
Extraction of Pectin from Passion Fruit Peel

C. M. P. FREITAS1
& R. C. S. SOUSA1

& M. M. S. DIAS2
& J. S. R. COIMBRA3

Received: 10 October 2019 /Accepted: 28 August 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The addition of pectin to fluid systems alters its gelling, consistency, and texture characteristics. Thus, the use of this acid
polysaccharide in product development can generate materials with different technological properties, capable of industrial
use. For this, low-cost pectin sources are required. Among these is passion fruit, whose peel is an industrial byproduct that is
rich in pectin. It is noteworthy that passion fruit peel is a byproduct generated in large quantities during fruit processing for the
production of passion fruit pulp and juice, and that Brazil is the world’s largest fruit producer. In this context, this review presents
the characteristics of several methods (conventional extraction, enzyme-assisted extraction, extraction with subcritical fluids,
UAE, MAE, UAME, S-MAE, HHP, DESs, and NADESs) used for pectin extraction and explains the effect of the studied
variables, with emphasis on the extraction from passion fruit peel. The application of pectins in different industrial systems is also
addressed. Pectins are featured as functional food ingredients of high commercial value due to their technological properties. It
also has applications in different areas, such as the pharmaceutical and biotechnology industries.
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Introduction

Pectin, a polysaccharide discovered in 1790, is native to the
cell wall of many plants, mostly fruits and vegetables [1, 2]. It
is known for its extensive use in the food industry because of
its ability to gel and give viscosity and consistency to food
products. It also has applications in different areas, such as the
pharmaceutical and biotechnology industries [3, 4].

Pectin is cited as an attractive investment and has therefore
been industrialized by companies such as CP Kelco, Calleva,
FMC Biopolymers, and Herbstreith & Fox, contributing sig-
nificantly to the global hydrocolloid market.

Most commercial pectins are extracted from citrus peels
such as lemon and orange. However, with the growth of pectin
applications, alternative sources have been presented, such as

guava pulp [5], mango peel [6, 7], passion fruit peel [8, 9], and
fig seed [10].

It is noteworthy that passion fruit peel is a byproduct gen-
erated in large quantities during fruit processing for the pro-
duction of passion fruit pulp and juice, and that Brazil is one
the world’s largest fruit producer. In 2018, 602,651 tons of
passion fruit were harvested in Brazil (Fig. 1), which generat-
ed approximately 319,405 tons of peel in that year [11]. It is
emphasized that the peel represents about 53% of the total
mass [12].

The large quantity of passion fruit peel justifies the need to
study the methodologies that can be used to extract pectin
from the passion fruit peel, the influence of the extraction
conditions, and the results obtained so that propositions of
productive pectin arrangements are efficient.

Pectin Chemical Structure

Pectin naturally exhibits remarkable diversity in its molecular
structure, in which there is a variety of functional groups that
can assign different functionalities to this biomolecule, depend-
ing on the environmental conditions. Selective changes in the
molecular structure of pectin and its characteristics can make
such polysaccharide suitable for numerous applications.
Properties, like size and solubility, associated with chemical
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and enzymatic reactions during the isolation process of pectin
can affect its composition [13–17]. Thus, the functional prop-
erties of pectin are dependent on their structural characteristics.

Pectin is a vegetable macromolecule with one of the most
complex and diverse molecular structure that varies according
to the physiological state of the plant and between its tissues.
The structure of the polysaccharide mainly includes the
homogalacturonan (HG), xylogalacturonan (XGA),
rhamnogalacturonan I (RGI), and rhamnogalacturonan II
(RGII) [8, 15, 18, 19].

The ratio between HG, XGA, RGI, and RGII may vary.
However, HG generally constitutes, on average, 65% of pec-
tin, standing out as the most abundant polysaccharide, while
RGI constitutes 20 to 35%. XGA and RGII are smaller com-
ponents, making up less than 10% [20, 21]. It is worth men-
tioning that the different pectic polysaccharides are not sepa-
rate molecules, but domains covalently linked [19].

Through enzymatic and non-enzymatic reactions, depoly-
merization and de-esterification can occur in HG. Due to de-
polymerization, there is a decrease in the molar mass of pectin
[22]. By de-esterification, polymers are produced with non-
esterified galacturonic acid residues [23, 24]. RGI is mainly
exposed to enzyme-catalyzed depolymerization reactions.
The main and side chains of RGI can be degraded with ease
and affect the average molar mass of pectin [25–27].

Regarding the basic structure, pectin is formed by at least
17 different monosaccharides, of which galacturonic acid is
the most abundant, followed by L-arabinose, D-galactose, L-
rhamnose, and others, presenting as part of the chain, main,
linked as a side chain or as isolated contaminants [28, 29].
According to the Food and Agriculture Organization (FAO),
at least 65% of the structure of pectin corresponds to
galacturonic acid (Fig. 2) [30].

The physicochemical properties of pectin are influenced by
molecular characteristics, such as protein fraction, acetyl

group content, and molecular mass. Generally, the chemical
composition of pectin extracts reveals the presence of proteins
(mainly bound to neutral sugar side chains), which are con-
sidered as contaminants or a non extracted component of the
polymer. The presence of these proteins can be explained
because due to its growth mechanism the primary cell wall
of plants contains both polysaccharides and structural proteins
[15]. Changes in the pectin structure, and thus in its molecular
properties, have an impact on its quality and physicochemical
properties such as size and solubility which are associated
with chemical and enzymatic reactions during the pectin iso-
lation process affecting the composition of the extracts [16].

The emulsifying properties of pectin are related to the pres-
ence of proteins and their molecular characteristics such as
degree of acetylation and average molecular weight and ex-
trinsic characteristics such as pectin concentration and pH of
solution [15, 31, 32]. The emulsifying activity is greater for
pectins with a high content of acetyl-esterified. The literature
reported that acetyl groups, like ferulic groups, can promote
the increase of the interfacial activity of pectin, which is also
associated with the presence of methyl groups [32–35]. The
influence of the methyl ester groups on the surface activity of
the pectin molecule is because they are more hydrophobic
than the carboxyl groups [36]. Regarding the molecular mass,
this is a fundamental parameter that determines the ability to
guarantee the stabilization of emulsions [15, 32, 37]. The re-
duction of the length of the pectin chain, through acid hydro-
lysis, decreases the interfacial tension and, consequently, de-
creases the size of the emulsion droplets [32, 33]. Siew et al.
[38] and Funami et al. [39] studied the influence of neutral
sugar chains on the emulsifying capacity of pectin and ob-
served the preferential adsorption of pectin chains rich in neu-
tral sugars in oil droplets.

Modifications in Pectin for Different
Applications

Given the different demands for industrial applications of pec-
tins, physical, chemical, and enzymatic changes are made in
the pectin structure to improve its functionality. As a result,

Fig. 2 Structure of the galacturonic acid

Fig. 1 Amount of passion fruit produced in recent years in Brazil. Source
FAOSTAT [11]
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these modifications promote changes in the pectin physico-
chemical properties, such as molecular change, degree of es-
terification, molecular mass, and basic chemical structure
[40]. These changes ultimately result in changes in the pectin
biological activities like for example antioxidant [41], antican-
cer [42], prostate carcinoma, colon carcinoma, and breast car-
cinoma [43] activities. Modification of pectin can be achieved
using techniques such as substitution (alkylation, amidation,
thiolation, and sulfation, etc.), chain elongation (crosslinking
and grafting), and depolymerization (acidic or enzymatic hy-
drolysis, elimination of β and mechanical degradation) [44].

Regarding the carboxylate alkylation technique, the
alkylating carboxyl group of the COO-alkyl ester group is used
to increase the hydrophobicity of the pectin. If the pectin is
alkylated with the methyl group, it is called methoxylation.
The esterification of pectin with methanol, in the presence of
sulfuric acid or hydrochloric acid as a catalyst, is a usualmethod
used for the methoxylation [45]. Opposite to pectin
methoxylation, demethoxylation is a reaction that eliminates
the methyl esters of the esterified galacturonic acid residues
and converts the C-6 carbon into the carboxylic acid. A relevant
issue is the methoxylation pattern, as it can largely affect the
pectin properties, influencing depolymerization rates [44, 46].

Acetylation is one of the most relevant alkylations of
hydroxyl groups in pectin, because pectin extracted from
some plants, for example, potato and sunflower, can be
naturally acetylated in O-2 and/or O-3 of galacturonic
acid units, which makes gelation difficult. Complete gela-
tion inhibition occurs when one in eight D-galacturonic
acids is acetylated in O-2 or O-3 [44, 47]. Acetylated
pectin can be utilized as a stabilizer and emulsifier.
Besides, acetylating agent-modified pectin has shown
promise in modifying the release pattern of ibuprofen, a
weakly acidic drug, throughout the gastrointestinal tract,
due to the reduced polarity and solubility of pectin.
Generally, acetylation is performed in types of solvent
catalyst systems with acetic anhydride [32, 48].

Amidatedpectin can formstrongergels,mainly at lowpH,
due to the establishment of hydrogen bonds between the am-
ide groups [49, 50]. However, the simplest amidated pectin
most applied industrially contains the primary amino groups
–CO–NH2 that is particularly useful for the food segment due
to its excellent gelling properties. The amidated pectin gels
are thermoreversible. Thermoreversibility indicates when
the heating is transitioning to a liquid and a solid after
cooling. In addition, it is allowed to be prepared in hydrogel
spheres that can be used in the administration of specific
drugs in the colon and also retain insulin in order to make it
oral [44]. The common method of pectin amidation is
ammonolysis of methyl ester groups with ammonia in anhy-
drous methanol. It can be classified as a type of alkaline
demethoxylation by the action of ammonia in the ester
groups, in which amino groups replace some of the methyl

ester groups. Amidation can also be prepared by reacting
pectin with amino acids [24, 44].

Quaternization is reported as an efficient method for
assigning new functional properties to polysaccharides,
which can transform ionic hydrocolloids into their cat-
ionic derivatives [44]. Fan et al. [51] prepared
quaternized pectin by reacting pectin with 3-chloro-2-
hydroxypropyltrimethylammonium chloride in the pres-
ence of sodium hydroxide obtaining pectin with excep-
tional absorption capability, moisture retention ability,
and pronounced antimicrobial activity. This type of pec-
tin derivative can also be used in pharmaceutical, pack-
aging, preservatives, and cosmetics fields.

The thiolation technique also encloses the interest for the
development of the “second generation” of mucoadhesives,
since the mucoadhesive properties of natural polysaccharides,
which belong to the “first generation,” can be improved by
their thiolation [52]. Sharma, Ahuja, and Kaur [53] prepared
nanoparticles of thiolated pectin using timolol maleate as a
model medicine and magnesium chloride as an ionic
crosslinker and verified that thiolated pectin is a promising
mucoadhesive polymer for the ocular distribution of timolol
maleate.

Sulfation is the method in which sulfate groups replace
the hydroxyl groups of the polymeric structure. Through
sulfation, significant effects are obtained on the physio-
logical functions of polysaccharides, such as anticoagu-
lant, antithrombotic, contraceptive, antioxidant, and anti-
inf lammatory infect ion [54, 55] . Sulfur ic acid ,
chlorosulfonic acid, monomethyl sulfate, or sulfamic acid
is generally utilized in the presence of formamide,
trimethylamine, or pyridine [44]. However, the use of
these agents can degrade the polysaccharide chain during
the reaction; besides, it can promote pollution problems.
Therefore, other sulfating agents were developed. For ex-
ample, Fan et al. [56] synthesized apple pectin sulfates in
aqueous solution with trisulfonated sodium amine
[N(SO3Na)3] as a sulfating agent.

Oxidation of pectin has also received attention in recent
years since oxidized pectin has more reactive groups and
faster degradation than non-oxidized when used in supports
for controlled drug delivery [57]. The reactions take place in
the –OH groups at the C-2 and C-3 positions of the
galacturonic acid units and can be carried out by the use of
sodium periodate, with the formation of two aldehyde groups
in each oxidized monomer, by breaking the carbon- linkage
carbon [44].

Pectin is used in several industrial applications. Therefore,
for a given application, different characteristics are required.
Such characteristics can be obtained through modifications in
the molecule structure to obtain knowledge of the physical
and chemical properties and to assign adequate conditions to
meet the necessary functions.

462 Food Eng Rev  (2020) 12:460–472



Degree of Pectin Esterification

Pectins have part of the esterified galacturonic acid main chain
carboxyl groups, the most common substituent being the
methyl group. Other substituents include ethyl and acetyl
groups. Therefore, this substitution is expressed as the degree
of methylation (DM) or degree of esterification (DE). DM
corresponds to the total percentage of esterified galacturonic
acids withmethyl groups, while DE corresponds to the ratio of
esterified galacturonic acid clusters to total galacturonic acid
clusters [58].

The degree of esterification (DE) plays an essential role in
the gelling capacity of pectin, being a parameter to indicate the
physical, functional, and technological properties. Pectins are
commercially classified into high esterification pectins (when
they contain over 50% of their esterified carboxylic groups)
and low esterification pectins (when 50% or less of these
groups are esterified) [59].

Both pectin classifications have industrial applications.
However, high DE pectins are employed in products with
sugar presence, usually at pH below 3.6. Regarding the time
required for gelation, as the DE increases, the time decreases
[30, 60–62]. Low DE pectins are used in the presence of
calcium, with a pH range of 2.6–6.0. They are chemically
more stable to moisture and heat than high DE pectins. High
DE pectins stored in powder lose their ability to form gels
when stored in hot, humid conditions [63].

Pectin Extraction Sources

Pectin is one of the polysaccharides present in the plant’s cell
wall along with cellulose, hemicellulose, and lignin and can be
extracted from various natural sources. It is present in abun-
dance in the walls surrounding the growing and dividing cells
and in the junction zone between the cells with secondary
walls. It is a component of all superior plant walls and the
walls of gymnosperms, pteridophytes, bryophytes, and
Chara, a carophyllous algae believed to be the closest relative
of terrestrial plants [64].

Different plant species may have different pectin contents.
Physicochemical properties vary according to the source, de-
gree of fruit maturity, harvest time, storage time, the process
used during extraction, and subsequent treatments [65].

Literature over the last few years has shown that there is a
significant difference in pectin content according to fruit vari-
eties. Considering the source from which pectin is extracted,
pectin may vary in gel-forming capacity due to differences in
the size of the polygalacturonic acid chain and the degree of
esterification of its carboxylic groups [66].

Many sources are currently employed to obtain pectin; the
main ones are listed in Table 1.

Factors Affecting Pectin Extraction

During the extraction of pectin from the passion fruit peel,
some factors must be taken into account, as they can alter
the process yield. These factors are discussed below:

& pH: It is evaluated as one of the most critical parameters.
As shown in the literature, extraction yield increases with
decreasing pH, because the acid condition favors pectin
extraction [3].

& Time: It should be enough for the solvent to dissolve a
sufficient amount of the product since the mass transfer
occurs until equilibrium is reached. Thus, the longer the
time, the higher the yield. However, once equilibrium is
attained, time should not be extended, as very long times
can cause pectin degradation [74].

& Temperature: The higher the temperature, the higher the
rate at which the solvent dissolves a solute, hence the
higher the extraction yield. On the other hand, studies that
evaluated the influence of temperature on the degree of
esterification proved that high temperatures have a reduc-
ing effect on the degree of esterification [8].

& Solvent: A low-viscosity solvent must be used to be able
to easily enter the bed of dry substances [75]. Research on
the type of solvent seeks to favor extraction, ease of pur-
chase, and economic and environmental benefits, mainly
due to problems with the use of strong acids, such as
toxicity and difficulty in treating the effluents generated
during the process, which causes impacts [3]. In this sense,
studies have been carried out to replace mineral acids with
organic acids [76]. With the increasing application of
green chemistry, attention is focused on solvents called
ecologically correct. With unique characteristics, biode-
gradable deep eutectic solvents (DES) are suitable for

Table 1 Main sources used for pectin extraction

Source Yield (mg pectin/g dry peel) Reference

Banana peel 142.3 [67]

Jackfruit peel 151.9 [68]

Orange peel 248.0 [69]

Grapefruit peel 280.0 [69]

Lemon peel 306.0 [69]

Passion fruit peel 303.0 [70]

Cocoa peel 70.0 [71]

Fig seed 60.7 [10]

Mangosteen peel 121.0 [72]

Guava pulp 136.6 [5]

Mango peel 185.0 [6]

Beet pulp 162.0 [29]

Apple pomace 209.2 [73]
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pectin extraction due to their low volatility at room tem-
perature, non-flammability, and miscibility in water [77].

& Agitation: Pectin yield tends to increase significantly with
increasing agitation rate as agitation causes increasedmass
transfer rate and decreases diffusion layer thickness,
which consequently improves extraction [3].

& Surface area: It is proportional to the mass transfer rate,
i.e., the smaller the granulometry of the raw material, the
better the mass transfer in the extraction step [75].

& Solid-Liquid Ratio: According to published studies [8, 9,
61, 74, 75, 78, 79], dry peel and solvent ratios are gener-
ally maintained at the ratio 1:10 and 1:50 m/v. Based on
the results obtained, when using a proportion lower than
1:10 m/v, a low extraction was extracted, this can be jus-
tified by the fact that the amount of solvent is insufficient
for the solubilization of pectin. An increase is found in the
solid-liquid relation (up to 1:30 m/v) increments in the
pectin yield due to the rise of dissolution capacity.
However, an additional increase does not conduce to sig-
nificant effects [8].

Conventional Pectin Extraction

Conventional pectin extraction can be performed by acidic or
basic aqueous medium. Alkaline extraction results in pectins
with a low degree of esterification due to the saponification of
the ester group. The acid extraction generally results in pectins
with a high esterification degree, close to the naturally occur-
ring esterification degree. Another advantage of acid extrac-
tion is that as a result, pectin is commonly enriched with
galacturonic acid units [10, 80].

On an industrial scale, acid extraction is generally per-
formed in which strong acid solutions such as nitric, phospho-
ric, sulfuric, and hydrochloric acid are used, under heating.
However, mineral acids have some disadvantages, such as
equipment corrosion and difficulty in treating process waste.
For these reasons, many studies are currently seeking to re-
place strong acids with organic acids such as citric, lactic,
malic, acetic, or tartaric [81]. Organic acids cause less pectin
depolymerization due to the low dissociation capacity [67]
and, therefore, have been used by some researchers, such as
Liew, Chin, and Yusof [74], Yapo [82] and Pinheiro et al.
[61]. A study with citric, nitric, and sulfuric acids showed that
the type of acid strongly influences the macromolecular and
gelling properties of the extracted pectin [82].

In the specific case of passion fruit, the process begins with
the preparation of the raw material, that is, the obtaining of the
flour of the passion fruit peel through the drying and grinding
operations, being used in the extraction step. The other steps
employed to obtain pectin involve purification of liquid ex-
tract and isolation of pectin by precipitation and drying [83].

Extraction from the passion fruit peel flour in an acidified
solution occurs for a set time and temperature. Purification
of the liquid extract containing soluble pectins is generally
accomplished by fil tration and/or centrifugation.
Subsequently, the filtrate is cooled to a temperature of ±
4 °C. The cooled solution proceeds to precipitation by the
addition of two to four volumes of alcohol (ethanol, methanol,
isopropanol), followed by washing with alcohol successively
to remove alcohol-soluble compounds such as salts and free
sugars. These solvents can be used due to their polarity [5, 61,
78]. If pectin should be addressed to the food industry, the use
of toxic solvents should be avoided, and green solvents, such
as ethanol, are indicated. For extractions of food products
using toxic solvents for human beings, it is necessary the
complete removal of the solvent to guarantee its absence in
the final product. Evaporation is one unit operation that could
be used to reach such purpose. Drying is performed at tem-
peratures below 50 °C [81]. The general process for obtaining
pectin from passion fruit peel flour is shown in Fig. 3.

Given the various methodologies used in the conventional
extraction of passion fruit peel pectin, it is clear that there is a
need to gather information on the studies performed in order
to verify the influence of changes in the variables and methods
used.

Based on this, information summarizing the studies found
in the literature involving conventional extraction of passion
fruit peel pectin is presented in Table 2.

Given the above, it is confirmed that pectin can be efficient-
ly extracted from the passion fruit peel, with an average yield
of 143.5 mg of pectin/1 g of the dry peel. Besides, the impor-
tance of performing statistical planning when conducting a
survey is highlighted, since there is a strong influence of var-
iables, both on yield and the quality of the extracted product.

Alternative Methods for Pectin Extraction

Due to the prolonged warming duration of conventional pectin
extraction, the need to study faster alternatives for extraction
has emerged. Some alternatives include enzyme-assisted ex-
traction, use of subcritical fluids, ultrasound-assisted extrac-
tion, microwave-assisted extraction, the combination of these
methods [84], high hydrostatic pressure, deep eutectic sol-
vents, and natural deep eutectic solvents.

The extraction with enzymes is noteworthy due to the abil-
ity of enzymes to catalyze reactions, reduce the extraction time
and the volume of alcohol used in the precipitation step, and
increase the yield. One of the prominent enzymatic methods
for pectin extraction is enhanced in protopectinases, which are
microbial enzymes capable of solubilizing protopectin pectin.
Although many advantages, the application of this technique
on an industrial scale is linked to several factors, especially the
cost of enzymes. As large volumes of raw materials are used
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in industry, enzyme extraction makes the route more expen-
sive and less attractive. Also, scaling up this process may be
hampered by changes in environmental conditions such as
temperature and nutrient availability [85, 86].

Extraction with subcritical water occurs with the use of
high-pressure liquid water as a solvent, being able to reach
higher temperatures without phase change [87]. The process
occurs with water temperature variation between the boiling
point (100 °C) at 1 atm and the critical point (374 °C), under
pressure necessary to keep the water in the liquid state [88].
Among the advantages presented by this process are the faster
extraction process and the saving of acid solvents [87]. In this
method, hydrolysis occurs without the use of acid, which
eliminates the treatment of liquid waste generated and the
need for corrosion-resistant equipment [87, 89, 90].
Therefore, extraction with subcritical water is known as a
green method and can be successfully used to extract value-
added products, such as pectin [76]. The supercritical CO2

extraction is frequently used for extracting bioactive com-
pounds from fruit peels [91–93] and is being utilized for poly-
saccharide extraction [94, 95]. However, the high cost of im-
plementation of the two processes, extraction with subcritical
water pressurized and extraction with supercritical CO2, in the
industry can be a hindrance, and the inadequate control of
process conditions can lead to hydrolysis of the pectin chain
[96].

Ultrasound-assisted extraction (UAE) is based on a process
called cavitation, produced by sound waves (ultrasound is a
special type of sound wave). These waves pass through a
medium creating compression and expansion. This process
leads to cavitation, that is, the production, growth and collapse
of bubbles. The cavitation occurs at high temperatures and
pressures. The kinetic energy of the movement is converted
into heating of the medium. UAE has many advantages, such
as reduced extraction time, energy consumption and equip-
ment size, more effective mixture, and increased production,

Fig. 3 The general process for obtaining pectin from passion fruit flour

Table 2 Results of studies involving the conventional extraction of pectin from the passion fruit peel

Levels assessed Best results Reference

Yield (mg pectin/g
dry peel)

DE
(%)

Citric acid concentrations (0.0002–0.0416 mo L−1); 14.66–120 min; 60–96.82 °C; solute/solvent
ratio = 1:30 m/v

131.8 86.76 [79]

Nitric acid (pH 0.30; 1.0; 2.0; 5.0); 10–60 min; 85 °C; solute/solvent ratio = 1:30 m/v 109 86.75 [75]

Citric acid (pH 2.0; 3.3; 4.5); 30–120 min; 70 °C; solute/ solvent ratio = 1:25 m/v 145 54.87 [74]

Nitric acid (50 nM); 25 min; 80 °C; solute/solvent ratio = 1:50 m/v 122 72.2 [78]

Hydrochloric acid (pH 1.5; 2.0; 2.5; 3.0); 30–90 min; 70–98.7 °C; solute/solvent ratio = 1:10; 1:15; 1:20;
1:30; 1:40 m/v

148 – [8]

Precipitation (alcohol, dialysis, and metal ions); citric acid (pH 1.8); 60 min; 75 °C; solute/solvent ratio
1:25 m/v

75 – [9]

Citric acid concentrations (0.086–2.91%); 17–102 min; 97 °C; solute/solvent ratio = 1:50 m/v 274 78.59 [61]
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which is considered more environmentally friendly than the
conventional method. In contrast, ultrasound-extracted poly-
saccharides have lower viscosity, molecular mass, and degree
of esterification [97, 98].

Microwave-assisted extraction (MAE) is a green method in
which a polar solvent absorbs microwave energy and consists
of two oscillating perpendicular fields: electric and magnetic
fields. Among the advantages of this form of extraction, it is
worth mentioning that during heating, there is no temperature
gradient, as is the case with conventional thermal processing
[99]. The control inside the oven makes the system safer since
inadequate closed system control can result in user and equip-
ment risks and extraction time becomes reduced, as well as
solvent requirements and equipment size can be considerably
reduced. On the other hand, despite the reduced volume of
acidified water used in the process, the fact that this acidic
solvent is used and needs to be discarded creates the corrosion
problem and subsequent wear of the equipment [84].

A new technology involving the combination of the UAE
and MAE resulted in the method of ultrasound-assisted mi-
crowave extraction (UAME), for which ultrasound is used as a
pre-treatment step, followed by microwave treatment [100].
According to Bagherian et al. [18], this method provides a
better effect on the qualitative and quantitative characteristics
of the extracted pectin when compared with the individual use
of UAE and MAE. The authors extracted pectin from grape-
fruit and obtained results of 191.6, 278.1, 179.2, and 318.8 mg
pectin/g of dry peel for conventional treatments, MAE, UAE,
and UAME, respectively.

Surfactant-assisted microwave extraction (S-MAE) is also
an alternative extraction method [101]. Surfactants are amphi-
philic molecules with a hydrophilic head and a hydrophobic
tail. The nonionic surfactant had better extraction efficiency
than the ionic surfactant, as reported by Hosseinzadeh,
Khorsandi, and Hemmaty [102]. Su et al. [103] evaluated
the extraction of pectin from the orange peel using the MAE
and S-MAE methods, as surfactants were tested with Tween-
80, Tween-20, polyethylene glycol (PEG) 4000, PEG 8000,
sucrose fatty acid esters (SE), and sodium dodecyl sulfate
(SDS). S-MAE offers advantages such as greater efficiency
of extraction, reduction of time, and better quality of pectin.
The yields obtained by the conventional, MAE, and S-MAE
methods were 275, 280, and 328 mg pectin/g dry peel, respec-
tively [103].

High hydrostatic pressure (HHP) is an alternative non-
thermal technology to traditional heat treatment reported as a
green processing technique capable of providing a higher
yield compared with conventional methods [75, 104, 105].
To obtain satisfactory results from the HHP treatment, the
three process parameters such as pressure, temperature, and
time must be adjusted appropriately. Generally, in most pectin
extraction studies, the pressures used are in the range of 100 to
600 MPa, temperatures vary from 10 to 50 °C, and the

processing time from 5 to 30 min [67, 104–107]. HHP has
been used for the valorization of by-products, such as orange
peel, lemon, potato, and beet as unconventional resources for
pectin production [104–107]. An advantage of the method is
less use of solvents. Oliveira et al. [67] evaluated the potential
for high pressure to extract pectin from the passion fruit peel.
The results showed values of extraction yield almost doubled,
indicating HHP as an effective, time-saving, and ecological
method for extracting pectin from the passion fruit peel.

Bearing in mind that mineral acids have been replaced by
organic acids, it should be noted that deep eutectic solvents
(DESs) are interesting for pectin extraction, as they are not
volatile at room temperature, non-toxic, and of low cost [75,
77, 108]. For the formation of DES, at least two compounds
are used, which consist of the eutectic mixture of bases and
Bronsted-Lewis acids in a particular proportion. The system is
represented by a cation and an anion from organic salt and
hydrogen bond–donating species (for example, choline chlo-
ride) from a hydrogen bond donor (for example, citric acid).
This mixture is formed in a certain molar ratio, and then it is
stirred and heat until a transparent liquid form. DES provides
greater interaction with plant material and therefore can result
in a significant increase in pectin extraction [76, 109], acting
as an appropriate medium for extracting polar and non-polar
components showing themselves as an effective means for the
extraction of pectin [76, 110, 111].

Even more environmentally friendly than DESs, natural
deep eutectic solvents (NADESs) are composed of natural
ingredients such as amino acids, sugars, and carboxylic acid.
Some studies mention the preparation of NADESs based on
the molar ratio of choline chloride and hydrogen bonding
donor, through heating and mixing, until obtaining a homo-
geneous and stable mixture without visible precipitate. It is
noteworthy that the preparation based on choline chloride
and organic acid is a favorable option for extraction.
According to the literature, the utilization of NADESs carried
out to high extraction yields when compared with the use of
their separated compounds [60, 112], due to the wide range of
physical characteristics and extractive abilities of NADESs.
The extraction differs from the conventional method only dur-
ing precipitation, in which a larger amount of ethanol is used.
Also, evaporation becomes easier, allowing the reuse of
NADESs, which is essential to make the process economical-
ly viable [60, 112–116]. Elgharbawy et al. [60] extracted pec-
tin from pomelo peel using NADESs and verified both high
extraction yields and an average degree of esterification.

Several studies have demonstrated the application of alter-
native methods for pectin extraction from passion fruit peel,
some of which are shown in Table 3.

In summary, the alternative methods studied for pectin ex-
traction are well established and feature innovative tech-
niques. However, there is a need for process improvement,
not only to maximize pectin yield and quality but for
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industrial-scale application, which is still a hindrance due to
the high cost. Besides, it is worth highlighting the importance
of performing statistical planning when conducting a survey,
since there is a strong influence of variables, both on yield and
the quality of the extracted product.

Pectin Applications

The food applications of pectin are diverse, from drinks [119,
120], dairy products [121], meat processing [122], cosmetics,
and polymers [123].

Pectins are featured as functional food ingredients of high
commercial value due to their technological properties. For
this reason, they are used as thickeners, gelling agents, and
stabilizers in the production of many food products [4, 61, 78,
124].

Due to its hydrophilic character, due to the presence of
polar groups, pectin has the property of involving a large
amount of water, producing a viscous solution. Because of
this capacity, it is employed in the preparation of jellies, fruit
jams, fruit juices, and other branches of the food industry
[125]. One of its main applications is as a thickening agent,
being used in the formulation of some concentrated dairy
products, such as yogurts. Pectin for home use is often sold
as a complementary ingredient and is diluted with sugar and
citric acid in the proper concentration to produce jelly. Its use
as a food additive is usually between 0.5 and 1.0% [78].

Pectin’s ability to increase viscosity and stabilize emul-
sions enables its use in suspensions in liquid pharmaceutical
preparations. They are appreciated as a natural textured agent
in creams and oils and employed as a stabilizer and thickener
in hair lotions, body lotions, and shampoos. Its use can be
employed in wound healing preparations, special medical
patches, deodorants, toothpaste, throat lozenges, and syrups
[3].

Pectin also is known to have a positive influence on cho-
lesterol, lipoprotein, and bile acid metabolism; plasma glucose
levels after a high carbohydrate meal; atherosclerosis mecha-
nisms; and weight reduction. It has properties to be used in the

treatment of disorders related to overfeeding, due to its ability
to interact with water, which results in a feeling of satiety, thus
reducing food consumption [61, 126].

Pectin can be used as a biosorbent because of its strong
affinity for metal ions and is considered in many studies
[127]. Pectin-based hydrogels have been employed in the
elimination of aqueous solution pollutants [128, 129].

It is known for its relationship to colon cancer prevention as
it is a soluble dietary fiber. It is reported that soluble dietary
fiber cannot be digested in the gastrointestinal tract but can be
degraded and fermented by the colon microbiota, which is
useful for reducing the risk of colon cancer [130, 131].

It can be used to produce biodegradable films, paper sub-
stitute adhesives, foams, and plasticizers. In the tobacco in-
dustry, it is used as a natural glue for cigar and cigar manu-
facture [20, 132].

Besides, pectins may be used alone or in combination with
other biopolymers to prepare micro- and nano-capsules con-
taining bioactive ingredients [133, 134].

Ways to Market Pectin

Since many factors influence the extraction process, pectin
rarely presents a similar composition from one batch to anoth-
er. For this reason, the commercial product is usually added
with sugars in order to standardize the gelation process as to
application and speed. Pectin is marketed as a powder with
varying colors depending on the raw material from which it is
extracted and the processing and/or storage conditions. They
are obtained in commercial form, mainly light brown, and
may have white, beige, yellow, pink, grayish, or darkened/
caramelized samples [78, 82].

Final Considerations

As presented throughout this manuscript, in the literature, it is
possible to find several methodologies and variables for the
pectin extraction process from passion fruit. Still, it is noted
that the industrial process is commonly performed by the con-
ventional methodology because despite the alternative meth-
odologies have advantages such as high yield and shorter
extraction time, the disadvantages are still significant, espe-
cially when it comes to the high cost for the implementation of
the process.

Thus, we realize the need for further research with ad-
vances in viable, efficient, and ecological processes, so that
they can be implemented in the future in the industry.
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Table 3 Studies using alternative methods for pectin extraction from
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Enzymatic extraction 258.0 [117]

Pressurized process 159.5 [118]

Ultrasound-assisted extraction 149.8 [118]

Ultrasound-assisted extraction 126.7 [67]

High hydrostatic pressure 143.4 [67]

Microwave oven 302.9 [70]
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