oxford, pp 274-287
Haro V (2020) Evaluation of gamma irradiation for human noro- 141. OliveiraIS, da Silva AG, de Andrade CAS, Oliveira MDL (2019)
virus inactivation and its effect on strawberry cells. Int J Food Biosensors for early detection of fungi spoilage and toxigenic and
Microbiol 330:108695 mycotoxins in food. Curr Opin Food Sci 29:64-79
125. Huang Y, Ye M, Cao X, Chen H (2017) Pulsed light inactivation 142. Misra NN, Pankaj SK, Frias JM, Keener KM, Cullen PJ (2015)
of murine norovirus, Tulane virus, Escherichia coli O157:H7 and The effects of nonthermal plasma on chemical quality of straw-
Salmonella in suspension and on berry surfaces. Food Microbiol berries. Postharvest Biol Technol 110:197-202
61:1-4 143. de Velde F, Piagentini AM, Guemes DR, Pirovani ME (2013)
126. Jaramillo-Sanchez G, Contigiani EV, Castro MA, Hodara K, Modelling changes in anthocyanins, total vitamin C and colour
Alzamora SM, Loredo AG, Nieto AB (2019) Freshness main- as a consequence of peracetic acid washing disinfection of two
tenance of blueberries (Vaccinium corymbosum L.) during cultivars of strawberries for fresh-cut processing. Int J Food Sci
postharvest using ozone in aqueous phase: microbiological, Technol 48(5):954-961
structure, and mechanical issues. Food Bioprocess Technol 144. Sarangapani C, O’Toole G, Cullen PJ, Bourke P (2017) Atmos-
12(12):2136-2147 pheric cold plasma dissipation efficiency of agrochemicals on
127. Kebbi Y, Muhammad AI, Sant’Ana AS, do Prado-Silva L, Liu D, blueberries. Innovative Food Sci Emerging Technol 44:235-241
Ding T, (2020) Recent advances on the application of UV-LED 145. Youngsang Y, Taiyoung K, Soojin J (2021) Control of ice nuclea-
technology for microbial inactivation: progress and mechanism. tion for subzero food preservation. Food Eng Rev 13(1):15-35
Compr Rev Food Sci Food Saf 19(6):3501-3527 146. Kaur M, Kumar M (2020) An innovation in magnetic field
128. Li FH, Chen G, Zhang B, Fu X (2017) Current applications and assisted freezing of perishable fruits and vegetables: a review.
new opportunities for the thermal and non-thermal processing Food Rev Int 36(8):761-780
technologies to generate berry product or extracts with high 147. Kiani H, Sun DW (2011) Water crystallization and its impor-
nutraceutical contents. Food Res Int 100:19-30 tance to freezing of foods: a review. Trends Food Sci Technol
129. Perez-Lavalle L, Carrasco E, Valero A (2020) Strategies for 22(8):407-426
microbial decontamination of fresh blueberries and derived 148. Rayman Ergiin A, Yanat M, Baysal T (2021) The effects of the
products. Foods 9(11):1558 novel home freezing system on microstructure, color, antioxidant
130. Roknul ASM, Zhang M, Mujumdar AS, Wang Y (2014) A com- activity, and microbiological properties of strawberries. Int J Ref
parative study of four drying methods on drying time and quality 121:228-234
characteristics of stem lettuce slices (Lactuca sativa L.). Drying 149. Alabi KP, Zhu ZW, Sun DW (2020) Transport phenomena and
Technol 32(6):657-666 their effect on microstructure of frozen fruits and vegetables.
131. Panou AA, Akrida-Demertzi K, Demertzis P, Riganakos KA Trends Food Sci Technol 101:63-72
(2021) Effect of gaseous ozone and heat treatment on quality 150. van der Sman RGM (2020) Impact of processing factors on qual-
and shelf life of fresh strawberries during cold storage. Int J Fruit ity of frozen vegetables and fruits. Food Eng Rev 12(4):399-420
Sci 21(1):218-231 151. James C, Purnell G, James SJ (2015) A review of novel and
132. Ortiz-Sola J, Abadias I, Colas-Meda P, Anguera M, Viilas | innovative food freezing technologies. Food Bioprocess Technol
(2021) Inactivation of salmonella enterica, listeria monocy- 8(8):1616-1634
togenes and murine norovirus (MNV-1) on fresh strawberries 152. Mahato S, Zhu ZW, Sun DW (2019) Glass transitions as affected
by conventional and water-assisted ultraviolet light (UV-C). Post- by food compositions and by conventional and novel freezing
harvest Biol Technol 174:111447 technologies: a review. Trends Food Sci Technol 94:1-11
133. Giannoglou M, Xanthou ZM, Chanioti S, Stergiou P, Christopoulos 153. Wu XF, Zhang M, Adhikari B, Sun JC (2017) Recent devel-
M, Dimitrakellis P, Efthimiadou A, Gogolides E, Katsaros G (2021) opments in novel freezing and thawing technologies applied to
Effect of cold atmospheric plasma and pulsed electromagnetic fields foods. Crit Rev Food Sci Nutr 57(17):3620-3631
on strawberry quality and shelf-life. Innovative Food Sci Emerging 154. Xu BG, Zhang M, Bhandari B, Cheng XF, Sun J (2015) Effect of
Technol 68:102631 ultrasound immersion freezing on the quality attributes and water
134. Ahmadnia M, Sadeghi M, Abbaszadeh R, Marzdashti HRG distributions of wrapped red radish. Food Bioprocess Technol
(2021) Decontamination of whole strawberry via dielectric bar- 8(6):1366-1376
rier discharge cold plasma and effects on quality attributes. J 155. Otero L, Rodriguez AC, Perez-Mateos M, Sanz PD (2016)
Food Process Preserv 45(1):e15019 Effects of magnetic fields on freezing: application to biological
135. Yoon YS, Kim JK, Lee KC, Eun JB, Park JH (2020) Effects of products. Compr Rev Food Sci Food Saf 15(3):646-667
electron-beam irradiation on postharvest strawberry quality. J 156. Jha PK, Xanthakis E, Jury V, Havet M, Le-Bail A (2018)
Food Process Preserv 44(9):e14665 Advances of electro-freezing in food processing. Curr Opin Food
136. Fraisse A, Coudray-Meunier C, Martin-Latil S, Hennechart- Sci 23:85-89
Collette C, Delannoy S, Fach P, Perelle S (2017) Digital RT-PCR 157. Fallah-Joshagani S, Hamdami N, Keramat J (2021) Qualitative
method for hepatitis A virus and norovirus quantification in soft attributes of button mushroom (Agaricus bisporus) frozen under
berries. Int J Food Microbiol 243:36-45 high voltage electrostatic field J Food Eng 293:110384
137. Sun BJ, Bosch A, Myrmel M (2019) Extended direct lysis method 158. Sadot M, Curet S, Chevallier S, Le-Bail A, Rouaud O, Havet M

for virus detection on berries including droplet digital RT-PCR
or real time RT-PCR with reduced influence from inhibitors. J
Virol Methods 271:113638

@ Springer

(2020) Microwave assisted freezing part 2: impact of microwave
energy and duty cycle on ice crystal size distribution. Innovative
Food Sci Emerging Technol 62:102359



Food Engineering Reviews (2022) 14:176-199

199

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Hafezparast-Moadab N, Hamdami N, Dalvi-Isfahan M, Farahnaky
A (2018) Effects of radiofrequency-assisted freezing on micro-
structure and quality of rainbow trout (Oncorhynchus mykiss) fil-
let. Innovative Food Sci Emerging Technol 47:81-87

Zhang PZ, Zhu ZW, Sun DW (2018) Using power ultrasound
to accelerate food freezing processes: effects on freezing
efficiency and food microstructure. Crit Rev Food Sci Nutr
58(16):2842-2853

LiJQ, Xia KX, Li Y, Tan MQ (2018) Influence of freezing-thawing
cycle on water dynamics of turbot flesh assessed by low-field nuclear
magnetic resonance and magnetic resonance imaging. Int J Food
Eng 14(1):20170273

Cheng SS, Wang XH, Yang HM, Lin R, Wang HT, Tan MQ
(2020) Characterization of moisture migration of beef during
refrigeration storage by low-field NMR and its relationship to
beef quality. J Sci Food Agric 100(5):1940-1948
Sanchez-Alonso I, Martinez I, Sanchez-Valencia J, Careche M
(2012) Estimation of freezing storage time and quality changes in
hake (Merluccius merluccius, L.) by low field NMR. Food Chem
135(3):1626-1634

Zhu ZW, Zhou QY, Sun DW (2019) Measuring and controlling
ice crystallization in frozen foods: a review of recent develop-
ments. Trends Food Sci Technol 90:13-25

Mulot V, Fatou-Toutie N, Benkhelifa H, Pathier D, Flick D
(2019) Investigating the effect of freezing operating condi-
tions on microstructure of frozen minced beef using an inno-
vative X-ray micro-computed tomography method. J Food Eng
262:13-21

Jha PK, Chevallier S, Xanthakis E, Jury V, Le-Bail A (2020)
Effect of innovative microwave assisted freezing (MAF) on the
quality attributes of apples and potatoes. Food Chem 309:125594
Schudel S, Prawiranto K, Defraeye T (2021) Comparison of
freezing and convective dehydrofreezing of vegetables for reduc-
ing cell damage. J Food Eng 293:110376

Zhang WY, Ma J, Sun DW (2020) Raman spectroscopic tech-
niques for detecting structure and quality of frozen foods:

169.

170.

171.

172.

173.

174.

175.

176.

177.

principles and applications. Crit Rev Food Sci Nutr. https://doi.
org/10.1080/10408398.2020.1828814

Rodriguez AC, Sanchez-Benitez J, Sanz PD (2017) Simulation
of the magnetic freezing process applied to foods. Food Eng Rev
9(4):271-294

Fadiji T, Ashtiani SHM, Onwude DI, Li ZG, Opara UL (2021)
Finite element method for freezing and thawing industrial food
processes. Foods 10(4):869

Dalvi-Isfahan M, Jha PK, Tavakoli J, Daraei-Garmakhany A,
Xanthakis E, Le-Bail A (2019) Review on identification, underly-
ing mechanisms and evaluation of freezing damage. J Food Eng
255:50-60

Jha PK, Xanthakis E, Chevallier S, Jury V, Le-Bail A (2019)
Assessment of freeze damage in fruits and vegetables. Food Res
Int 121:479-496

Moon AY, Noh S, Moon SY, You S (2016) Feasibility study of
atmospheric-pressure plasma treated air gas package for grape’s
shelf-life improvement. Curr Appl Phys 16(4):440-445

Yazici A, Tiryaki GY, Ayvaz H (2020) Determination of pes-
ticide residual levels in strawberry (Fragaria) by near-infrared
spectroscopy. J Sci Food Agric 100(5):1980-1989

Wu D, Meng LW, Yang L, Wang JY, Fu XP, Du XQ, Li SJ,
He Y, Huang LX (2019) Feasibility of laser-induced breakdown
spectroscopy and hyperspectral imaging for rapid detection of
thiophanate-methyl residue on mulberry fruit. Int J Mol Sci
20(8):2017

Mittal GS, Zhang JX (2000) Prediction of freezing time for food
products using a neural network. Food Res Int 33(7):557-562
Goni SM, Oddone S, Segura JA, Mascheroni RH, Salvadori VO
(2008) Prediction of foods freezing and thawing times: artificial
neural networks and genetic algorithm approach. J Food Eng
84(1):164-178

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1080/10408398.2020.1828814
https://doi.org/10.1080/10408398.2020.1828814

	Advanced Detection Techniques Using Artificial Intelligence in Processing of Berries
	Abstract
	Introduction
	Detection Technologies
	Computer Vision Systems
	Near Infrared
	Hyperspectral Imaging
	Thermal Imaging
	Low-Field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI)
	Miscellaneous Techniques

	Artificial Intelligence-Based Techniques
	Mathematical Modeling
	Chemometrics
	Traditional Machine Learning
	ANNs and Deep Learning
	Miscellaneous

	Processing Applications
	Sorting
	Drying
	Disinfection and Decontamination
	Freezing

	Conclusion and Future Trends
	Acknowledgements 
	References


