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Abstract
Flexible and transparent polymeric and bio-polymeric “super barrier” packagingmaterials have become increasingly important in
recent years especially for oxygen-sensitive foods packaging. Different approaches and emerging technologies have been applied
in order to improve oxygen barrier properties which can extend the shelf life and maintain the quality and freshness of food
products during their determined shelf life. In this review, we summarize the diverse strategies for manufacturing improved
oxygen barrier materials including: incorporation of nanoparticles into polymer matrix, fabrication of multilayer polymer,
creation of new barrier methods such as development of crystals in polymer matrix, and cross-linking technique. The structure,
preparation, and gas barrier properties of obtained polymers via mentioned approaches are discussed in general along with
detailed examples drawn from the scientific literature.
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Introduction

There is a significant demand for packaging that exhibit ex-
cellent oxygen barrier properties for food and medicine sec-
tors. It is vital for some food packaging to allow maintenance
of the product in an appropriate condition, for instance, limited
oxygen transference between packed food and atmosphere, in
order to prolong product’s shelf life [13, 36, 55]

High oxygen permeability of food packaging not only con-
tributes to limited shelf life of packed food, but also leads to
deterioration of food during storage and handling and reduces
consumer compliance [56]. In case of food items which are
rich in lipid or oil amount, holding under high O2 concentra-
tion leads to possible chemical changes in food, for example,
lipid oxidation, discoloration, and off-flavor that affect quality
of packed food ([73, 102]. Oxygen can also induce deteriora-
tion of food quality by microbial spoilage which not only
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cause mechanical or chemical damage, for instance, acceler-
ating fruit softening and aging, but also bacterial or fungal
infection, which cause potential safety risks of some ready-
to-eat fresh products. Furthermore, oxygen can accelerate gen-
eration of ethylene and the rate of respiration in fruits and
vegetables [26, 47, 66]. Food packaging materials with high
oxygen barrier properties can ensure quality maintenance of
the packed product during the determined shelf life and guar-
antee its safety [45]. The food packaging industry requires
flexible films that not only have high oxygen barrier proper-
ties but also should be transparent. In these cases, some poly-
mers like PE, PP, PLA, PHA, PCL, PVAL, etc., have the
potential to be applied for production of transparent, light,
and flexible films which are appropriate for utilization in the
food packaging sector. Nevertheless, their poor barrier prop-
erties toward oxygen limit their application for food packag-
ing. Improving these poor oxygen barrier properties would be
a challenge in the packaging industry. Recently, many efforts
have been made to produce packaging with the least perme-
ability to oxygen, including fabrication of a new hybrid struc-
ture, for instance, application of plastic additives and blending
different polymers; introducing new crystal into the matrix of
polymer; creation of a multilayer structure with an appropriate
oxygen barrier material; creation of cross-linked polymer; cre-
ation of nanocomposites via incorporation of various nanopar-
ticles, nanosheet, and tubular nano into the polymer matrix;
and production of multilayer film with enhanced oxygen bar-
rier properties [163]. The focus of this article is to represent
unique new approaches for producing oxygen superior barrier
performance packaging compared to the current commercial
food packaging.

Principle of Oxygen Mass Transport

Barrier materials can be defined as the materials which have
the ability to inhibit or slow down the passage of gases, water
vapor, and organic vapor through their borders [99].

Two factors have a critical role in determining the oxygen
transmission or permeability rate through the packaging ma-
terial, including solubility of oxygen in the polymer matrix
and its diffusion rate through the polymer matrix. The solubil-
ity of oxygen is dependent upon the chemical relationship and
also the affinity between the oxygen molecule and the poly-
mer and the rate of diffusion is affected by the size of the
permeant and also polymer characteristics, especially the pro-
portion of crystalline and amorphous regions of the polymer
[39].

Oxygen transmission rate (OTR) is expressed as cubic cen-
timeters of oxygen, which pass through a square meter of
packaging material when oxygen pressure is 1 atm greater
than that on the other side of the packaging during 24 h, at a
specified temperature. OTR can be calculated as follows [99]:

Δmgas
Δt

¼ P
A Δp
L

where Δmgas
Δt is transmission rate of oxygen, P is permeability

of the packaging material, A is area contact of the packaging
material,ΔP is partial pressure difference across the packaging
material, and L is the thickness of the packaging material.
OTR is expressed in cubic centimeters (STP)/square meters/
day.

In cases that we have laminated or coated film, OTR can be
calculated using the “laminate” equation [99]:

OTR Coating ¼ ORTUncoated � ORTCoated

ORTUncoated−ORTCoated

Factors Affecting Oxygen Permeability

Many factors can affect oxygen permeability rate through
packaging material which can be divided into two major
groups including polymer and biopolymer characteristics
and environment as demonstrated in Fig. 1 [103, 125, 158].

Polymer Characteristics

Many parameters influence molecular organization of the
polymer which contribute to creation of specific properties
of the polymer matrix; these parameters will be discussed in
the following part:

Pendent Chain

Pendent chains or side chains are oligomeric or polymeric
branches which extend from the backbone chain of a
polymer. Pendent chains significantly affect characteristics
of the polymer, predominantly its crystallinity and density
(Ryan [147]). Ghasemnejad-Afshar et al. [46] have studied
the effect of side branch on gas separation performance of
polyimide branched with the side groups C4H9, C3H7,
CH3, and CF3. Results illustrated that membranes with larger
side branch groups are more rigid. As a consequence of re-
striction in chain mobility, the free volume in the membrane’s
structure increased which accordingly enhanced the perme-
ation of gases into the membrane. The findings indicated that
the membrane with C4H9, as the largest side branch, has the
greatest diffusivity and permeation [46].

Degree of Crystallinity

The polymer matrix is consisted of two distinguishable re-
gions: crystalline and amorphous. In crystalline regions, poly-
mer chains are arranged in a regular, periodic manner with
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strong interactions, while amorphous regions behave quite
differently; in these regions, polymer chains are arranged ir-
regularly and have less density and present more free volumes
compared to crystalline regions. Since the crystallites are im-
permeable, permeant molecule must seek out amorphous
zones in order to pass through the polymer matrix.
Therefore, a polymer with higher degree of crystallinity com-
pared to the polymer with fewer degree of crystallinity provide
less amount of permeation [152]. It has also been demonstrat-
ed that the arrangement of crystalline lamellae in semicrystal-
line polymers can significantly influence gas barrier charac-
teristics. In particular, when the arrangements of the lamellae
stacks are perpendicular to the direction of gas diffusion, the
highest barrier properties will be achieved. In a study, the self-
assembly nucleator approach was applied to design the ar-
rangement of crystalline lamellae in the PLA matrix.
Octamethylenedicarboxylic dibenzoylhydrazide (TMC-300)
and graphene were used as active nucleators for PLA. A mul-
tilayer sheet consisting of PT (PLA+TMC-300) alternating
with PTG (PLA+TMC-300+graphene) was prepared by mul-
tilayer coextrusion. Under isothermal processing as a result of
the induced impact of graphene, the melted TMC-300
self-assembles into solid-state fibrils that were perpen-
dicular to PT/PTG layered interface. As a result, a re-
duction of 85.4% in O2 permeability was achieved com-
pared to the blended control sample [88–90]. Gupta
et al. [52] have studied the effect of modified chitosan
on the oxygen permeability of PDLA/PLLA blend and
pristine PLA. The results indicated that incorporation of
3wt% modified chitosan into blended polymer increased
the degree of crystallinity. Consequently, oxygen perme-
ability reductions have been found to be nearly 56 and
84%, respectively, compared to blended PDLA/PLLA
and pristine PLA ([52](.

Formulation

It should be taken into consideration that formulation of the
compounds has a key role in molecular arrangement and prop-
erties of final produced polymer particularly in the case of
biomaterials such as polysaccharide- and protein-based mate-
rials, which have poor oxygen barrier properties [15, 27, 98,
111, 166]. For instance, the presence of additives such as
plasticizers can affect permeability of packaging. For some
polymers, it is essential to use plasticizer in order to achieve
desired properties, but plasticizers generally increase the per-
meability of the polymer. Zhang et al. [164] have investigated
the impacts of glycerol and sorbitol as plasticizer on the oxy-
gen permeability of edible film based on gum ghatti (GG).
The results revealed that oxygen permeability of films mar-
ginally increased with increasing glycerol concentration.
Whereas, increasing sorbitol concentration had no significant
effect on oxygen permeability. SEM micrograph showed that
the structure of glycerol-GG films was more regular and
smoother compared to sorbitol-GG films. It was also indicated
that crystallinity degree decreased with increasing glycerol
concentration [164]. On the other hand, incorporation of some
filler like nanoparticles into the polymer matrix can enhance
its barrier properties. Especially, the insertion of fillers that
have high adhesion and compatibility with the polymer matrix
can improve barrier properties of the packaging [122].

Processing Properties

The results of processing conducted during production of
polymer can noticeably influence its permeability properties.
For instance, creation of pinholes and microvoids contributed
to the higher transmission rate of gases, since gas molecules
require free volume for movement and diffusion through the

Fig. 1 Factors affecting oxygen
permeability of packaging
materials
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polymer matrix [75]. Processing which initiates higher degree
of cross-linking or increases molecular orientation in polymer
will improve barrier properties, since these approaches further
increase density and crystallinity of polymer, which make the
path to permeate more difficult. As an illustration, graphene
oxide nanosheet/cellulose nanofiber (GONS/CNF) nanocom-
posite film with ultra-low oxygen permeability was
manufactured through layer-by-layer coating. In this proce-
dure, GONS and CNF were dispersed into distilled water with
ultrasonic treatment. The achieved mixture was repeatedly
coated onto a glass plate until a film with a thickness of ap-
proximately 30–40 μm was manufactured. The images of
SEM and GI-WAXS manifested that the exfoliated GONS
and CNF were highly oriented along the film direction, which
is the reason of ultra-low oxygen permeability (F. [137]).

Physical Interaction between Penetrant and Barrier Material

Some interactions between penetrant and barrier material can
lead to trapping of diffusing molecule and slow down the
permeation rate. For instance, presence of polar or functional
groups that cause interaction between polymer and penetrant
or hydrogen bonds formation will also trap diffusing mole-
cules [31, 41]. Paine [118] investigated the oxygen uptake
capacity of three polymers, including poly (cyclohexylmethyl
methacrylate) (CHMA), poly (cyclohexenylmethyl acrylate
(CHAA), and polyvinylidene fluoride (PVDF). The findings
of this study showed that both polyCHMA and polyCHAA
have greater capacity for oxygen uptake compared to PVDF.
One possible explanation for this could be the existence of
cyclic ring units, which are capable of scavenging oxygen
molecules [118].

Environment

External factors such as temperature and humidity also can
influence the value of permeability.

Temperature

Penetrant molecules in order to diffuse through the polymer
matrix require enough energy to overcome the interactions
that exist between polymer chains. On the other hand, increas-
ing temperature causes more motion in polymer chains and
creates free volume, which accelerate oxygen transmission
rate. The transport equation (which stated was in section 2)
is affected by increasing temperature in two ways, including
the flow of gas and the partial pressure difference [99]. Öner
et al. [113] have investigated the influence of temperature on
oxygen-barrier performance of nanobiocomposites based on
poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and boron ni-
tride (PHBV/BN). The PHBV nanocomposites showed an

increase in oxygen permeability as temperature was increased,
with an Arrhenius behavior, as was expected (M [113]).

Humidity

Since absorbed water could have a plasticizing effect on some
packaging materials, high humidity can increase packaging
permeability. Exposure of polymer to an environment with
high level of humidity or product with high moisture content
can also lead to swelling of the polymer which will increase
permeability. In the case of polar polymers like cellophane
and PVA, contact with high humidity has a plasticizing effect
on them that disturbs their barrier properties [39]. For in-
stance, chitosan-based films exhibit good oxygen barrier but
are degraded when exposed to high humidity, due to their
great water solubility [86]. In an investigation, the impact of
moisture on the oxygen permeability of polyvinyl alcohol
(PVOH) and PVOH–kaolin dispersion barrier coatings was
examined. The oxygen permeability was measured at different
humidity levels, and the material properties were character-
ized under the same conditions, including polymer crystallin-
ity, kaolin concentration, and kaolin orientation. The experi-
mental results indicated that the water is able to plasticize the
PVOH material of the coatings, and the incorporation of kao-
lin as filler failed to inhibit or overcome such phenomenon
substantially. It was also revealed that the crystallinity degree
of the PVOHwas affected dramatically by the humidity, since
water melts polymer crystallites, which further increased ox-
ygen permeability [112].

Collected Comparative Oxygen Barrier
Properties of Plastic

In Fig. 2. oxygen and water vapor barrier properties of some
commercial petro- and bio-based materials for food packaging
have been illustrated, which were measured at 23 °C and 85%
RH.

Novel Approaches for Producing High
Oxygen Barrier Packaging Materials

Nanocomposite

In the last few decades, polymer nanocomposites, in the field
of nanotechnology, has attracted enormous attention because
of their unique characteristics, especially gas barrier properties
[94, 108, 132]. It has been shown that incorporation of
nanofillers into the polymer matrix improves oxygen barrier
properties [5, 61], since these nanofillers are impermeable and
do not permit diffusion of gas molecules and make them to
follow a longer and more torturous pathway to pass through
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the nanocomposite [34, 37, 100] as illustrated in Fig. 3.
Furthermore, nanofillers insertion in the polymer matrix in-
creases crystallinity degree which acts as an obstacle and does
not allow the permeation of gas molecules through them. It
has also been indicated that the molecular orientation of poly-
mer chains that are around the nanofillers will be affected and
contributed to formation of a restricted or rigid amorphous
fraction which has lower permeability and further enhances
barrier properties [68, 143]. Three parameters have a critical
role in determining barrier properties of nanocomposite in-
cluding filler characteristics (volume fraction, aspect ratio),
the intrinsic barrier property of the polymer matrix, and the
state of nanofillers dispersion in the polymer matrix (interca-
lation, exfoliation, flocculation or agglomeration, specific in-
terface, free volume and in the case of nanosheets the

orientation of nanoplatelets) [107]. The fundamental point of
manufacturing nanocomposites is that we can use commer-
cially available polymers for making high oxygen barrier
films. Therefore, it is a cost-effective and practical procedure
to reach uncomplicated and scale-up manufacturing and thus
has attracted intensive attention from both academic and in-
dustrial fields (Y. [91]). In a study by Ramos et al. [134],
nano-biocomposite films based on PLA were prepared by
incorporating modified montmorillonite (D43B) at two differ-
ent concentrations of 2.5 and 5 wt%. It was reported that
D43B at both concentrations reduced the oxygen transmission
rate by formation of intercalated nanocomposites [134]. In
another study, the octadecylamine (ODA) modified graphene
oxide (mGO-ODA)/maleic anhydride grafted polypropylene
(MAPP) nanocomposites (mGO-ODA/MAPP) were prepared

Fig. 3 Torturous pathway of
diffusing molecules around
nanoparticles

Fig. 2 Oxygen and water vapor
barrier properties of some
commercial petro- and bio-based
materials for food packaging [14,
101]
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and applied successfully as gas barrier materials. The result
indicated that 60% mGO-ODA/MAPP exhibited 94.1 and 95.
0% reduction for H2GTR andO2GTR, respectively, compared
to the pure nylon film [90]. In another study, PLA/titanium
oxide nanocomposite films were prepared by the casting
method. The effect of titanium oxide nanoparticles and its
concentration (1, 3, and 5wt %) on oxygen transmission rate
of nanocomposites were investigated, and it was shown that
oxygen transmission rate was decreased when the concentra-
tion of titanium oxide was increased [1]. Also, in the case of
PLA as a biodegradable polymer, it has been proved in many
researches that incorporation of nanocellulose in the PLA ma-
trix will enhance oxygen barrier properties. These kinds of
bio-based hydric polymers have semicrystalline behavior,
which makes them appropriate materials for food packaging
[78, 92, 109].

Cheng et al. [23] manufactured biodegradable films as
packaging materials that could act as barrier for oxygen, by
mixing a guar gum (GG) solution with a nanocrystalline cel-
lulose (NCC) dispersion using a novel circular casting tech-
nology [23]. In a study, an active nanocomposite of Halloysite
nanotubes and PE was prepared as ethylene scavenging pack-
aging, but it was also found that oxygen barrier properties of
nanocomposite was improved compared to neat PE [146]. It
was demonstrated that the antimicrobial nanocomposite film
of HDPE/cu-nanofiber, which were prepared by the melt
mixing method, also showed better barrier properties toward
oxygen compared to neat HDPE [12]. Majeed et al. have
prepared montmorillonite (MMT)/rice husk (RH) hybrid
filler-filled LDPE nanocomposite films, containing 0, 2, 3,
4, 5, and 6 wt%MMT (based on the total weight) by extrusion
blown film. The findings of this study showed that addition of
MMT into the LDPE/RH system improved the O2 barrier
properties [97]. It was shown that the oxygen permeability
coefficient of GONS/PVA nanocomposite at a low GONS
loading of 0.72 vol% was declined about 98% (H.-D. [48,
64] have demonstrated that incorporation of different mont-
morillonite type (hydrophylic vs. organically modified) into
chitosan/PVOH blends enhances its oxygen barrier properties.
In an investigation, the effect of encapsulating the polymer
within a nanoplatelet shell on oxygen permeability was exam-
ined. The Pickering suspension polymerization method was
applied for manufacturing few-layered GO nanoplatelets en-
capsulated polystyrene (PS) microparticles. The oxygen per-
meability was reduced by 96 and 34% in obtained PS/GO
composite film containing 2 wt% of GO, respectively, com-
pared to the PS control film and the solution mixed PS/GO
composite film [101]. Risyon et al. [138] have developed
polylactic acid (PLA)/halloysite nanotubes (HNTs)
bionanocomposite films for extending the shelf life of pack-
aged cherry tomatoes. The PLA/HNTs bionanocomposite
films were demonstrated to have great oxygen barrier proper-
ties especially at 3.0 wt% of HNTs and had the potential to

prolong the shelf life of cherry tomatoes [138]. Vaezi et al.
[149] examined the oxygen barrier properties of a bio-
nanocomposite based on cationic starch (CS)/montmorillonite
(MMT)/nanocrystalline cellulose (NCC). CS nanocomposites
with 5 wt% NCC and MMT showed the best improvement in
the barrier properties against oxygen and also water vapor
[149]. Pengwu et al. have developed a high barrier
polyhydroxyalkanoates (PHA) nanocomposite by
compounding graphene oxide grafted by long alkyl chain qua-
ternary salt (GO-g-LAQ). The GO-g-LAQ was capable of
improving the interfacial adhesion between GO and PHA
due to its hydrophobic nature. As a result of the condensed
crystal structure of PHA and the impermeable property of GO
sheets, PHA/GO-g-LAQ nanocomposite showed improved
oxygen barrier property [157]. The impact of different types
of boron nitride particles (BNPs) including silanized flake
type BN (OSFBN) and silanized hexagonal disk type BN
(OSBN) on oxygen permeability of poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) (PHBV) was examined. As a
consequence of higher crystallinity degree in the presence of
BN particles, all the obtained nanocomposites had lower
oxygen permeability compared to the neat PHBV. The best
barrier properties was obtained by incorporating 2 wt%
OSFBN, for which a reduction of oxygen permeability up to
36% was observed in comparison to the neat PHBV (Mualla
[114]). The influence of nanofillers on the oxygen barrier
properties of some nanocomposites prepared by different
methods is summarized in Table 1. It should be noted that
the values of the permeability coefficients in the literature
are often given in different units of measurement. To
facilitate the comparison of gas permeability, the values of
gas barrier properties reported in the literatures have been
converted into the same units (m2 s-1 Pa-1). As evidenced,
incorporation of scarce amount of graphene oxide has
resulted in significant reduction in oxygen permeability
compared to O-MMT and MMT. As an illustration, applica-
tion of 0.4 wt% graphene oxide into the PLA matrix contrib-
uted to 68% reduction in oxygen permeability, while incorpo-
ration of 7.9 wt% O-MMT caused only 24% reduction, which
indicated the critical role of the nanofiller type. In addition,
apart from the polymer kind, in most of cases, by increasing
nano amount, greater oxygen permeability reduction was
achieved.

Multilayer Polymer

Multilayer polymer packaging had gained a lot of attention
due to its excellent gas barrier properties. The first multilayer
films were introduced in the food packaging industry by poly-
mers coated with thin metal films, known as metalized plas-
tics. Metalized plastics have been utilized in the food industry
since the early 1970s [142]. Themain problem associatedwith
metalized packaging is their opaqueness, which limits their
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Table 1 Oxygen permeability of polymer/nanocomposites

Polymer Type of nano Nano
loading

Processing Oxygen permeability (m2

s-1 Pa-1)
Oxygen permeability
reduction (%)

Reference

SBR O-MMT, CF 16 phr Melt
intercalation

2.75×10-17 46 [11]

PLA O-MMT 7.9 wt% Melt
intercalation

2.85 × 10-18 24 [123]

PLA, PLA/PCL O-MMT 3 wt% Melt
intercalation

6.39 × 10-19 26 [140]

PA MMT 3 wt% Melt
intercalation

3.37 × 10-19 14 [43]

PET O-MMT 5 wt% Melt
intercalation

1.69 × 10-19 55 [141]

PET O-MMT 5 wt% Melt
intercalation

2.74 × 10-19 69 [54]

PET O-MMT 1 wt% Melt
intercalation

1.42 × 10-17 45 [40]

PP O-MMT 4 vol% Melt
intercalation

4.18 × 10-18 46 [106]

PP O-MMT 7.5 wt% Melt
intercalation

2.59 × 10-15 56 [104]

PP MMT, O-MMT 5 wt% Melt
intercalation

~6.00× 10-18 77 [151]

HDPE MMT, O-MMT 3 vol% Melt
intercalation

3.05 × 10-18 35 [116]

LDPE O-MMT 7 wt% Melt
intercalation

2.86× 10-17 24 [6]

LLDPE O-MMT 5 phr Melt
intercalation

1.81 × 10-17 55 [33]

LLDPE VER, O-VER 3 wt% Melt
intercalation

1.07 × 10-20 18 [18]

PET, MXD6 MMT 2 wt%
3 wt%

Mel intercalation 1.89 × 10-17

6.89 × 10-19
51.7
70.3

[153]

PET-PA/MXD6 O-MMT 3.5 wt% Melt
intercalation

2.27 × 10-19 21 [32]

LLDPE MMT, O-MMT 5 wt% Melt
intercalation

1.25 × 10-17 58 [76]
PVC 10 wt% 0.731 × 10-17 65

Polyester O-MMT 2.5 wt% Melt
intercalation

~7.83 × 10-20 63 [10]

Paraffinic wax O-MMT 2.5 wt% Melt
intercalation

3.14 × 10-18 99.7 [19]

EVOH, PLA Kaolinite 4 wt%
4 wt%

Melt
intercalation

< 1 × 10-21

6 × 10-19
75
45

[82]

PI O-MMT 3 wt% Solution
intercalation

2.33 × 10-18 30 [63]

XG MMT 20 wt% Solution
intercalation

5.79 ×10-22 89 [79]

PVA, NFC MMT 50 wt% Solution
intercalation

5.71 × 10-22 99.8 [144]

NFC MMT 50 wt% Solution
intercalation

4.00 × 10-19 80 [93]

Chitosan MMT 5 wt% Solution
intercalation

~1.1 × 10-18 ~50 [60]

PP/EPDM O-MMT 5 wt% Solution
intercalation

2.55 × 10-17 62 [120]

Epoxy O-MMT 5 vol% Solution
intercalation

4.79 × 10-20 75 [117]

EP O-MMT 7 wt% In situ
polymeriza-
tion

2.34 × 10-18 86.1 [30]

PS MMT, O-MMT 16.7 wt% In situ
polymeriza-
tion

5.03 × 10-18 64 [110]

PLA GONS 1.37 vol% 1.145× 10-18 45 [65]
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application. Recently, the demand for transparent packaging
materials with equivalent gas barrier properties to metalized
plastics has increased significantly, since they allow content
visibility. Furthermore, elimination of metallic components
provides better recyclability and microwave compatibility
[81]. In the following parts, we will discuss about different
approaches of making transparent multilayer films.

Thin Metal Oxide Films

The first alternative for metalized plastics was transparent sil-
icon oxide (SiOx) coating which, besides providing oxygen

barrier properties, also prevents from moisture ingress or aro-
ma loss. In the 1980s, application of these thin films in the
food packaging sector became very popular. Although thin
metal oxide films exhibit good oxygen barrier properties,
these coatings fall short of their predicted performance, main-
ly due to microscopic defects like pinholes that form during
the deposition process and also their surface roughness. It has
been shown that barrier trends logarithmically with surface
roughness and smoother films illustrate a better oxygen barrier
characteristic [29, 57].

Table 1 (continued)

Polymer Type of nano Nano
loading

Processing Oxygen permeability (m2

s-1 Pa-1)
Oxygen permeability
reduction (%)

Reference

Solution
intercalation

Cellulose GNPs 5 wt% Solution
intercalation

~0.8 × 10-18 ~27 [96]

HDPE DA-GO, DA-RGO 1 wt% Solution
intercalation

1.75 × 10-18 67 [136]

PLA Graphene oxide, GNP 0.4 wt% Solution
intercalation

1.2 × 10-18 68 [124]

PVA GONS 0.72 vol% Solution
intercalation

0.24 × 10-19 98.9 [64]

EVOH TRG 0.5 wt% Solution
intercalation

8.517 × 10-19 99.98 [160,
161]

PVA Graphene oxide 0.07 vol% Solution
intercalation

Recrystallization

˂ 5.0 × 10-24 > 99.94 [22]

PU RGO 2 wt% Melt
intercalation

0.309 × 10-18 90.5 [44]

XNBR Graphene oxide 1.9 vol% Latex
co-coagulation

~1.5 × 10-17 55 [77]

PLA Graphene oxide 0.1 wt% solution
intercalation

2.513 × 10-18 33 [150]

PLA Graphene oxide 0.3 wt% solution
intercalation

2.627 × 10-18 30 [150]

PLA Graphene oxide 0.5 wt% solution
intercalation

3.4 × 10-18 9 [150]

PLA Silk nano-disc 0.5 wt% Melt
intercalation

1.68 × 10-18 50 [121]

PLA Silk nano-disc 1 wt% Melt
intercalation

0.92 × 10-18 72.4 [121]

PLA Silk nano-disc 2 wt% Melt
intercalation

1.45 × 10-18 56.9 [121]

PLA Silk nano-disc 5 wt% Melt
intercalation

1.04 × 10-18 68.9 [121]

Thermoplastic
starch

Cellulose nanofibers 15 wt% Solution
intercalation

0.58 × 10-18 48.68 [133]

Thermoplastic
starch

Cellulose
nanofibers/graphene oxide

15, 3 wt% Solution
intercalation

0.38 × 10-18 66.45 [133]

Cassia-gum C-CNCW 2 wt% Solution
intercalation

2 × 10-19 5.58 [16]

Cassia-gum C-CNCW 4 wt% Solution
intercalation

1.98 × 10-19 19.21 [16]

Cassia-gum C-CNCW 6 wt% Solution
intercalation

1.93 × 10-19 18.68 [16]
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Hybrid Coating

An innovative approach to achieving enhanced barrier
properties of polymers can be presented by coating
micro-layers of material with appropriate gas barrier prop-
erties on them. Various materials from natural or synthetic
bases can be utilized for coating. For instance, in a study,
modified whey protein was coated on PLA in order to
improve its oxygen barrier properties. Comparison of neat
PLA versus PLA coated with whey protein isolate showed
improvement of about 90% in the oxygen barrier proper-
ties [155]. In another study, cellulose nanocrystals, which
were obtained from cotton linters and Kraft pulp, were
coated on PET to enhance PET oxygen barrier character-
istics. The result illustrated that the oxygen permeability
value of coated PET was hundreds of times lower than
pure PET over a board range of time [135]. In a study, a
biodegradable PLA-based hybrid coating material was ob-
tained via coating PLA film by prepared PLA/SiO2 hy-
brids. In this study, 3-isocyanatopropyltriethoxysilane was
employed as a silane coupling agent in order to promote
adhesion between dissimilar materials (silica and PLA).
Oxygen barrier properties of coated PLA improved by
69.7% compared to neat PLA [9]. High-strength regener-
ated cellulose/attapulgite (ATT) composite films (RC/
ATT) with good oxygen barrier performance were pre-
pared from cellulose/LiOH/urea solutions with different
ATT contents ranging from 5 to 20 wt%. The RC/ATT
composite films exhibited relative low oxygen permeabil-
ity below 0.5 cm3 μm/day m2 kPa, which could even
reach 0.32 cm3 μm/day m2 kPa with 20 wt% ATT content
(C. [154]). In a study, functional antimicrobial LDPE
films with coatings containing different amounts of pyro-
gallol (PGL), a natural phenolic substance, and polyure-
thane were prepared. Coatings with pyrogallol caused the
barrier properties for water, and oxygen was increased
from 0.78–0.32 to 470 ± 23.2–273 ± 57.1 (g mm)/(m2 h
kPa), respectively. These findings indicate that the barrier
properties of the LDPE/PGL films were highly improved
compared to those of neat LDPE [42, 25] have explored
the mass transfer of renewable films based on gelatin
(Ge), glycerol (Gly), and epoxidized soybean oil (ESO)
for application in food packaging. The results illustrated
that gelatin sample containing 20% Gly and 20% ESO
present appropriate gas barrier properties [25]. In another
study, the oxygen transfer rate (OTR) and water vapor
permeability (WVP) of polyethylene terephthalate (PET)
films were adjusted via coating of polyphenols and gelatin
mixture (PGM) with different concentrations while main-
taining the other properties of modified PET films. The
results showed that OTR was decreased (63.5±0.02 to
38.1±0.03g/in2/day) with respect to uncoated film (82 ±
3.5) [69]. Lu et al. [95] reduced the oxygen permeability

of biaxial ly or iented PP/LDPE fi lm by coat ing
nanofibrillated cellulose (NC) solution on it. The result
showed that oxygen transmission rate of the coated film
was as low as 24.02 cc/m2/day compared to non-coated
film (67.03 cc/m2/day) [95].

Layer by Layer Assembly

Layer by layer assembly has received extensive, worldwide
attention over the past two decades, due to its relatively inex-
pensive deposition technique and typically for producing mul-
tifunctional thin film such as enhanced gas barrier properties
film which has less than a micron thick ([4]; M A [130]).
Generally, the following steps are done in order to prepare
the LBL film as shown in Fig. 4: often the negatively charged
substrate is immersed into a mixture of positively charged
material (polyelectrolytes or nanoparticles) for a given amount
of time, ranging from seconds to tens of minutes. The sub-
strate is then removed from the mixture, rinsed with deionized
water, optionally dried in a stream of filtered air (or nitrogen),
and then immersed into a mixture of negatively charged ma-
terial, rinsed and dried. This simple procedure is then repeated
to deposit a given number of cationic and anionic pairs layers
[131]. Individual layers can range from angstroms to hundreds
of nanometers in thickness, although many factors can influ-
ence their thickness, including pH, buffer, ionic strength, tem-
perature, the molecular weight of the deposition species, and
the relative humidity of the fabrication environment [2, 51].

Layer by Layer Assembly of Polymers Much of the early LbL
gas barrier work was done using only polymers, rather than
particle-filled or nanostructural systems. Leväsalmi and
McCarthy [87] showed that layered structural films which
consisted of PAH (a strong poly cation) and PSS (a strong
poly anion) have good gas barrier properties due to its dense
ionically crosslinked structure [87]. Yang et al. [159] have
also reported that the multilayer film of PEI and PAA form a
dense network, which has super gas barrier performance (Y.-
H. [159]). In a study, the LBL approach was applied to pro-
duce a biodegradable multilayer film of sodium alginate/PEI
on biaxially oriented PLA. Oxygen permeability of the pre-
pared film was found to be three orders of magnitude less than
the uncoated biaxially oriented PLA film [50]. In another
study, a multilayer film of fish gelatin/PLA was prepared in
order to reduce oxygen permeability. It was found that the
oxygen permeability value of the multilayer film reduced
more than eightfold compared to pure PLA film [62]. Joo
et al. have developed whey protein isolate (WPI)-coated mul-
tilayer films using PET film as a substrate. In order to improve
the interfacial compatibility between PET film and water-
based WPI coating solution, various surface pretreatments
(corona discharge, plasma, and primer coating) were applied
to PET. Oxygen transmission rates of surface-pretreated
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multilayer films with WPI coating layer [PET/WPI/nylon/
LLDPE] were significantly lower, about 43–234 times, than
the multilayer films without WPI film layer [74]. Apicella
et al. [3] developed a multilayer film based on PET polymer,
which indicated excellent barrier properties toward oxygen. In
this investigation, an active layer of PET containing 10 wt%
polymeric oxygen scavenger, named Amosorb DFC 4020E,
were sandwiched between two layers of neat PET polymer.
[3].

Layer by Layer Assembly of Polymers and Nanomaterials LbL
films exhibit unique properties when incorporated with nano-
particles. Nanoparticle-based LbL films have super barrier gas
properties [119]. In a study, a polymer/nanoclay multilayer
ultrathin film with only 52 nm thickness was prepared via
LBL assembly of 12 polymer and 4 clay layers. The obtained
film presented oxygen permeability orders of magnitude even
lower than EVOH and SiOx [126, 127]. In another study, a
quadlayer film which consisted of CH/CR/CH/MMT was de-
posited on PET film, using the LBL technique. This multilay-
ered thin film was able to reduce the oxygen permeability
value of PET by two orders of magnitude compared to pure
PET film, under the same conditions (Galina [85]). In another
study, a high barrier multilayer film based on PET substrate
was achieved by LBL assembly of similarly cationic charged
layers of PEI and successive anionic charged layer of clay.
Transmission electron microscopy images of the prepared
film illustrated a nanobrick wall structure of clay nanoplatelets
within the polymeric mortar, which resulted in enhanced

oxygen barrier properties [53]. The impact of deposition of
multilayered hybrid thin film composed of cellulose
nanocrystals (CNCs) and gibbsite nanoplatelets (GNPs) onto
different selected substrates on the oxygen barrier properties
was examined. The substrates were an uncoated kraft card-
board, a polyethylene-coated cardboard, a low density virgin
PE, and a smart paper. The results revealed that the oxygen
barrier properties of all the substrates were significantly im-
proved after the deposition of thin multilayered hybrid film
[20]. Other studies related to oxygen barrier properties of mul-
tilayer film are summarized in Table 2. As illustrated in ma-
jority of cases, the reduction in oxygen permeability was
higher than 90% that reveals the efficiency of multilayer film
in improving oxygen barrier properties. It is worth mentioning
that multilayer films compromising of polymer and nanofiller
demonstrated enhanced oxygen barrier characteristics, which
are analogs to multilayer films containing SiOx coating.

Introducing New Crystals Phase or Shape in the
Polymer Matrix

It has been shown that increasing the degree of crystallinity
contributed to enhancement of gas barrier properties of pack-
aging, since crystallites act as impermeable obstacles and
make the diffusing molecules to take a longer pathway around
them. It has been also illustrated that crystalline zones can
influence their surrounding polymer chains and cause forma-
tion of a restricted or rigid amorphous fraction which has
lower chain movement and improved oxygen barrier

Fig. 4 Procedure of layer by layer
assembly in production of
multilayer films
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Table 2 Oxygen permeability of multilayer polymer

Type of layers Processing method Oxygen
permeability

Oxygen permeability or OTR
reduction (%)

Reference

PE with SiOx coating Plasma enhanced chemical
vapor deposition

300 cm3 m-2 day-1

atm-1
96.48 [38]

PA with SiOx coating Plasma enhanced chemical
vapor deposition

0.5 cm3 m-2 day-1

atm-1
99.26 [38]

OPP with SiOx coating Plasma enhanced chemical
vapor deposition

9 cm3 m-2 day-1

atm-1
99.64 [97]

OPP with SiOx coating Physical vapor deposition 218 cm3 m-2 day-1

atm-1
91.28 [105]

PET with SiOx coating Physical vapor deposition 2.64 cm3 m-2 day-1

atm-1
97.8 [139]

PET with SiOx coating Physical vapor deposition 2.18 cm3 m-2 day-1

atm-1
98.18 [80]

PET with SiOx coating Plasma enhanced chemical
vapor deposition

1 cm3 m-2 day-1

atm-1
99.16 [38]

PET with SiOx coating Plasma enhanced chemical
vapor deposition

0.66 cm3 m-2 day-1

atm-1
99.45 [70]

PET with SiOx coating Plasma enhanced chemical
vapor deposition

0.44 cm3 m-2 day-1

atm-1
99.63 [35]

PET with SiOx coating Plasma enhanced chemical
vapor deposition

0.29 cm3 m-2 day-1

atm-1
99.75 [72]

PET with SiOx coating Plasma enhanced chemical
vapor deposition

0.1 cm3 m-2 day-1

atm-1
99.9 [67]

PAAm, PAA with MMT nanofiller Layer by layer assembly < 1 × 10-25 (m2 s-1

Pa-1)
99.8 [129]

PVAm, PEI, PAA with MMT nanofiller Layer by layer assembly < 5 × 10-26 (m2 s-1

Pa-1)
99.94 [148]

Chitosan with MMT nanofiller Layer by layer assembly 3 × 10-22 (m2 s-1

Pa-1)
99.98 [84]

PVP with MMT nanofiller Layer by layer assembly 6.2 × 10-22 (m2 s-1

Pa-1)
64 [58]

PEI, PAA with 26.2 wt% MMT nanofiller Layer by layer assembly < 0.9 × 10-25 (m2

s-1 Pa-1)
99.94 [126,

127]

PEI, PAA with LAP nanofiller Layer by layer assembly 8.3 × 10-24 (m2 s-1

Pa-1)
99.4 [156]

PEI, PAA with MMT nanofiller Layer by layer assembly 6.4 × 10-25 (m2 s-1

Pa-1)
93.2 [156]

PEI, PAA with VMT nanofiller Layer by layer assembly 3.3 × 10-25 (m2 s-1

Pa-1)
99.8 [156]

PEI, PAA with MMT nanofiller Layer by layer assembly 1.21 × 10-25 (m2 s-1

Pa-1)
99.94 [53]

PEI with more than 84 wt% nanofiller Layer by layer assembly < 2.28× 10-25 (m2

s-1 Pa-1)
99.94 [126,

127]

PGD, PEI with MMT nanofiller Layer by layer assembly 3.50 × 10-20 (m2 s-1

Pa-1)
71 [59]

PEI with MMT nanofiller Layer by layer assembly < 1 × 10-25 (m2 s-1

Pa-1)
99.94 [128]

PAM with MMT nanofiller Layer by layer assembly < 6.51× 10-19 (m2

s-1 Pa-1)
99.94 [71]

BPEI Graphene oxide with nanofiller Layer by layer assembly < 0.05 cm3 m2

day−1
99.6 [21]

PEI with graphene oxide nanofiller Layer by layer assembly 0.05 cc/m2 day 99.4 [162]

PEI with Graphene oxide nanofiller
Graphene oxide film sandwiched between two

layers of PLA

Layer by layer assembly
Layer by layer assembly

0.12 cc/m2 atm day
7.08 × 10-20 (m2 s-1

Pa-1)

99
97.2

[161]
[49]

Reduced graphene oxide film sandwiched between
two layers of PLA

Layer by layer assembly 2.63 × 10-20 (m2 s-1

Pa-1)
99% [49]

Chitosan and MMT films coated on PLA Layer by layer assembly 2.97 × 10-20 (m2 s-1

Pa-1)
98 [145]

20 bilayers of BPEI and Nafion deposited on PLA Layer by layer assembly 1.32 × 10-18 (m2 s-1

Pa-1)
22.15 [17]
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properties compared to amorphous fraction as illustrated in
Fig. 5 [143]. In a study, combined techniques of solution
blending and isothermal recrystallization were applied for for-
mation of film comprised of PVA and GO, in order to intro-
duce new crystals into the polymer mortar. It was found that
during isothermal recrystallization process, GO sheets act as
nucleating agents and contributed to formation of PVA crys-
tals around the GO sheets. Transmission electron microscopy
images revealed that newly formed PVA crystals have filled
the empty spaces that existed between GO sheets and have
formed ultra huge impermeable fractions that inhibit oxygen
diffusion through the polymer matrix [22]. In another study,
the effect of crystallinity degree on oxygen permeability
values of films prepared via in situ polymerization of L-

lactide with silane-modified nanosilica and MMT and also
pure PLA and commercial PLA was evaluated. The results
showed that the difference in crystallinity between commer-
cial PLA and pure polymer results in different oxygen perme-
ability with commercial PLA having permeability 76% higher
than pure PLA, which is the result of its lower crystallinity
degree compared to pure PLA. These are two unmodified
PLAs; therefore, the difference in permeability can be attrib-
uted only to the different crystalline content in these two sam-
ples. Also, it was demonstrated that the presence of nanopar-
ticles in the polymer matrix increases crystallinity degree
which positively affects permeability and contributed to im-
proved oxygen barrier properties [115].

Fig. 5 Effect of isothermal
recrystallization on crystallinity
degree of nanocomposite matrix

Table 2 (continued)

Type of layers Processing method Oxygen
permeability

Oxygen permeability or OTR
reduction (%)

Reference

4 quadlayers of BPEI/Nafion/BPEI/MMT
deposited on PLA

Layer by layer assembly 0.7 × 10-18 (m2 s-1

Pa-1)
59.73 [17]

6 quadlayers of BPEI/Nafion/BPEI/MMT
deposited on PLA

Layer by layer assembly 0.24 × 10-18 (m2 s-1

Pa-1)
85.91 [17]

8 quadlayers of BPEI/Nafion/BPEI/MMT
deposited on PLA

Layer by layer assembly 4.57 × 10-20 (m2 s-1

Pa-1)
97.31 [17]

10 quadlayers of BPEI/Nafion/BPEI/MMT
deposited on PLA

Layer by layer assembly 2.28 × 10-20 (m2 s-1

Pa-1)
98.66 [17]

4 hexalayers of (BPEI/Nafion)2/BPEI/MMT
deposited on PLA

Layer by layer assembly 0.12 × 10-18 (m2 s-1

Pa-1)
92.62 [17]

6 hexalayers of (BPEI/Nafion)2/BPEI/MMT
deposited on PLA

Layer by layer assembly 2.97 × 10-20 (m2 s-1

Pa-1)
98.25 [17]

8 hexalayers of (BPEI/Nafion)2/BPEI/MMT
deposited on PLA

Layer by layer assembly 3.99 × 10-20 (m2 s-1

Pa-1)
97.65 [17]

10 hexalayers of (BPEI/Nafion)2/BPEI/MMT
deposited on PLA

Layer by layer assembly 2.4 × 10-20 (m2 s-1

Pa-1)
98.6 [17]

BPEI/NFC film coated on PLA Layer by layer assembly 0.1 × 10-18 (m2 s-1

Pa-1)
92 [7]
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Cross-Linked Polymers

Cross-linking can minimize the gasps and spaces that exist in
the polymer matrix and by this way improves gas barrier per-
formance [28]. In the case of nanocomposite, cross-linking
can also connect neighboring nanoparticles and form huge
impermeable obstacles for diffusing molecules and contribute
to improved oxygen barrier properties [8]. In a study, borate
was utilized as a cross-linking agent in order to enhance oxy-
gen barrier properties of PVA/GO nanocomposite. It was
demonstrated that cross-linking networks joined GO sheets
with each other and formed large impermeable regions which
contributed in a significant reduction in oxygen permeability
of cross-linked nanocomposite [83]. In another similar study,
boric acid induced cross-linking in PVA/GO nanocomposite
which was also confirmed by FTIR through the formation of a
B–O–C bond. Then, the prepared cross-linked nanocomposite
was deposited on the nylon. Coated nylon film exhibits dra-
matic reduction of oxygen gas permeability compared to un-
coated nylon film [89]. In another study by Lazar et al. [86],
multilayer nanocoating which consisted of cross-linkable CH
and PAA were deposited on PET substrate. In this study,
glycidyl methacrylate was applied in order to functionalize
CH via formation of acrylic functionalities within the film.
After deposition, films were cross-linked by the use of a free
radical initiator. Cross-linking of film was confirmed by FTIR
results and also by the reduction in thickness of film after
cross-linking. Moreover, the results of this study revealed a
considerable reduction in oxygen permeability value [86]. In
an investigation, a ternary polysaccharide polyelectrolyte
complex (PPC) material based on crystalline nanocellulose
(CNC), chitosan (CS), and carboxymethyl cellulose (CMC)
was manufactured by an immediate high-shear homogeniza-
tion procedure. CS and CMC were ionically cross-linked and
formed a homogeneous continuous matrix. CNC was incor-
porated as nanoreinforcement into the formed network. The
developed PPC film exhibited improved barrier properties,
ascribed to the even distribution and good interfacial compat-
ibility of CNC within the CS/CMC matrix [24]. Zhuang et al.
[165] have prepared an antibacterial chitosan-citric biomem-
brane with enhanced oxygen barrier performance by in situ
cross-linking. The obtained film exhibited a low oxygen trans-
mission rate (below 0.1 cm3/m−2/day−1 at 40%RH), as a result
of the increased diffusion length arising from the hydrogen-
bonding, ionic, and covalent cross-linking [165].

Conclusion

In recent years by established new regulation for single use
packaging materials and banding equal multilayer structure
such as polymer-polymer, more and more approaches have
emerged in the food packaging industry, and future

developments hold great potential for food packaging material
with excellent oxygen barrier properties intended to protect
oxygen-sensitive food products from deterioration and pro-
long their shelf life. This review highlights many processes
that were tried to prepare, “superbarrier” packaging toward
oxygen including layer-by-layer assembly, coating, incorpo-
ration of nanoparticles, increasing ratio of crystalline to amor-
phous regions in polymer via introducing new crystals, and
the combination of different methods. Compared to the pure
polymer matrix, the gas barrier performance of polymer via
these approaches was improved. The results of the scientific
literature had illustrated that these prepared materials can also
replace other preferred materials like aluminum foil and solve
the opaqueness problem associated with metalized packaging.
In this review, we highlighted the manufacturing methods of
polymer with their respective improvement in gas barrier
properties. This literature review showed that the barrier prop-
erties could be significantly improved with these techniques
and the results could vary from case to case. Lastly, the per-
centages of oxygen permeability reduction by different strat-
egies are also thoroughly discussed. Owing to increased de-
mand on biopolymer in the past few years that typically have
poor barrier characteristics toward oxygen compared to con-
ventional polymer, it would be necessary to conduct more
research on improving biopolymer oxygen barrier properties
by applying techniques, which would make them capable of
competing with synthetic polymers.
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Nomenclature BOPP, Biaxially oriented polypropylene; BPEI,
Branched poly(ethylenimine); C-CNCW, carboxylated cellulose nano
crystal whisker; CF, Carbon fiber; CH, Chitosan; CNW, Cellulose
nanowhiskers; COC, Cyclic olefin copolymer; CR, Carrageenan; DA-
GO, Dodecyl amine-functionalized graphene oxide; DA-RGO, Dodecyl
amine-functionalized reduced graphene oxide; EP, Epoxy resin; EPDM,
Ethylene–propylene–diene rubber; EVA, Ethylene-vinyl acetate; EVOH,
Ethylene vinyl alcohol; FTIR, Fourier transform infrared spectroscopy;
GNPs, Graphite nanoplatelets; GO, Graphene oxide; GONS, Graphene
oxide nanosheet; HDPE, High density polyethylene; HEC, Hydroxyethyl
cellulose; ICN, n-Octadecyl isocyanate; IIR, Poly (isobutylene- isoprene)
rubber; LAP, Laponite; LCP, Liquid-crystal polymer; LDPE, Low den-
sity polyethylene; Li-Hec, Lithium fluoro-hectorite; LLDPE, Linear low
density polyethylene; MMT, Montmorillonite; MXD6, Poly(m-xylylene
adipamide); Nafion, hydrophobic fluorinated polymer; NFC,
Nanofibrillated cellulose; O-MMT, Organo-modified montmorillonite;
OPP, Oriented polypropylene; O-VER, Organo-vermiculite; PA, poly-
amide; PAA, Poly(acrylic acid); PAAm, Poly(allyl amine); PAH,
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Poly(allyl amine hydrochloride); PAI, Poly(amide-imide); PAM,
Polyacrylamide; PAN, Polyacrylonitrile; PC, Polycarbonate; PCL,
Polycaprolactone; PEI, Polyethylenimine; PEN, Polyethylene
naphthalate; PEO, Polyethylene oxide; PET, Polyethylene terephthalate;
PETG, Polyethylene terephthalate glycol; PGD, Polyglycidol; phr,
W e i g h t p a r t s p e r 1 0 0 w e i g h t p a r t s p o l ym e r ; PHB ,
Polyhydroxyalkanoate; PI, polyimide; PLA, Poly lactic acid; PP,
Polypropylene; PS, polystyrene; PSS, Polystyrene sulfonate; PU, poly-
urethane; PVA or PVOH, Polyvinyl alcohol; PVAm, Polyvinylamine;
PVC, Polyvinyl chloride; PVDC, Poly (vinylidine) chloride; PVP,
Polyvinylpyrrolidone; PUR, Polyurethane; RGO, Reduced graphene ox-
ide; RH, Relative humidity; SBR, Styrene butadiene rubber; VAC, Vinyl
acetate; VMT, Vermiculite; XG, Xyloglucan; XNBR, Carboxylated ac-
rylonitrile butadiene rubber
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