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Abstract
Most studies on frozen foods’ deterioration focus onmeasurements of selected quality determining indices at the reference frozen
storage conditions at limited time points (e.g., 6 and 12 months). This information is not sufficient to predict the frozen system
behavior under a different storage temperature, or under the real, dynamic conditions of the actual cold chain. For this purpose, a
systematic kinetic study is essential; additionally, the real uncertainty ofmodel parameters needs to be taken into account, in order
to proceed to realistic shelf life estimations. In this reviewwork, published findings on kinetic data of deterioration of frozen food
of plant origin were analyzed. Kinetic parameters (e.g., activation energy, shelf life, etc.) were extracted and some of them
incorporated to a further investigation. The scope is to provide a critical assessment and a comprehensive meta-analysis of the
literature information on quality loss modeling of frozen foods. Therefore, common quality indices for specific systems are
reviewed, fundamental methodologies used to build kinetic models are assessed, and alternative approaches to improve practical
applications of these models are proposed. Alternative methodologies are described in order to take into account the calculated
uncertainty of models’ parameters when assessing the remaining shelf life of the product at any point within the cold chain. This
was implemented in a FORTRAN code through a Monte Carlo scheme, on literature data of vitamin C loss in different frozen
matrices, as well as for other quality indices (e.g., color). Results demonstrated the improved predictions obtained, with broader
and more realistic confidence intervals.
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Introduction

Freezing, one of the most important unit operations for the
food industry, involves the removal of latent heat from a food
system, resulting in a substantial decrease of its temperature
and water activity via crystallization of a major part of the
water. Freezing slows down microbial activity, nutritional

loss, and sensory degradation prolonging significantly shelf
life and allowing the transportation of perishable and seasonal
products to otherwise inaccessible remote markets [1].
However, the literature is not always clear regarding the actual
effect of freezing temperatures and storage conditions on some
important attributes of frozen foods and this part needs further
clarification. Food quality, and especially its mathematical
description through appropriate models, is in the center of
current food science research.

Most studies on frozen food deterioration are based on
measurements of few selected parameters (e.g., vitamin C,
phenolic compounds, anthocyanins, carotenoids) at a refer-
ence temperature (e.g., − 18 °C) and a few time points (e.g.,
6 and 12 months). Bonat Celli et al. [1] published a thorough
review of the effect of frozen storage on the quality of fruits,
presenting data for several tissues. Although this approach
allows for a comparative assessment (especially when a dif-
ferent freezing process is applied), it cannot be further
exploited to predict the frozen system behavior under a differ-
ent storage temperature, or most importantly under the real,
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non-isothermal conditions of the actual cold chain. For this
purpose, a systematic kinetic study, based on quality measure-
ments for an extended time period, at constant temperatures in
the range of interest, is essential to be able to obtain accurate
predictions on dynamic systems [2–5], e.g., at any point with-
in the cold chain. It is also necessary to have the prevailing
values for dynamic temperatures in a given cold distribution
chain.

Temperature is not the only quality-determining factor. Ice
formation causes severe textural changes, such as tissue dis-
ruption. Moreover, the separation of solid water produces a
concentrated unfrozen phase which can be in a liquid, rubbery,
or glassy state depending on the storage temperature of the
frozen foods. Chemical reaction rates decrease as the temper-
ature is lowered due to the slow movement of molecules hav-
ing the necessary activation energy for the reaction; however,
in a frozen matrix, the increasing solute concentration further
affects the mobility properties of the system [6]. One cannot
overlook this complexity that influences the kinetics of quality
loss during storage.

There are only few studies investigating and describing
mathematically the effect of phase transitions and temperature
fluctuations at low temperatures (during distribution and stor-
age of frozen foods) on the quality of real food matrices [7],
and not merely on model systems simulating food product
behavior. In food models, several workers have tested the
applicability of the Arrhenius, WLF, and other equations to
assess glass transition effect on the rates of different chemical
reactions [8–11]. Focusing on real food systems, an alternative
to the Arrhenius approach for expressing quality loss kinetics
is by relating the reaction rate to Tstorage − Tg. Syamaladevi
et al. [12], Syamaladevi et al. [13], and Zhang et al. [14]
evaluated the stability of several frozen food matrices in
glassy and rubbery states during long-term storage and con-
cluded that significant degradation occurred even in the glassy
state. An important observation from the literature review
concerning WLF kinetics applicability is that this equation is
mostly used as an empirical model, without aiming at eluci-
dating the real mechanism behind frozen food quality loss.
This can be attributed to two main reasons: on one hand,
temperature conditions of the experimental procedure are, in
most cases, far from the glass transition zone, and secondly,
the real mechanisms that include glass transition and other
freeze-concentration phenomena are too complex to describe
mathematically. In this context, in the majority of the pub-
lished works, in-depth modeling of quality degradation mech-
anisms in a broad temperature zone, aiming to account for the
high complexity of the combined effect of all contributing
factors, is not available.

Based on these considerations and observations, despite the
importance of Tg’ theory and its practical implication, in the
majority of published works regarding quality degradation
modeling, the “apparent kinetics” methodological approach

is used. According to this approach, a kinetic model comprises
two parts, namely, a primary model that empirically describes
the selected index change as a function of time and a second-
ary model that characterizes parameters employed in primary
models as a function of processing factors and/or environmen-
tal conditions. The combination of primary and secondary
models is then capable of predicting the index change as a
function of time, processing factors, and environmental con-
ditions [15].

An overview of all methodologies concerning frozen food
kinetic studies taking into account only the effect of tempera-
ture (apparent kinetics) shows that there are weak points,
mainly with regards the determination of the confidence inter-
vals, and consequently the uncertainty of the model parame-
ters. The necessity to account for the real uncertainty of model
parameters is to be able to predict in a more accurate way
deteriorative changes, at any selected temperature and time,
and thus proceed to realistic and reliable shelf life estimations.
Several statistical tools are available to assess the variability
(through the estimated confidence intervals) of each kinetic
parameter and appropriately incorporate it to the initial quality
function. As a next step, Monte Carlo simulation techniques
are currently often applied in the literature for the probabilistic
assessment of stochastic variability and uncertainty, as it will
be discussed in detail in a following section.

When reviewing reported values for kinetic parameters, in
most cases, a significant variability among shelf life studies of
frozen foods occurs, even among researches investigating
similar or even the same type of food systems. Based on these
kinetic results and a meta-analysis approach, it would be in-
teresting to go a step further and predict product shelf life,
assessing at the same time the uncertainty of this prediction
in each case. Meta-analysis, defined as a “statistical analysis
of a collection of analytic results for the purpose of integrating
the findings from a large amount of primary studies” [16] is
used in this study in order to (i) compile the differences in
kinetic results by identifying and reporting all important pa-
rameters (i.e., food matrix, temperature range tested, parame-
ters’ values) and (ii) use the available data to provide estimates
with increased statistical power and broader applicability [17].
The primary aim of this meta-analysis is to produce a more
accurate estimate of the effect of kinetic parameters’ uncer-
tainty on product shelf life than is possible using only the
single-parameter value often provided in published literature.
In this study, therefore, the main targets were to review avail-
able results on frozen food kinetics and further analyze them,
with a methodology aiming to uncertainty calculations of shelf
life, through a Monte Carlo approach (as detailed in the ‘Case
study’ section), in order to obtain more realistic shelf life
predictions.

This review paper aims to provide a critical assessment of
the literature on modeling of quality changes during storage
and distribution of frozen foods, focusing on frozen fruits and
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vegetables. To accomplish this goal, it presents a necessary
overview on fundamental methodologies used to build quality
kinetic models, common quality indices selected for specific
frozen food systems and kinetic models, and considerations to
improve practical applications of quality kinetic models of
frozen foods, by taking into account the uncertainty of kinetic
parameters.

Frozen Food Quality Indices and Modeling

The quality degradation of frozen fruits and vegetables is
mostly described by nutritional content loss and sensory attri-
bute deterioration (e.g., color/overall appearance, texture, fla-
vor/aroma, taste, etc). The main physical changes that occur
during frozen storage are moisture migration and ice recrys-
tallization, both related to the stability of products’ frozen
water, which affects the vegetable texture, loss of nutrients,
and drip loss. On the other hand, chemical changes in frozen
vegetables and fruits cause off-flavor development, pigment
and color degradation [1], oxidative deterioration, and vitamin
loss. In this work, several indices’ change is reported after a
certain storage at discrete temperatures, for a number of ma-
trices; however, no kinetic modeling is presented.

When addressing food quality kinetics, in the established
and more frequently employed two-step approach, the most
representative quality indices are selected, and their changes
are measured as a function of processing or storage time at
constant temperature conditions using a primary model. The
second step is to select an appropriate secondary model that
best describes the effect of temperature or any other appropri-
ate kinetic parameter on the rate of changes.

Alternatively, the model parameters can be determined in a
single step considering the same dataset, obtained at different
temperature conditions, as a whole and performing a non-
linear regression through appropriate mathematical equations
which are developed by incorporating the secondary into the
primary model. Initial guesses for this non-linear procedure
may be obtained from the two-step approach. The advantage
of one-step analysis modeling is not only the increased num-
ber of degrees of freedom, but rather the use of more precise
parameter estimates and the development of more realistic
models due to the knowledge of various responses [18].
Several studies in the area of frozen foods have been published
in recent literature that use one-step kinetic analysis [19, 20].
However, an important issue that needs to be addressed in this
case is the selection of the fitting algorithm and the respective
fit criterion that is not always well described and sustained
[18]. It is advisable that the developed primary and secondary
models are validated by challenging the calculated quality
values to measured ones via additional independent experi-
ments. Validated, mathematical models can be a useful tool

to quantitatively predict quality at any stage and set of condi-
tions in the food chain.

Another approach currently introduced involves the simul-
taneous determination of kinetic parameters of primary and
secondary models based on experiments at dynamic condi-
tions instead of isothermal data; such a procedure is rarely
reported in frozen food kinetics, whereas frequently adopted
in other areas of food science [5, 21–23]. Another issue of
major importance, which may be the source of errors, is the
selection of the most suitable non-isothermal profile, as well
as the most appropriate primary and secondary models for the
system under study.

Primary models describe the change of chemical concen-
tration, enzyme activity, microbial population, etc. as a func-
tion of time; in the case of frozen foods, this is mostly attrib-
uted either to the decrease of one or more quality attributes,
such as a nutrient or a desirable flavor or to the production of
an undesirable substance, such as an off-flavor or discolor-
ation (Eq. 1):

rA ¼ � d Að Þ
dt

¼ k∙ Að Þn ð1Þ

where the quality index (A) is a measurable chemical, phys-
ical, microbiological, or sensory attribute, chosen to describe
the quality degradation of the food system in question. The
constant k is the apparent reaction rate constant and n is the
apparent order of the respective reactions. The term “appar-
ent” used indicates that Eq. 1 does not necessarily describe the
actual mechanism of the phenomenon studied.

The values of k and n of Eq. 1 are determined by appropri-
ately fitting the change with time of the experimentally mea-
sured values of (A) to Eq. 1. In this context, integrating Eq. 1
leads to an expression for quality quantification, which actu-
ally demonstrates its dependency on time and numerous in-
trinsic and extrinsic factors:

Q Að Þ ¼ k Ci;E j
� �

t ð2Þ

whereQ can be defined as the quality function of the food and
k, the apparent reaction rate constant is a function of compo-
sition factors Ci [24], and of environmental factors, Ej.
Moisture content, water activity, pH, NaCl, gas composition
(mostly in the case of modified atmosphere packaged prod-
ucts), pressure (when high hydrostatic pressure is applied) etc.
are among the most popular influencing parameters, and their
effect may be appropriately included in secondary models.
The most simplified approach is to describe this parameter’s
effect on reaction rate in a way similar to the temperature
effect, using the most popular secondary models (e.g.,
Arrhenius etc.), by substituting temperature parameter with
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the factor in question. When the effect of more than one pa-
rameter is studied, then more complicated equations are de-
veloped usually applying the same models in a consecutive
way [25]. The analytical form ofQ(A) depends on the reaction
order. The rate of change of A can be in general represented by
a nth order equation [26]. For example, microbial death, ther-
mal denaturation of proteins, and vitamin loss are often de-
scribed as first-order phenomena, whereas other food quality-
related actions, such as non enzymatic browning, texture loss,
and overall sensory deterioration, are better described as ap-
parent zero-order phenomena. However, for specific phenom-
ena, such microbial population inactivation/growth and en-
zyme activity, alternative primary models, other than the nth

order, are used, such as the Bigelow, the Logistic (especially in
the field of predictive microbiology), or the Weibull models
[27, 28]. The main primary models used in the area of frozen
food kinetics, their mathematical equation, and the explana-
tions of the symbols used are briefly presented in Table 1.

In order to describe the effect of external parameters, such
as temperature, aw, pH etc., on the apparent reaction rate con-
stant k of eq. (2), appropriate mathematical equations, in the
form of k = f(T, aw, pH, etc.), are developed (secondary
models). The effect of temperature on the rate of frozen food

reaction rates has been in the center of research, since it sig-
nificantly affects product’s overall quality and shelf life. The
classical Arrhenius model is the most frequently applied in
order to describe quality changes of frozen foods and its equa-
tion is shown in Table 1, where the main secondary models
used for frozen food quality loss indices are briefly presented.

In the case of frozen matrices that may be subject to glass
transition, the effect of temperature is not adequately de-
scribed by a single Arrhenius equation due to a drastic accel-
eration of the observed rates of the diffusion-controlled reac-
tions above Tg. In the rubbery state, the activation energy is
not constant, but can be better described as a function of tem-
perature. To describe this kind of behavior, an alternative
equation, namely the Williams-Landel-Ferry (WLF) expres-
sion (Eq. 4) that empirically models the temperature depen-
dence of mechanical and dielectric relaxations in the range Tg
< T < Tg + 100, is often used (Table 1).

According to Peleg et al. [34], the “glass transition temper-
ature, “Tg,” has frequently served as the reference temperature,
and it has been assumed that the rate of both physical and
chemical processes in foods primarily depends on how far
the temperature is above or below their “Tg.”. Williams et al.
[36], assuming Tref = Tg and applying WLF equation for data

Table 1 Primary and secondary models mainly used for frozen food quality loss indices

Mathematical equation References

Primary models

First order (n = 1) A =Ao e
−kt ([29]; [30])

Fractional model ln A0−A∞
At−A∞

� �
¼ kt ([23]; [25])

nth order reactions
(n ≠ 1)

A1−n−A1−n
0 ¼ n−1ð Þk t ([29]; [30])

Weibull model log N
N0

� �
¼ − t

a

� �β
N is the number of microorganisms at time t, N0 the initial number of microorganisms,

t the heating time, α the scale parameter, and β the shape parameter

([31]; [32])

Secondary models

Arrhenius equation k ¼ kref −Ea
R

1
T −

1
Tref

� �h i

kref is the rate constant at the reference temperature Tref (K), R: the universal gas constant
and Ea: the activation energy (J/mol or cal/mol)

[33]

Exponential model k(T) = k(Tref) exp[c ∙ (T − Tref)]
T and Tref are in °C and c is a constant having °C−1 units

c∼ Ea

R Tref þ273:16ð Þ2 or

Ea~cR(Tref + 273.16)2

([34]; [35])

WLF model logkrefk ¼ C1 ∙ T−Trefð Þ
C2þ T−Trefð Þ

kref is the rate constant at the reference temperature Tref (Tref > Tg) C1, C2 are system
dependent coefficients

[36]

Q10 model k Tð Þ ¼ koexp
lnQ10
10

� �
⋅T

h i

Q10: the ratio of the reaction rate constants at temperatures differing
by 10 °C (k(Tref + 10)/k(Tref)), and T and Tref are in °C

[29]
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available for various polymers, estimated mean values of the
coefficients C1 = − 17.44 and C2 = 51.6. However, the uni-
form application of these constants is often problematic [10,
37] and the calculation of system-specific values, whenever
possible, should be preferred. Additionally, WLF model is
based on the assumption that the temperature effect is quali-
tatively the same at every temperature range and hence that it
can be used for extrapolation to both low and high tempera-
tures [38]. In any case, this modeling approach of temperature
effect is significantly constrained by its empirical nature.

When comparing the use of the Arrhenius vs. WLF equa-
tion in frozen systems, it can be observed in some cases that
neither a single Arrhenius nor the WLF equation can describe
the temperature dependence in the whole temperature range.
There are only few studies focusing on this behavior, demon-
strating a shift in the slope of the respective Arrhenius plot,
especially in the case of specific enzymatic reactions, which
may indicate either a change in the activation energy or a
different controlling mechanism [10, 11]. Due to the signifi-
cant modification of mechanical and mobility properties be-
tween glassy and rubbery systems, a break in the Arrhenius
plot at or near the glass transition temperature of the system
may be expected [39, 40]. According to Peleg et al. [38] and
Peleg et al. [41], this break of the Arrhenius plot can be attrib-
uted to the equal weight given to the reaction rate constants
over the whole temperature range investigated, which does not
necessarily applies. In order to observe the curvature expected
in the Arrhenius plot within the rubbery state, data over a
broader temperature range below the system Tg may be re-
quired, a prerequisite rather difficult to meet in the common
frozen food matrices. However, it should be underlined that,
although being a measurement of high importance, in some
cases, accounting for the glass transition temperature may not
be adequate per se for explaining the break or the curvature
observed in an Arrhenius plot [9, 42] in frozen systems. In
those matrices, the importance of other factors such as the
nature of the glass-forming matrix, the role of freeze concen-
tration, water activity changes, enzyme-catalyzed reactions in
noncellular systems, etc. should be also taken into consider-
ation [10] when attempting to explain a curvilinear Arrhenius
plot. In view of these observations, further investigation on the
kinetics of diffusion-limited processes in frozen systems is
required.

Most of the equations proposed, including the Arrhenius
and the WLF, although developed based on principles of
chemical kinetics and thermodynamics, are empirically ap-
plied for complex food systems and do not imply a true mech-
anism. Hence, the value of Ea is not really an “activation
energy”, as defined in thermodynamics, but rather a “univer-
sal” comparative measure of temperature dependence of the
studied reaction or phenomenon in general. For frozen food
quality-related reactions, values of Ea are in the range of 50 to
120 kJ/mol.

In Peleg et al. [38] and Peleg et al. [34], the limitations of
both secondary models (Arrhenius and WLF) are discussed in
depth, focusing on their cautious applicability at the lower end
of the examined temperature range, since their logarithmic
relationships make them particularly sensitive to rates.
Instead, Peleg et al. [41] and Peleg et al. [26] proposed an
exponential model, based on the Arrhenius equation, as
shown in Table 1. The use of this form of the alternative
model, where applicable, will eliminate the unnecessary com-
pression and inversion of the temperature scale that the
Arrhenius model requires. This approach is mathematically
equivalent to the Q10 approach extensively used in the earlier
literature [43, 44]. When using this model, one can convert
published Ea values into c values of the proposed mathemat-
ical equation, and vice versa, as shown in Table 1.

In Table 2, a list of recent research papers focusing on
kinetic modeling of foods of plant origin is compiled,
reporting the matrix in question, the quality indices measured
and the values of the kinetic parameters estimated, applying
the Arrhenius law to describe the effect of temperature on
reaction rate change. WLF equation was applied in a few
cases, e.g., in Giannakourou and Taoukis [46] for frozen green
peas. In all cases, the kinetic study is based on isothermal
experiments; however, in a few among these studies, results
were further validated at dynamic conditions [19, 20, 45, 46,
54], aiming at being exploited as prediction tools for product
shelf life in a real cold chain. In addition to the studies in
Table 2, several other references can be found in the field of
frozen food quality evaluation [26, 55]. However, the majority
provide a single or very limited data point analysis (e.g., mea-
surements at two or three preselected storage times) compared
to the quoted ones that applied a more systematic kinetic anal-
ysis in a wide range of storage temperatures.

Prediction of the Remaining Shelf Life of Frozen
Foods

Based on numerous field surveys concerning handling prac-
tices for frozen foods [56–59], frozen foods are due to be
exposed to a variable temperature environment, which not
infrequently includes stages of abusive storage or transport/
transfer conditions. Given the fluctuations occurring in the
real cold, post-processing chain, it is crucial to fully account
for the effect of temperature history on the loss of quality
parameters.

Often in practice, the two-step kinetic approach is applied
via the accelerated shelf life testing (ASLT) methodology, to
shorten the extremely lengthy experimental process [51, 55,
60]. Extrapolation of the kinetic results to normal, non-
abusive storage conditions should take into account the limi-
tations of the secondary model applicability. The value Q(At)
of the quality function at time t, defined by eq. (2) in the case
of isothermal conditions, is calculated by the following

18 Food Eng Rev (2019) 11:14–28



Table 2 Kinetic modeling of different quality indices during isothermal frozen storage and the Arrhenius parameters reported—the case of frozen
tissue of plant origin

Quality index kinetically modeled

Vitamin C degradation

Frozen matrix studied Reaction order
(temperature range)

Ea (kJ/mol)* Tref (C),
kref (day

−1)*
Reference

Spinach 1st
(− 5 to − 18 °C)

132.0 ± 5.80 − 18 °C
(0.0029 ± 0.0004)

[45]

Spinach 1st

(− 5 to − 18 °C)
120.0 ± 13.73 − 20 °C

(0.00365 ± 0.0012)
[46]

Green beans 1st

(− 6 to − 18 °C)
42.0 − 15 °C

0.03226
[47]

Green beans 1st

(− 1 to − 16 °C)
101.5 − 20 °C

0.00223
[46]

Broccoli 1st

(− 7 to − 25 °C)
60.24 ± 7.20 − 15 °C

(6.80 ± 0.69)*10−3
[19]

Green peas 1st

(− 1 °C to − 16 °C)
97.9 ± 9.60 − 20 °C

0.00213
[46]

Okra 1st

(− 1 °C to − 16 °C)
105.9 − 20 °C

0.00106
[46]

Watercress 1st
(− 7, − 15, and − 30 °C)

24.73 ± 4.52 − 15 °C
(4.32 ± 0.45)*10−3

[48]

Pumpkin 1st (fractional model)
(− 7, − 15, and − 25 °C)

41.39 ± 7.22 − 15 °C
(25.50 ± 6.40)*10−3

[20]

Strawberry 1st
(− 5 to − 16 °C)

123.90 ± 8.10 − 18 °C
0.003 ± 0.0004

[49]

Kiwi 1st
(− 5 to − 25 °C)

81.16 ± 9.48 − 18 °C
0.0055 ± 0.0010

[50]

Color change (mode of expression)

Broccoli (as a*/a*o change) 1st
(− 7 to − 25 °C)

53.58 ± 5.58 − 15 °C
(4.35 ± 0.38)*10−3

[19]

Broccoli (as hue change) Zero order
(− 7 to − 25 °C)

58.96 ± 6.78 − 15 °C
(0.90 ± 0.091)*10−3

[19]

Green beans (as total color difference) 1st (fractional model)
(− 5 to − 30 °C)

106.27 ± 1.05 − 15 °C
(5.94 ± 0.69)*10−3

[51]

Green beans (as total color difference) 1st (fractional model)
(− 6 to − 18 °C)

106.3 − 15 °C
0.006

[47]

Pumpkin (as total color difference) 1st (fractional model)
(− 7 to − 25 °C)

24.86 ± 4.97 − 15 °C
(19.0 ± 4.0)*10−3

[20]

Green peas (as ΔC change) Zero order
(− 1 to − 16 °C)

79.2 ± 19.2 − 20 °C
(0.0244 ± 0.00233)

[52]

Strawberry (as ΔC change) 1st (fractional model)
(− 5 to − 16 °C)

152.6 ± 4.90 − 18 °C
(0.0018 ± 0.0001)

[49]

Watercress (as hue change) 1st
(− 7 to − 30 °C)

168.65 ± 28.18 − 15 °C
(5.48 ± 2.22)*10−3

[48]

Mushroom (as L change) 1st
(− 1 to − 16 °C)

155.1 ± 60.3 − 20 °C
(0.000315 ± 0.0000742)

[52]

Watermelon (as DC change) Zero order
(− 5 to − 20 °C)

27.08 ± 5.63 − 20 °C
0.030

[53]

Kiwi (as total color difference) 1st (fractional)
(− 5 to − 25 °C)

97.77 ± 30.77 − 18 °C
(0.0040 ± 0.0015)

[50]

Chlorophyll degradation

Green beans (chlorophyll a) 1st

(− 6 to − 18 °C)
42.0 − 15 °C

0.03226
[47]

Green beans (chlorophyll b) 1st
(− 6 to °C)

48.7 − 15 °C
0.03479

[47]

Spinach 1st
(− 5 to − 18 °C)

70.3 ± 11.30 − 18 °C
0.0011

[45]

Starch hydrolysis

Green beans 1st

(− 6 to − 18 °C)
12.3 − 15 °C

0.09896
[47]
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integral, where T(t) describes the change of temperature as a
function of time:

Q Atð Þ ¼ ∫ttot0 k T tð Þ½ �∙dt ¼ keff ∙ttot ð3Þ

where keff is the value of the rate of the quality loss reaction
at the effective temperature Teff. Teff is defined as the constant
temperature that results in the same quality value as the vari-
able temperature distribution over the same time period, which
equals ttot.

If the T(t) function can be described by a step sequence, or,
equivalently, can be discretized in small time increments ti of
constant temperature Ti (with Σti = ttot), then Eq. 3 can be
expressed by Eq. 4, assuming the applicability of Arrhenius
equation, as the secondary model:

kref ∙ ∑
i

exp −
Ea

R
∙

1

Ti
−

1

Tref

� �� 	
∙ti

� 	
¼ keff ∙ttot ð4Þ

From Eq. 4, the value of keff can be estimated and subse-
quently, from the Arrhenius model, the effective temperature
Teff can be calculated.

With an effective use of ASLT, shelf life modeling and
determination that normally takes a year could be completed
in 3 to 6 months, if the testing temperature range is from − 5 to
− 12 °C. The duration of the shelf life determination by ASLT
depends on the temperature dependence of the quality deteri-
oration phenomena (as expressed by the Ea value).

Estimation of Parameter Uncertainty and Its Effect
on Reliable Predictions

In kinetic studies, apart from the calculation of estimates for
models’ kinetic parameters, the estimation of their confidence
intervals, representing the range of their uncertainty, is equally
important. As stated by Van Boekel [30], a challenge in this
scientific area is to investigate in-depth the statistical quality
of parameter estimates, in order to describe and take into ac-
count models’ parameter uncertainty; this would allow for
more reliable and safe predictions.

Concerning the conventional method of two-step proce-
dure, usually followed in the case of frozen foods, besides
being time-consuming, it lacks reliability concerning the ex-
pression of parameters’ variability [18]. Following the stan-
dard procedure of this methodology, the confidence intervals
of the primary model parameters at each temperature are not
taken into account when calculating the secondary model pa-
rameters, which, consequently, can be falsely narrower than
the actual ones. On the other hand, in the case of nonlinear
models and a one-step process, an important issue is that the
confidence intervals of the parameters involved are not sym-
metric and thus their estimation is not straightforward.

These remarks reveal that there are weak points both in the
two-step as well as in the one-step approach, mainly at the
determination of the uncertainty of the secondary model pa-
rameters. Therefore, a reliable alternative is deemed necessary
to account for the real uncertainty of model parameters, in
order to be able to predict in a more accurate way quality

Table 2 (continued)

Quality index kinetically modeled

Green beans 1st (fractional model)
(− 5 to − 30 °C)

12.33 ± 1.20 − 15 °C
(98.96 ± 0.77)*10−3

[51]

Texture change

Pumpkin 1st (fractional model)
(− 7 to − 25 °C)

90.61 ± 10.83 − 15 °C, (9.04 ± 1.35)*10−3 [20]

Spinach Zero order
(− 5 to − 18 °C)

43.4 ± 4.81 − 18 °C
0.2872

[45]

Other indices change

Broccoli, drip loss Zero order
(− 7, − 15, and − 25 °C)

42.31 ± 6.89 − 15 °C
(42.66 ± 4.73)*10−3

[19]

Green beans, flavor 1st
(− 6 to − 18 °C)

117.0 − 15 °C
0.07769

[47]

Spinach, sensory overall impression Zero order
(− 5 to − 18 °C)

61.26 ± 3.36 − 18 °C
0.2872

[45]

Kiwi, sensory overall impression Zero order
(− 5 to − 25 °C)

90.17 ± 17.53 − 18 °C
(0.0052 ± 0.0019)

[50]

Watercress, peroxidase inactivation 1st
(− 7 to − 30 °C)

17.34 ± 7.78 − 15 °C
(2.58 ± 0.58)*10−3

[48]

Watermelon, lycopene 1st
(− 5 to − 20 °C)

44.11 ± 8.15 − 15 °C
0.00398

[53]

*Mean values (± standard error, where available in literature)
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changes, at any selected temperature and time during process-
ing and product shelf life (at storage or distribution).

The use of techniques such as Monte Carlo simulation has
been recently employed in literature for the probabilistic assess-
ment of stochastic variability and uncertainty associated with
microbiological quality and safety [61–63] or chemical/sensory
[56, 64–68] attributes of several food matrices. Furthermore,
theMonte Carlo technique is also in the bootstrapmethodology
described by Efron and Tibshiraniin [69], first applied in sci-
entific fields other than food science. Using this technique, the
variation of the primary model’s parameters is estimated based
on the propagation of error, artificially introduced to the exper-
imental data (concentration vs. time data); for this, it was as-
sumed that the experimental data was normally distributed and
the error introduced at each measurement was based on its
standard deviation [70–72]. In another case, a bootstrap
Monte Carlo analysis has been proposed to compute the con-
fidence intervals (CI) of the parameters of the Arrhenius equa-
tion in Mishra et al. [73] in order to estimate the bootstrap
confidence and prediction bands (CB and PB, respectively)
of the factor (here anthocyanin retention) measured.

Case Study

To study the shelf life of frozen spinach leaves, a literature
review can assist in selecting the most representative quality
indices. A systematic kinetic study conducted at several con-
stant temperatures, using as main index vitamin C loss, is
listed in Table 2. A first-order reaction order (primary model)
was found to describe the above chemical reaction (Fig. 1a,
Eq. 5) and Arrhenius equation to describe the temperature
effect (secondary model) (Eq. 6):

C ¼ C0e−kvitCt ð5Þ

k ¼ kref exp −
Ea

R
1

T
−

1

Tref

� �� �
ð6Þ

where C0 is the initial vitamin C concentration (mg/100 g of
food), kref is the reaction rate of the vitamin C oxidation at a
reference temperature Tref (here equals to − 18 °C), Ea is the
activation energy of the chemical reaction, and R is the uni-
versal gas constant.

Based on 50% vitamin C loss, spinach shelf life can be
predicted at any arbitrary reference temperature, using Eqs. 5
and 6. Considering the single value estimates of the parame-
ters (as calculated out of linear regression analysis), the frozen
spinach shelf life is estimated at − 20 °C, either at 385 days
(data from [45]) (and 241 days at − 18 °C) or at 190 days (data
from [46]) (and 121 days at − 18 °C).

If a global-one step approach, based on non-linear regression
is applied (SYSTAT 8.0) using a single equation (eq. 7) that
integrates both primary and secondary models (Eqs. 5 and 6):

C
C0

¼ exp −kref ∙exp
−Ea

R
∙

1

T
−

1

Tref

� �� �� �
∙t

� �
ð7Þ

then, results concerning the estimation of parameters and
their 95% CI namely Ea (in kJ/mol) = 115.3 ± 7.06 and kref
(at − 18 °C, in day−1) = 0.00462 ± 0.00066, are slightly dif-
ferent from those depicted in Table 2 [46]. When applying the
two-step approach, the 95% CI are calculated via regression
analysis and are usually much wider than those calculated with
a global one-step approach. At this point, it is worthy pointing
out that, in addition to the traditional Arrhenius equation, in Peleg
et al. [26] data on vitamin C loss for frozen spinach and frozen
peas [46] have been successfully fitted to the exponential model
(as an alternative secondarymodel, already presented in Table 1).
It was also demonstrated that the isothermal version of the end-
points method provided accurate predictions of the concentration
ratios of vitamin C in the two frozen vegetables investigated.

Potential correlation between the kinetic parameters im-
plies that the confidence interval of one parameter depends
on the value of the other parameter. Therefore, joint confi-
dence regions should be used [74] and they are depicted in
Fig. 1b (SYSTAT 8.0) for this particular case study. However,
in the case of nonlinear models, an important issue underlined
by Van Boekel [18] is that the confidence intervals of the

Fig. 1 a Vitamin C loss of frozen spinach [46], applying first-order
kinetics and b joint confidence intervals for Arrhenius parameters when
a global one-step procedure is used
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parameters involved are not symmetric, and thus, their estima-
tion is not straightforward; therefore, caution is needed when
interpreting them in order to make safe predictions.

Attempting a further analysis of available kinetic data, it is
possible to include the 95% confidence intervals of the
Arrhenius parameters (Ea and kref) in the relative plot, instead
of using only their single estimates (represented by the linear
regression thin line of Fig. 2a, b); this is achieved by estimat-
ing and plotting the respective 95% confidence bands (CB)
and prediction bands (PB), in order to have a more realistic
perspective of the uncertainty of predictions [67]. For y =
ln(kT) and x = (1/Tref-1/T), the expected value of y for a given
xo (± 95% CB) is given by Eq. (8):

yo � ta=2 σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
þ

xo−x
� �2

σxx

vuut
ð8Þ

while predicted value of y for a given xo (± 95% PB) is given
by Eq. (9):

yo � ta=2 σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

N
þ

xo−x
� �2

σxx

vuut
ð9Þ

where σy is the standard deviation of the residuals, σxx is the
sum of squared error, N is the number of variables, yo is the
estimated value of y based on linear regression, x the mean
value of all x’s and ta/2 is the value of Student’s distribution
for N-2 degrees of freedom. Using the two sets available
for vitamin C loss in frozen spinach, the plots of Fig 2a, b are
generated, showing the experimental data points, the linear re-
gression lines, and the estimated 95% CB and PB, respectively.

The selection of a confidence level (here 95%) actually
demonstrates the probability that the confidence interval pro-
duced will contain the true parameter value. The % confidence
level corresponds to percentages of the area of the normal
density curve. For example, a 95% confidence interval covers
95% of the normal curve and the probability of observing a
value outside of this area is less than 5%.Given that the normal
curve is symmetric, half of the area is in the left tail of the
curve, and the other half of the area is in the right tail of the
curve. Therefore, assuming that Arrhenius parameters follow
such a pattern, Ea and kref at a constant, ‘reference’ temperature
can be described by a normal distribution curve, rather than a
single value. The benefit of the proposed approach is that it
incorporates the variability calculated by the secondary model
(based on the linear regression of the Arrhenius equation) and
thus the variability of its parameters [67] to the estimation of
the shelf life. To demonstrate the implementation of this meth-
odology, the aforementioned published data on vitamin C loss
in frozen spinach and estimations of Ea and kref already shown
in Fig. 3 are used. Then, a Monte Carlo simulation can be
applied, assuming that Ea and kref variability are described by
a normal distribution. A similar approach was used by Sui and
Zhou [75] when assessing the confidence intervals of Ea and
kref parameters of the Arrhenius equation for non-isothermal
degradation of cyanidins, by generating artificial data on the
initial concentration, using the experimental error, an approach
that could be also applied in the case of frozen foods, under
non-isothermal conditions. At this point, it should be noted that
there are many types of data variability, which cannot always
be mathematically described [76]. Furthermore, there are spe-
cific situations presented where a single probability distribu-
tion is unable to account for the scarcity or imprecision present
in the available data [77]; however, data variability, in a form of
randomness as represented by a Gaussian distribution, is com-
monly formulated and encountered in food engineering.

An example of such a normal distribution, which is con-
structed based on the estimate of the mean value, Ea, of
120.0 kJ/mol and its standard deviation, (σ = 7.0 kJ/mol) is
demonstrated in Fig. 3, based on linear regression and confi-
dence interval estimation, using data shown on the previous
Fig. 2a for data from Giannakourou and Taoukis [46].
The same procedure was followed to construct the corre-
sponding distribution curve for kref.

The next step involves the use of the Monte Carlo tech-
nique [67, 78] through a FORTRAN algorithm. The

Fig. 2 Effect of kT data uncertainty on secondary model predictions.
Circles depict mean values of kT data. Black straight line is the linear
regression line of the mean values; red lines represent the ± 95%
confidence band (CB) and blue lines represent the ± 95% prediction
band (PB) a data from Giannakourou and Taoukis [46], b data from
Dermesonluoglu et al. [45]
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application of Monte Carlo techniques has recently been de-
scribed in several food safety applications [79, 80]. At each
iteration, a random number was generated and a value was
assigned to Ea and kref (independently the one from the other)
based on the discretization of the corresponding normal dis-
tribution curve. The correlation between the random numbers
and the respective values of Ea and kref was based on the
frequency determined by the corresponding distribution. In
this case study, Monte Carlo algorithm was repeated for
10,000 iterations, a number suggested in Singh and
Markeset [81] and Barreto and Howland [82], who state that
‘although one thousand repetitions will usually generate a
fairly good approximation, 10000 would be even closer to
the truth’. This observation is important, as Monte Carlo sim-
ulation aims to be an approximation to the actual truth in a
sampling context, based on an infinite number of repetitions.
The purpose of Monte Carlo implementation in this work was
to assign specific values to the Ea and kref parameters,
allowing for Ea-kref pairs of values to be estimated; subse-
quently, based on the Arrhenius equation, the rate constant k
was estimated at an arbitrarily chosen temperature of − 18 °C,

and the corresponding shelf life was calculated (including its
uncertainty) at that temperature (based on 50% vitamin C loss
as the acceptability limit). Results for shelf life (SL) calcula-
tion, as well as its uncertainty, are shown in Fig. 4 (red line),
representing a frequency curve with a mean value (SL esti-
mate) equal to 125.0 ± 23.9 (95%CI) days, giving a more re-
alistic prediction than the sole estimation of 121 days, based
merely on Arrhenius parameters’ mean estimated values.

If data from the two different published sources are com-
pared using the same stochastic approach, one can observe the
significant differences in the SL prediction, reflected not only
on the mean SL predicted value, but also on its uncertainty
(Fig. 4), an observation that confirms the risk in applying
results of one study to another, even if the matrix in question
is almost the same. From data out of Dermesonluoglu et al.
[45], results for SL calculation give a mean value (SL esti-
mate) equal to 249.0 ± 47.6 (95%CI) days, compared to the
one value estimation of 241 days, based merely on Arrhenius
parameters’ mean values. Comparing the two literature
sources, in Giannakourou and Taoukis [46], vitamin C loss
was measured in cubes of frozen spinach, whereas in

Fig. 3 Normal distribution of Ea
values, based on the mean value
(120.0) and the standard deviation
(7.0) as estimated by the
corresponding Arrhenius plot for
vitamin C loss in frozen spinach
(at a temperature of − 18 °C) and
the corresponding linear
regression analysis

Fig. 4 Distribution of the 10,000
values of shelf life at − 18 °C,
generated by the Monte Carlo
simulation, following the
proposed methodology based on
available, published kinetic data
of vitamin C loss in spinach
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Dermesonluoglu et al. [45], the food product in study was
frozen spinach leaves. In any case, the important differences
observed rise questions about the generalized applicability of
shelf life models in different tissues and make the need for
incorporating parameters uncertainty into SL prediction more
crucial. In order to further sustain this observation, the same
stochastic approach was also applied for vitamin C loss in
other matrices, for which appropriate kinetic data are available
(Table 2). Results, presented in Table 3, demonstrate the dif-
ferent behavior and the different temperature sensitivity of
vitamin C degradation, when different cellular environments
are concerned.

This methodology is neither limited to a specific quality
index nor to first-order kinetics. As an example, the study
could be extended for color degradation, which in
Giannakourou and Taoukis [56], for frozen green peas, was
described by parameter (ΔC) change as a pseudo-zero-order
reaction. Using comparatively the kinetic data out of this study
for the two alternative modes of deterioration, namely vitamin
C loss and color change (Table 2), applying the shelf life
criteria set (ΔC = 10) and following the steps of the proposed
methodology via Monte Carlo technique, the shelf life can be
calculated at any temperature of interest. Figure 6a,
b illustrates the predicted shelf life at two temperatures, name-
ly at − 8 °C and − 18 °C, based on the two quality factors,
demonstrating that the shelf life can be decided either on the
basis of nutritional declaration (vitamin C content) or sensory
criteria (color) depending on the actual temperature history of
the product.

In all the discussion up to now, it is worthy noticing that the
variation of the primary model (Eq. 5) parameters (vitamin C
loss rate, kVitC) has not been taken into account in determining
the uncertainty of the parameters of the secondary model (Eq.
6, kref and Ea). Considering the divergence of estimates of
kinetic parameters in different studies, as already shown for
the case of frozen spinach, it would be a challenge to assess
how the propagation of the primary model parameter variabil-
ity into the secondary model kinetic parameters would change
and improve shelf life predictions in the area of frozen foods.

In such an attempt, a different approachwas followed using
the published data from Giannakourou and Taoukis [46] for
vitamin C loss in frozen spinach (Table 2). The proposed
procedure was based on the assumption that the estimate of
the main parameter kVitC of Eq. (6), which is determined by

linear regression of lnC vs. t data for each temperature, can be
described by a distribution of values rather than by a single
value. The benefit of this approach is that it incorporates the
error in kVitC calculated by the linear regression of the primary
model, and thus the variability of the parameter [83, 84]. This
time in applying the Monte Carlo simulation, a normal distri-
bution was assumed to describe kVitC variability, for each of
the five temperatures studied. At each iteration, a random
number was generated and a value was assigned to kVitC based
on the discretization of the corresponding normal distribution
curve, for each of the five temperatures studied. The purpose
was to create a set of 5-kVitC values for the studied tempera-
tures, so as, by using Eq. 6, each iteration provides an estimate
for Arrhenius parameters, namely kref and Ea. In a similar way
to the previously described case study, Monte Carlo simula-
tion was repeated 10,000 times, assigning values to each set of
kVitC values.

The ultimate goal was to determine the values and the
corresponding errors (or confidence intervals) of kref and Ea
(Eq. 6) based on the kVitC datasets that have been produced out
of the previous step of Monte Carlo application. For each
specific, random, set of the 5kVitC values, a pair of estimates
for kref and Ea and their corresponding variations was assessed
based on linear regression of lnkVitC vs. (1/T-1/Tref) data.

The application of the proposed methodology using the
experimental data of vitamin C loss in frozen spinach led to
significant changes of the 95%CI of the parameters kref and Ea
compared to their initial estimates (without altering at all the
mean value, as expected). The 95%CI on the kref and Ea found
through the proposed analysis were ± 0.001766 day−1 and ±
17.36 kJ/mol, respectively, comparable to the initial estimates
of ± 0.001015 day−1 and ± 11.85 kJ/mol, respectively, that
were calculated without taking into account the uncertainty
at the determination of each kVitC value (at each temperature).
This also affects shelf life predictions at − 18 °C, if we use the
approach already discussed, using the Monte Carlo iteration
algorithm. As shown in Fig. 5, with the latter technique 95%
CI of shelf life are broader when variability of primary
model’s parameters is integrated, leading to more realistic
assessments.

One can notice, however, that differences in this case are
not that big, possibly due to the narrow 95% CI of primary
model’s parameter kVitC (Fig. 6). As demonstrated in
Giannakourou and Stoforos [67], in case of a broader

Table 3 Shelf life (mean
estimates ±95% CI) predicted at
− 18 °C for 50% vitamin C loss in
different matrices, based on
published kinetic data (Table 2)

Frozen matrix
studied/reference

Shelf life predicted
at − 18 °C (day)

Frozen matrix
studied/reference

Shelf life predicted
at − 18 °C (day)

Spinach [45] 249.0 ± 47.6 Pumpkin [20] 62.8 ± 14.1

Spinach [46] 125.0 ± 23.9 Green peas [46] 232.7 ± 7.7

Broccoli [19] 145.0 ± 8.8 Strawberry [49] 232.2 ± 31.6

Watercress [48] 185.5 ± 14.7 Kiwi [50] 127.2 ± 23.9
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uncertainty of primary model’s parameter, the aforementioned
differences would be significant enough to justify completely
the application of this more complicated computational tool.

In any case, this set of data served as a case study to dem-
onstrate the structure and the rationale of the different ap-
proaches to kinetically model a quality index change in frozen
foods, when temperature is assumed as the crucial factor.
Main steps would be identical—possibly with slight compu-
tational modifications—if the primary model does not follow
a pseudo-first-order degradation (as in vitamin C loss case) or
if another secondary model (e.g., theWLF equation) is chosen
over the traditional Arrhenius equation.

Conclusions

As demonstrated by a thorough review of current literature,
few publications provide a systematic and profound kinetic
study when addressing frozen tissue quality degradation and
most models published do not really specify the possible ap-
plication and one can interpret results in his/her own judg-
ment. Additionally, another important observation is that there
has been little attention in the food science literature, so far, for
the statistical quality of kinetic parameters, and especially for

the effect of their uncertainty. Therefore, next to the well-
known biological variability of foods, it is important to study
the significance of parameter uncertainty (as expressed by
their 95% Confidence Intervals) in more detail, certainly if
the scope is to make real model predictions. Reporting of
parameter uncertainty is paramount when kinetic results
are presented. The use of techniques such as Monte Carlo
simulations is very promising and should be used much more
often [30].

In this work, the practical aspects of modeling frozen food
quality were reviewed. Two alternative techniques were pro-
posed for exploiting and further analyzing available published
kinetic data. A methodology that takes into account the calcu-
lated uncertainty of the secondary model parameters
(Arrhenius equation) and, going a step further, an approach
that introduces the variability of the primary model’s parame-
ters into the secondary model. Both schemes allow for the
estimation of the remaining shelf life of the product in ques-
tion at any point within the chill chain, in a more reliable and
realistic way, compared to the traditional two-step kinetic
study. The Monte Carlo simulation approach applied on pub-
lished literature data of vitamin C loss in several food matrices
demonstrated the improved predictions that can be obtained.
The same procedure was implemented for zero-order kinetics,

Fig. 5 Distribution of the 10,000
values of shelf life at − 18 °C,
generated by the Monte Carlo
simulation based on available,
published kinetic data of vitamin
C loss in spinach [46] with and
without integrating primary
models’ uncertainty

Fig. 6 Distribution of shelf life,
based on kinetic data of vitamin C
loss and color degradation for
frozen green peas [52] at a − 8 °C
and b − 18 °C
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in the case of another quality index, color degradation, fre-
quently measured during frozen food storage. In this latter
case, shelf life of frozen green peas was predicted either on
nutritional criteria (vitamin C loss) or on color degradation.
Comparative results at two different temperatures showed that
the quality factor that determines the end of shelf life may
vary, depending on the actual temperature history of the
product.

It should be pointed out that, although the preceding anal-
ysis referred mainly to first-order vitamin C loss/zero-order
color degradation and temperature dependence modeled by
the Arrhenius equation, the same methodology can be
employed when a different primary or secondary model is
used to describe kinetic data.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

References

1. Bonat Celli G, Ghanem A, Su-Ling Brooks M (2016) Influence of
freezing process and frozen storage on the quality of fruits and fruit
products. Food Rev Int 32:280–304. https://doi.org/10.1080/
87559129.2015.1075212

2. Corradini MG, Peleg M (2006b) Prediction of vitamins loss during
non-isothermal heat processes and storage with non-linear kinetic
models. Trends Food Sci Technol 17(1):24–34

3. Mattick KL, Legan JD, Humphrey TJ, Peleg M (2001) Calculating
Salmonella inactivation in nonisothermal heat treatments from iso-
thermal nonlinear survival curves. J Food Prot 64(5):606–613

4. Periago PM, van Zuijlen A, Fernandez PS, Klapwijk PM, ter Steeg
PF, Corradini MG, Peleg M (2004) Estimation of the non-
isothermal inactivation patterns of Bacillus sporothermodurans
IC4 spores in soups from their isothermal survival data. Int J
Food Microbiol 95(2):205–218

5. Valdramidis VP, Geeraerd AH, Bernaerts K, Van Impe JF (2006)
Microbial dynamics versus mathematical model dynamics: the case
of microbial heat resistance induction. Innov Food Sci Emerg 7:80–
87. https://doi.org/10.1016/j.ifset.2005.09.005

6. Charoenrein S, Harnkarnsujarit N (2016) Food Freezing and Non-
Equilibrium States. In: Non-Equilibrium States and Glass
Transitions in Foods: Processing Effects and Product-Specific
Implications. pp 39–62. doi:https://doi.org/10.1016/b978-0-08-
100309-1.00004-3

7. Reid DS, Sajjaanantakul T, Lillford PJ, Charoenrein S (2010)Water
Properties in Food, Health, Pharmaceutical and Biological Systems:
ISOPOW 10. Water properties in food, health, pharmaceutical and
biological systems: ISOPOW 10. doi:https://doi.org/10.1002/
9780470958193

8. Biliaderis CG, Swan RS, Arvanitoyannis I (1999) Physicochemical
properties of commercial starch hydrolyzates in the frozen state.
Food Chem 64:537–546. https://doi.org/10.1016/S0308-8146(98)
00165-4

9. Manzocco L, Nicoli MC, Anese M, Pitotti A, Maltini E (1998)
Polyphenoloxidase and peroxidase activity in partially frozen sys-
tems with different physical properties. Food Res Int 31:363–370.
https://doi.org/10.1016/S0963-9969(98)00095-7

10. Terefe NS, Hendrickx M (2002) Kinetics of the pectin
Methylesterase catalyzed De-esterification of pectin in frozen food

model systems. Biotechnol Prog 18:221–228. https://doi.org/10.
1021/bp010162e

11. Terefe NS, Van Loey A, Hendrickx M (2004) Modelling the kinet-
ics of enzyme-catalysed reactions in frozen systems: the alkaline
phosphatase catalysed hydrolysis of di-sodium-p-nitrophenyl phos-
phate. Innov Food Sci Emerg 5:335–344. https://doi.org/10.1016/j.
ifset.2004.05.004

12. Syamaladevi RM, Sablani SS, Tang J, Powers J, Swanson BG
(2011) Stability of anthocyanins in frozen and freeze-dried rasp-
berries during long-term storage: in relation to glass transition. J
Food Sci 76:E414–E421. https://doi.org/10.1111/j.1750-3841.
2011.02249.x

13. Syamaladevi RM, Manahiloh KN, Muhunthan B, Sablani SS
(2012) Understanding the influence of state/phase transitions on
ice recrystallization in Atlantic Salmon (Salmo salar) during frozen
storage. Food Biophys 7:57–71. https://doi.org/10.1007/s11483-
011-9243-y

14. Zhang Y, Zhao J-H, Ding Y, Nie Y, Xiao H-W, Zhu Z, Tang X-M
(2017) Effects of state/phase transitions on the quality attributes of
mango (Mangifera indica L.) during frozen storage. Int J Food Sci
Technol 52:239–246. https://doi.org/10.1111/ijfs.13275

15. Huang K, Tian H, Gai L, Wang J (2012) A review of kinetic models
for inactivating microorganisms and enzymes by pulsed electric
field processing. J Food Eng 111:191–207. https://doi.org/10.
1016/j.jfoodeng.2012.02.007

16. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials.
Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-
2456(86)90046-2

17. Sutton AJ, AbramsKR, Jones DR (2001) An illustrated guide to the
methods of meta-analysis. J Eval Clin Pract 7:135–148. https://doi.
org/10.1046/j.1365-2753.2001.00281.x

18. Van Boekel MAJS (1996) Statistical aspects of kinetic modeling for
food science problems. J Food Sci 61:477–486. https://doi.org/10.
1111/j.1365-2621.1996.tb13138.x

19. Gonçalves EM, Abreu M, Brandão TRS, Silva CLM (2011a)
Degradation kinetics of colour, vitamin C and drip loss in frozen
broccoli (Brassica oleracea L. ssp. Italica) during storage at isother-
mal and non-isothermal conditions. Int J Refrig 34:2136–2144.
https://doi.org/10.1016/j.ijrefrig.2011.06.006

20. Gonçalves EM, Pinheiro J, Abreu M, Brandão TRS, Silva CLM
(2011b) Kinetics of quality changes of pumpkin (Curcurbita max-
ima L.) stored under isothermal and non-isothermal frozen condi-
tions. J Food Eng 106:40–47. https://doi.org/10.1016/j.jfoodeng.
2011.04.004

21. Huang L (2015a) Direct construction of predictive models for de-
scribing growth of Salmonella Enteritidis in liquid eggs - a one-step
approach. Food Control 57:76–81. https://doi.org/10.1016/j.
foodcont.2015.03.051

22. Valdramidis VP, Geeraerd AH, Bernaerts K, Van Impe JFM (2008)
Identification of non-linear microbial inactivation kinetics under
dynamic conditions. Int J Food Microbiol 128:146–152. https://
doi.org/10.1016/j.ijfoodmicro.2008.06.036

23. Valdramidis VP, Taoukis PS, Stoforos NG, Van Impe JFM
(2012) In: Cullen PJ, Tiwari BK, Valdramidis VP (eds) novel
thermal and non-thermal technologies for fluid foods. Academic
Press, London, UK doi:https://doi.org/10.1016/b978-0-12-
381470-8.00014-1

24. Taoukis PS, Giannakourou MC (2018) Modelling food quality.
Food Sci Technol (London) 32:38–43

25. Giannakourou MC, Stoforos NG (2016) In: Carvajal-Millan E,
Mohan CO, Ravishankar CN (eds) food process engineering and
quality assurance, apple academic press Inc., NJ, USA

26. Peleg M, NormandMD, DixonWR, Goulette TR (2018) Modeling
the degradation kinetics of ascorbic acid. Crit Rev Food Sci 58:
1478–1494. https://doi.org/10.1080/10408398.2016.1264360

26 Food Eng Rev (2019) 11:14–28

https://doi.org/10.1080/87559129.2015.1075212
https://doi.org/10.1080/87559129.2015.1075212
https://doi.org/10.1016/j.ifset.2005.09.005
https://doi.org/10.1016/b978-0-08-100309-1.00004-3
https://doi.org/10.1016/b978-0-08-100309-1.00004-3
https://doi.org/10.1002/9780470958193
https://doi.org/10.1002/9780470958193
https://doi.org/10.1016/S0308-8146(98)00165-4
https://doi.org/10.1016/S0308-8146(98)00165-4
https://doi.org/10.1016/S0963-9969(98)00095-7
https://doi.org/10.1021/bp010162e
https://doi.org/10.1021/bp010162e
https://doi.org/10.1016/j.ifset.2004.05.004
https://doi.org/10.1016/j.ifset.2004.05.004
https://doi.org/10.1111/j.1750-3841.2011.02249.x
https://doi.org/10.1111/j.1750-3841.2011.02249.x
https://doi.org/10.1007/s11483-011-9243-y
https://doi.org/10.1007/s11483-011-9243-y
https://doi.org/10.1111/ijfs.13275
https://doi.org/10.1016/j.jfoodeng.2012.02.007
https://doi.org/10.1016/j.jfoodeng.2012.02.007
https://doi.org/10.1016/0197-2456(86)90046-2
https://doi.org/10.1016/0197-2456(86)90046-2
https://doi.org/10.1046/j.1365-2753.2001.00281.x
https://doi.org/10.1046/j.1365-2753.2001.00281.x
https://doi.org/10.1111/j.1365-2621.1996.tb13138.x
https://doi.org/10.1111/j.1365-2621.1996.tb13138.x
https://doi.org/10.1016/j.ijrefrig.2011.06.006
https://doi.org/10.1016/j.jfoodeng.2011.04.004
https://doi.org/10.1016/j.jfoodeng.2011.04.004
https://doi.org/10.1016/j.foodcont.2015.03.051
https://doi.org/10.1016/j.foodcont.2015.03.051
https://doi.org/10.1016/j.ijfoodmicro.2008.06.036
https://doi.org/10.1016/j.ijfoodmicro.2008.06.036
https://doi.org/10.1016/b978-0-12-381470-8.00014-1
https://doi.org/10.1016/b978-0-12-381470-8.00014-1
https://doi.org/10.1080/10408398.2016.1264360


27. Peleg M (2003) Microbial survival curves: interpretation, mathe-
matical modeling, and utilization. Comments on Theoretical
Biology 8:357–387

28. Peleg M, Normand MD, Corradini MG (2005) Generating micro-
bial survival curves during thermal processing in real time. J Appl
Microbiol 98:406–417

29. Taoukis PS, Labuza TP, Saguy S (1997) In: Valentas KJ, Rotstein E,
Singh RP (Eds) Handbook of food engineering practice. New York:
CRC Press

30. Van Boekel MAJS (2008) Kinetic modeling of food quality: a crit-
ical review. Compr Rev Food Sci Food 7:144–158. https://doi.org/
10.1111/j.1541-4337.2007.00036.x

31. Fu B, Labuza TP (1993) Shelf life prediction: theory and applica-
tions. Food Prot 4(3):125–133

32. Corradini MG, Peleg M (2006a) On modeling and simulating tran-
sitions between microbial growth and inactivation or vice versa. Int
J Food Microbiol 108:22–35

33. Arrhenius SA (1889) Über die Dissociationswärme und den
Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte.
Z Phys Chem 4:96–116. https://doi.org/10.1515/zpch-1889-0408

34. Peleg M, Normand MD, Corradini MG (2012a) The Arrhenius
equation revisited. Crit Rev Food Sci 52(9):830–851

35. Peleg M, Normand MD, Corradini MG (2017) A new look at ki-
netics in relation to food storage. Annu Rev Food Sci Technol 8:
135–153

36. Williams ML, Landel RF, Ferry JD (1955) The temperature depen-
dence of relaxation mechanisms in amorphous polymers and other
glass-forming liquids. J Chem Eng 77:3701–3707

37. Peleg M (1992) On the use of the WLF model in polymers and
foods. Crit Rev Food Sci Nutr 32:59–66. https://doi.org/10.1080/
10408399209527580

38. Peleg M, Engel R, Gonzalez-Martinez C, Corradini MG (2002)
Non-Arrhenius and non-WLF kinetics in food systems. J Sci
Food Agric 82(12):1346–1355

39. Nelson KA, Labuza TP (1994) Water activity and food polymer
science: implications of state on Arrhenius and WLF models in
predicting shelf life. J Food Eng 22:271–289. https://doi.org/10.
1016/0260-8774(94)90035-3

40. Taoukis PS, Tsironi TS, Giannakourou MC (2015) handbook of
food processing and engineering. In: Tzia K, Varzakas T (eds) food
engineering fundamentals, vol I. CRC press, Boca Raton, Florida,
USA

41. Peleg M, Normand MD, Corradini MG (2012b) On Quantifying
Nonthermal Effects on the Lethality of Pressure-Assisted Heat
Preservation Processes. J Food Sci 77:R47–R56. https://doi.org/
10.1111/j.1750-3841.2011.02444.x

42. Giannakourou MC, Taoukis PS (2003c) Stability of dehydrofrozen
green peas pretreated with nonconventional osmotic agents. J Food
Sci 68:2002–2010

43. Labuza TP (1982) Shelf-Life Dating of Foods. Food & Nutrition
Press, Inc., Westport

44. Taoukis PS (2011) In: Heldman DR,Moraru CI (eds) Encyclopedia
of Agricultural, Food and Biological Engineering, Vol. II, 2nd edn.
CRC Press, Taylor & Francis Group, New York

45. Dermesonluoglu E, Katsaros G, Tsevdou M, Giannakourou M,
Taoukis P (2015) Kinetic study of quality indices and shelf life
modelling of frozen spinach under dynamic conditions of the cold
chain. J Food Eng 148:13–23. https://doi.org/10.1016/j.jfoodeng.
2014.07.007

46. Giannakourou MC, Taoukis PS (2003b) Kinetic modelling of vita-
min C loss in frozen green vegetables under variable storage con-
ditions. Food Chem 83:33–41. https://doi.org/10.1016/S0308-
8146(03)00033-5

47. Martins RC, Silva CLM (2004) Frozen green beans (Phaseolus
vulgaris, L.) quality profile evaluation during home storage. J

Food Eng 64:481–488. https://doi.org/10.1016/j.jfoodeng.2003.
11.015

48. Gonçalves EM, Cruz RMS, Abreu M, Brandão TRS, Silva CLM
(2009) Biochemical and colour changes of watercress (Nasturtium
officinale R. Br.) during freezing and frozen storage. J Food Eng 93:
32–39. https://doi.org/10.1016/j.jfoodeng.2008.12.027

49. Dermesonlouoglou EK, Giannakourou M, Taoukis PS (2016)
Kinetic study of the effect of the osmotic dehydration pre-
treatment with alternative osmotic solutes to the shelf life of frozen
strawberry. Food Bioprod Process 99:212–221. https://doi.org/10.
1016/j.fbp.2016.05.006

50. Dermesonlouoglou E, Zachariou I, Andreou V, Taoukis PS (2018)
Quality assessment and shelf life modeling of pulsed electric field
pretreated osmodehydrofrozen kiwifruit slices. Int J Food Stud 7:
34–51. https://doi.org/10.7455/ijfs/7.1.2018.a4

51. Martins RC, Lopes IC, Silva CLM (2005) Accelerated life testing
of frozen green beans (Phaseolus vulgaris, L.) quality loss kinetics:
colour and starch. J Food Eng 67:339–346. https://doi.org/10.1016/
j.jfoodeng.2004.04.037

52. Giannakourou MC, Taoukis PS (2002) Systematic application of
time temperature integrators as tools for control of frozen vegetable
quality. J Food Sci 67(6):2221–2228

53. Dermesonlouoglou E, Giannakourou M, Taoukis P (2007) Kinetic
modelling of the quality degradation of frozen watermelon tissue:
effect of the osmotic dehydration as a pre-treatment. Int J Food Sci
Technol 42:790–798. https://doi.org/10.1111/j.1365-2621.2006.
01280.x

54. Cruz RMS, Vieira MC, Silva CLM (2009) Effect of cold chain
temperature abuses on the quality of frozen watercress
(Nasturtium officinale R. Br.). J Food Eng 94:90–97. https://doi.
org/10.1016/j.jfoodeng.2009.03.006

55. Corradini MG, Peleg M (2007) Shelf-life estimation from acceler-
ated storage data. Trends Food Sci Technol 18:37–47

56. GiannakourouMC, Taoukis PS (2003a) Application of a TTI-based
distribution management system for quality optimization of frozen
vegetables at the consumer end. J Food Sci 68:201–209

57. Gogou E, Derens E, Alvarez G, Taoukis P (2014) Field test moni-
toring of the food cold chain in European markets. Refr Sci Technol
548–554

58. Gogou E, Katsaros G, Derens E, Alvarez G, Taoukis PS (2015)
Cold chain database development and application as a tool for the
cold chainmanagement and food quality evaluation. Int J Refrig 52:
109–121. https://doi.org/10.1016/j.ijrefrig.2015.01.019

59. Gwanpua SG, Verboven P, Leducq D, Brown T, Verlinden BE,
Bekele E, Aregawi W, Evans J, Foster A, Duret S, Hoang HM,
Van Der Sluis S, Wissink E, Hendriksen LJAM, Taoukis P,
Gogou E, Stahl V, El Jabri M, Le Page JF, Claussen I, Indergård
E, Nicolai BM, Alvarez G, Geeraerd AH (2015) The FRISBEE
tool, a software for optimising the trade-off between food quality,
energy use, and global warming impact of cold chains. J Food Eng
148:2–12. https://doi.org/10.1016/j.jfoodeng.2014.06.021

60. Labuza TP (1985) In: Fennema OR (ed) food chemistry, 2nd edn.
Marcel Dekker, New York

61. Aspridou Z, Koutsoumanis KP (2015) Individual cell heterogeneity
as variability source in population dynamics of microbial inactiva-
tion. FoodMicrobiol 45(Part B):216–221. https://doi.org/10.1016/j.
fm.2014.04.008

62. Huang L (2015b) Dynamic determination of kinetic parameters,
computer simulation, and probabilistic analysis of growth of
Clostridium perfringens in cooked beef during cooling. Int J Food
Microbiol 195:20–29. https://doi.org/10.1016/j.ijfoodmicro.2014.
11.025

63. Lianou A, Koutsoumanis KP (2011) A stochastic approach for in-
tegrating strain variability in modeling Salmonella enterica growth
as a function of pH and water activity. Int J Food Microbiol 149:
254–261. https://doi.org/10.1016/j.ijfoodmicro.2011.07.001

Food Eng Rev (2019) 11:14–28 27

https://doi.org/10.1111/j.1541-4337.2007.00036.x
https://doi.org/10.1111/j.1541-4337.2007.00036.x
https://doi.org/10.1515/zpch-1889-0408
https://doi.org/10.1080/10408399209527580
https://doi.org/10.1080/10408399209527580
https://doi.org/10.1016/0260-8774(94)90035-3
https://doi.org/10.1016/0260-8774(94)90035-3
https://doi.org/10.1111/j.1750-3841.2011.02444.x
https://doi.org/10.1111/j.1750-3841.2011.02444.x
https://doi.org/10.1016/j.jfoodeng.2014.07.007
https://doi.org/10.1016/j.jfoodeng.2014.07.007
https://doi.org/10.1016/S0308-8146(03)00033-5
https://doi.org/10.1016/S0308-8146(03)00033-5
https://doi.org/10.1016/j.jfoodeng.2003.11.015
https://doi.org/10.1016/j.jfoodeng.2003.11.015
https://doi.org/10.1016/j.jfoodeng.2008.12.027
https://doi.org/10.1016/j.fbp.2016.05.006
https://doi.org/10.1016/j.fbp.2016.05.006
https://doi.org/10.7455/ijfs/7.1.2018.a4
https://doi.org/10.1016/j.jfoodeng.2004.04.037
https://doi.org/10.1016/j.jfoodeng.2004.04.037
https://doi.org/10.1111/j.1365-2621.2006.01280.x
https://doi.org/10.1111/j.1365-2621.2006.01280.x
https://doi.org/10.1016/j.jfoodeng.2009.03.006
https://doi.org/10.1016/j.jfoodeng.2009.03.006
https://doi.org/10.1016/j.ijrefrig.2015.01.019
https://doi.org/10.1016/j.jfoodeng.2014.06.021
https://doi.org/10.1016/j.fm.2014.04.008
https://doi.org/10.1016/j.fm.2014.04.008
https://doi.org/10.1016/j.ijfoodmicro.2014.11.025
https://doi.org/10.1016/j.ijfoodmicro.2014.11.025
https://doi.org/10.1016/j.ijfoodmicro.2011.07.001


64. Channon HA, Hamilton AJ, D'Souza DN, Dunshea FR (2016)
Estimating the impact of various pathway parameters on tender-
ness, flavour and juiciness of pork using Monte Carlo simulation
methods. Meat Sci 116:58–66. https://doi.org/10.1016/j.meatsci.
2016.01.004

65. Evrendilek GA, Avsar YK, Evrendilek F (2016)Modelling stochas-
tic variability and uncertainty in aroma active compounds of PEF-
treated peach nectar as a function of physical and sensory proper-
ties, and treatment time. Food Chem 190:634–642. https://doi.org/
10.1016/j.foodchem.2015.06.010

66. Giannakourou MC, Koutsoumanis K, Dermesonlouoglou E,
Taoukis PS (2001) Applicability of the shelf life decision system
(SLDS) for control of nutritional quality of frozen vegetables. Acta
Hortic 566:275–280

67. Giannakourou MC, Stoforos NG (2017) A theoretical analysis for
assessing the variability of secondary model thermal inactivation
kinetic parameters. Foods 6:7

68. Wesolek N, Roudot AC (2016) Assessing aflatoxin B1 distribution
and variability in pistachios: validation of a Monte Carlo modeling
method and comparison to the codex method. Food Control 59:
553–560. https://doi.org/10.1016/j.foodcont.2015.06.034

69. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap, 1st
edn. Chapman & Hall/CRC Monographs on Statistics & Applied
Probability, Boca Raton, FL, USA

70. Poschet F, Bernaerts K, Geeraerd AH, Scheerlinck N, Nicolaı̈ BM,
Van Impe JF (2004) Sensitivity analysis of microbial growth pa-
rameter distributions with respect to data quality and quantity by
using Monte Carlo analysis. Math Comput Simul 65:231–243.
https://doi.org/10.1016/j.matcom.2003.12.002

71. Poschet F et al (2003) Monte Carlo analysis as a tool to incorporate
variation on experimental data in predictive microbiology. Food
Microbiol 20:285–295. https://doi.org/10.1016/S0740-0020(02)
00156-9

72. Poschet F, Geeraerd AH, Van Loey AM, Hendrickx ME, Van Impe
JF (2005) Assessing the optimal experiment setup for first order
kinetic studies by Monte Carlo analysis. Food Control 16:873–
882. https://doi.org/10.1016/j.foodcont.2004.07.009

73. Mishra DK, Dolan KD, Yang L (2011) Bootstrap confidence inter-
vals for the kinetic parameters of degradation of anthocyanins in

grape pomace. J Food Process Eng 34:1220–1233. https://doi.org/
10.1111/j.1745-4530.2009.00425.x

74. Dolan KD, Yang L, Trampel CP (2007) Nonlinear regression tech-
nique to estimate kinetic parameters and confidence intervals in
unsteady-state conduction-heated foods. J Food Eng 80:581–593

75. Sui X, Zhou W (2014) Monte Carlo modelling of non-isothermal
degradation of two cyanidin-based anthocyanins in aqueous system
at high temperatures and its impact on antioxidant capacities. Food
Chem 148:342–350. https://doi.org/10.1016/j.foodchem.2013.10.
060

76. Rodríguez-Martínez V, Velázquez G, Welti-Chanes J, Torres, JA
(2018) In: Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza
TP (eds.), water activity in foods, Fundamental and applications.
Wiley-Blackwell, New York

77. Destercke S, Chojnacki E (2009) Safety, reliability and risk analy-
sis: theory. In: Martorell S, Soares CG, Barnett J (eds) Methods and
applications. Taylor & Francis Group, London

78. Smid JH, Verloo D, Barker GC, Havelaar AH (2010) Strengths and
weaknesses of Monte Carlo simulation models and Bayesian belief
networks in microbial risk assessment. Int J Food Microbiol 139:
S57–S63. https://doi.org/10.1016/j.ijfoodmicro.2009.12.015

79. CassinMH, Paoli GM, LammerdingAM (1998) Simulationmodel-
ing for microbial risk assessment. J Food Prot 61(11):1560–1566

80. Jaykus LA (1996) The Application of Quantitative Risk
Assessment to Microbial Food Safety Risks. Crit Rev Microbiol
22(4):279–293. https://doi.org/10.3109/10408419609105483

81. Singh M, Markeset T (2009) In: Martorell S, Soares CG, Barnett J
(eds) Safety, reliability and risk analysis: theory, methods and ap-
plications, Taylor & Francis Group, London

82. Barreto H, Howland FM (2006) Introductory econometrics: using
Monte Carlo simulation with Microsoft excel®. Cambridge
University Press, New York

83. Lammerding AM, Fazil A (2000) Hazard identification and expo-
sure assessment for microbial food safety risk assessment. Int J
Food Microbiol 58:147–157. https://doi.org/10.1016/s0168-
1605(00)00269-5

84. Taoukis PS (2001). In: Tijkskens LMM, Hertog MLATM, Nicolai
BM (Eds) Food process modeling. New York: CRC Press

28 Food Eng Rev (2019) 11:14–28

https://doi.org/10.1016/j.meatsci.2016.01.004
https://doi.org/10.1016/j.meatsci.2016.01.004
https://doi.org/10.1016/j.foodchem.2015.06.010
https://doi.org/10.1016/j.foodchem.2015.06.010
https://doi.org/10.1016/j.foodcont.2015.06.034
https://doi.org/10.1016/j.matcom.2003.12.002
https://doi.org/10.1016/S0740-0020(02)00156-9
https://doi.org/10.1016/S0740-0020(02)00156-9
https://doi.org/10.1016/j.foodcont.2004.07.009
https://doi.org/10.1111/j.1745-4530.2009.00425.x
https://doi.org/10.1111/j.1745-4530.2009.00425.x
https://doi.org/10.1016/j.foodchem.2013.10.060
https://doi.org/10.1016/j.foodchem.2013.10.060
https://doi.org/10.1016/j.ijfoodmicro.2009.12.015
https://doi.org/10.3109/10408419609105483
https://doi.org/10.1016/s0168-1605(00)00269-5
https://doi.org/10.1016/s0168-1605(00)00269-5

	Meta-analysis of Kinetic Parameter Uncertainty on Shelf Life Prediction in the Frozen Fruits and Vegetable Chain
	Abstract
	Introduction
	Frozen Food Quality Indices and Modeling
	Prediction of the Remaining Shelf Life of Frozen Foods
	Estimation of Parameter Uncertainty and Its Effect on Reliable Predictions
	Case Study


	Conclusions
	References


