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Abstract Adaptive neuro-fuzzy inference system (ANFIS)

has emerged as a synergic hybrid intelligent system. It com-

bines the human-like reasoning style of fuzzy logic system

(FLS) with the learning and computational capabilities of

artificial neural networks (ANNs). ANFIS has several appli-

cations related to food processing and technology. The first

part of this review provides a brief overview and discussion of

ANFIS including: the general structure and topology, com-

putational considerations, model development and testing. In

the second part, two detailed examples are explained to

demonstrate the capabilities of ANFIS in comparison with

other modeling methods, followed by a brief but compre-

hensive discussion of ANFIS applications in different food

processing and technology areas. The applications are divided

into five main categories: food drying, prediction of food

properties, microbial growth and thermal process modeling,

applications in food quality control and food rheology. In all

applications, the performance of ANFIS is compared to other

methods such as ANNs, FLS and multiple regressions when

available. It is concluded that, in most applications, ANFIS

outperforms other modeling tools such as ANNs, FIS or

multiple linear regression. Finally, some application guideli-

nes, advantages and disadvantages of ANFIS are discussed.

Keywords ANFIS � ANNs � FLS � MLR � Food process

modeling � Quality control

Overview of Adaptive Neural Fuzzy Inference
Systems (ANFIS)

Adaptive neural fuzzy inference system (ANFIS) was first

proposed by Jang [11] as a synergic hybrid system that

combines the advantages of artificial neural networks

(ANNs) and fuzzy inference systems (FIS). It combines the

human-like reasoning style of fuzzy logic systems with the

learning and computational capabilities of neural networks.

Jang [11] developed this novel architecture by introducing

the learning procedure from neural network to the FIS to

develop a set of fuzzy if–then rules with appropriate mem-

bership function (MFs) from the input–output data pairs.

The procedure of constructing a FIS by utilizing the adaptive

neural networks framework was then called adaptive net-

work-based fuzzy inference system (ANFIS). ANFIS has

been recognized as a powerful modeling tool as it is capable

of combining pieces of information from several sources,

including empirical models, heuristics and data. The

knowledge that describes a process is usually contained in

the data sets. Fuzzy inference systems (FIS) are normally

incapable of learning the rules by themselves; they rather

require an expert to derive the fuzzy if–then rules followed

by an optimization process of the system parameters [8].

This process is usually complicated and time-consuming.

Artificial neural networks (ANNs), on the contrary, have the

advantage of self-learning from available data. Adaptive

neural fuzzy inference system (ANFIS) was therefore

developed to integrate the learning capabilities from ANNs

with the reasoning capabilities from. The terminology

‘‘adaptive’’ means that some of the neurons in ANFIS have

adjustable parameters that influence the outputs where the

learning rules specify the magnitude of change in these

parameters in order to achieve a predetermined minimum

error [11]. Zheng et al. [36] reported that ANFIS has the
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advantages of offering simple learning algorithms with

higher training speed and faster convergence results com-

pared to other learning techniques. Although ANFIS is a

powerful modeling platform, it is usually used when other

conventional mechanistic modeling methods are simply

inapplicable, too complicated, inefficient or inadequate.

Overview of Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are distributed parallel

processing systems which can mimic the living neurons.

ANNs gained their popularity due to their ability to handle

complex problems involving multi-input–output variables

and nonlinear relationships. They can employ special

functions called universal approximators that are able to

model any inputs–outputs regardless of their complexity

when adequate data and sufficient number of neurons are

used. ANNs have been used in numerous applications

involving prediction, control and classification tasks in

food processing and technology. ANNs are classified

according to learning method into either supervised or

unsupervised ANNs. Supervised ANNs are the most

common, since they are capable of learning from examples

(such as measured output data sets) to guide the network

learning process. Unsupervised ANNs, on the other hand,

are more common in classification problems. In supervised

learning process, the data sets are used to minimize the

difference between predicted and measured (actual) out-

puts by employing a least-squares minimization algorithm

called backward propagation (BP). In this process, neuron

weights are adjusted backward from output to input layer at

the end of each iteration, and a step repeated until a desired

minimum error between predicted and measured outputs is

attained [5]. The most common supervised ANNs are the

feed-forward neural networks (FF-ANNs) and the radial

basis function neural networks (RBF-ANNs). A detailed

description of each type can be found in Marini [20].

Table 1 summarizes the main advantages and disadvan-

tages of ANNs. It can be seen that while ANNs can model

any function regardless of its level of complexity and has

an excellent learning and generalization capacities, they

have some limitations in terms of interpreting functionality

(i.e., how the decision was made) and difficulty in selecting

the proper number of layers and neurons within each layer.

Overview of Fuzzy Inference Systems (FIS)

Fuzzy inference systems (FIS) were developed on the basis

of fuzzy logic (FL) to provide a method for expressing

blurry attributes and permit the integration of data and

information from experts in a specific field. A fuzzy system

allows representing and integrating human heuristic

knowledge in description of a certain system by utilizing

fuzzy sets to implement a human-like way of thinking in

soft computing. Due to their capability to tackle food-re-

lated problems by handling human reasoning in linguistic

terms, they became an increasingly important approach in

food modeling, control and classification [10]. The basic

structure for FIS is made of three essential components

[14]:

• A rule base that contains a selection of fuzzy if–then

rules

• A data set that defines the membership functions (MF)

of the fuzzy sets applied in the fuzzy rules.

• A fuzzy reasoning mechanism, which can be used to

perform the inference procedure on the fuzzy rules in

order to derive the desired output.

Table 1 A comparison between artificial neural networks (ANNs) and fuzzy inference systems (FIS)

ANNs FIS

Advantages Universal approximators (can model any function

regardless of its complexity)

Learning capabilities from examples

Generalization capacity

Robust to disturbances

Capable of representing inherent uncertainties of the human

expertise using linguistic variables

Allows the interaction between field experts and design engineer of

the system

Provides an easy and intuitive interpretation of the results

Can extend knowledge base easily through the addition of extra

rules

Generally robust to possible

System disturbances

Disadvantages Very difficult to interpret their functionality (black box

models)

Determining the proper number of layers and neurons is

a trial procedure

Lacks the capability to generalize since they can only answer what is

written in the rule base

Selection of proper inference logical rules requires an expert

knowledge

352 Food Eng Rev (2016) 8:351–366

123



Fuzzy logic is especially suitable in situations that

involve dealing with fuzzy systems. For example, describing

the concepts of food quality and their justifications in human

mind are a common area of uncertainty, it is hard to make

and adjust decisions on the basis of measurement results in

terms of crisp values alone. In such situations, FL is used as

a proper tool for dealing with such fuzzy relationships. FL

can be helpful also in decision making since it helps in

capturing any hidden uncertainty of operations or reasoning

process. In conclusion, FL can be helpful in developing

connections between numbers (crisp values) and words

(linguistic terms) [12]. Fuzzy logic has been used in many

applications related to food processing and technology

including nonlinear modeling, expert systems, forecasting,

descriptive sensory evaluation, developing quality mea-

surement tools and process control [22]. Table 1 shows a

summary of main advantages and disadvantages of FIS. It

can be seen that FIS provides a useful platform for inte-

grating human expertise to design problems using simple

linguistic variables and provide a simple interpretation of the

decisions made. Some limitations of FIS include the diffi-

culty of selecting the proper fuzzy rules which often requires

the expert knowledge of the field. They also lack the capa-

bility to be generalized into other cases.

Adaptive Neural Fuzzy Inference System (ANFIS)

ANFIS General Structure

ANFIS in its simplest form is a fuzzy reasoning system

with parameters trained by ANN-based algorithms. The

linear parameters are usually estimated by using the con-

ventional least-squares (LS) algorithms, while the mem-

bership functions (MFs) parameters are adjusted using a

hybrid neural network learning method. A systematic

approach was developed by a Sugeno fuzzy model [known

as Takagi–Sugeno–Kang (TSK)] [11] to generate the fuzzy

rules on the basis of available input–output data (Fig. 1).

ANFIS in its simplest form is a two-input model using the

following fuzzy rule:

IF x is a AND y is b;THEN g ¼ f ðx; yÞ ð1Þ

where a and b are fuzzy sets in the antecedent, x and y are

linguistic variables, and g = f(x, y) represents the crisp

function in the consequent. The function g can be any

function which can appropriately describe the model out-

puts within the fuzzy region determined by the antecedent

of the rule. A polynomial with input variables x and y is the

most common. When g = f(x, y) is a constant, the FIS is

called a zero-order Sugeno fuzzy model, while a first-order

Sugeno fuzzy model is represented by first-order polyno-

mial (i.e., px ? qy ? r) [3]. The basic structure of ANFIS

is composed of the following parts: a TSK fuzzy inference

system and a feed-forward neural network with a learning

algorithm such as backpropagation (BP). The learning

algorithm adjusts the parameters of the TSK system [17]. A

simple first-order Sugeno fuzzy model with two inputs (x

and y) and one output (z) fuzzy inference system (FIS) is

explained below. The model contains a set of four fuzzy if–

then rules as follows:

Rule 1 : IF x is A1 and y is B1;THEN z1
¼ p1xþ q1yþ r1 ð2Þ

Rule 2 : IF x is A1 and y is B2;THEN z2
¼ p2xþ q2yþ r2 ð3Þ

Rule 3 : IF x is A2 and y is B1;THEN z3
¼ p3xþ q3yþ r3 ð4Þ

Rule 4 : IF x is A2 and y is B2;THEN z4
¼ p4xþ q4yþ r4 ð5Þ

The typical architecture of a two-input ANFIS is shown

in Fig. 2. It shows five layers of squares or circles. The

Fig. 1 A typical two-input first-

order TSK model
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squares represent adaptive nodes, while the circles denote

fixed nodes. The function of each layer is explained below.

Layer 1 This layer is composed of square i nodes (i.e.,

all nodes are adaptive). The output of this layer represents

the fuzzy membership grade of the inputs x and y given as

follows:

O1
;i ¼ lAiðxÞ for i ¼ 1; 2; O1;j ¼ lBjðyÞ for j ¼ 1; 2

ð6Þ

Any fuzzy membership function (such as bell-shape

function) with values between 0 and 1 can be assigned to

lAi(x), lBj(y) as follows:

li xð Þ ¼ exp � xi � cið Þ= aið Þ2
h i

ð7Þ

Layer 2 This layer is composed of circle i nodes denoted

as
Q

(i.e., all nodes are fixed). Each node in this layer

calculates the firing strength of a rule by multiplication:

O2
k ¼ wk ¼ lAi xð ÞlBj yð Þ; i ¼ 1; 2; j ¼ 1; 2;

k ¼ 2ði� 1Þ þ j
ð8Þ

Layer 3 This layer is composed of circle i nodes denoted

as N (i.e., all nodes are fixed). The ith circle node in this

layer calculates a ratio of that node firing strength to the

total firing strength of all nodes as follows:

O3
i ¼ wi ¼

wi

w1 þ w2 þ w3 þ w4

i ¼ 1; 2; 3; 4 ð9Þ

where wi represents the normalized firing strengths.

Layer 4 This layer is composed of square i nodes (i.e.,

all nodes are adaptive). Outputs from each node at this

layer are the product of the first-order Sugeno-type poly-

nomial and the normalized firing strength:

O4
i ¼ wizi ¼ wiðpixþ qiyþ riÞ; i ¼ 1; 2; 3; 4 ð10Þ

where wi is the output of layer 3 and {pi, qi, ri} is the set of

parameters.

Layer 5 This layer includes a single fixed node, labeledP
. It calculates the overall output as a summation of all

incoming signals as follows:

O5
i ¼

Xn¼4

i¼1

ziwi ¼
z1w1 þ z2w2 þ z3w3 þ z4w4

w1 þ w2 þ w3 þ w4

ð11Þ

ANFIS Model Development, Testing

and Computational Considerations

ANFIS has two sets of adjustable parameters, the premise

parameters in the first layer and the consequent parameters

in the fourth layer. The learning process involves adjusting

the premise and the consequent parameters separately until

the intended response of the FIS is achieved. This process

involves rapid training and adapting of FIS using a hybrid

learning algorithm, which combines the least-squares (LS)

Fig. 2 A typical architecture of

two-input ANFIS
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and the backpropagation (BP) algorithms. In the first step,

the premise membership function parameters are fixed and

the ANFIS output is expressed as a linear combination of

the consequent parameters. At this point, the LS method is

used to estimate the optimal values of the consequent

parameters. Fixing the premise parameters at this stage will

help reducing the search space and therefore speeding up

the convergence during training process. The hybrid

learning algorithms use a two-step process to achieve this

goal. In the first step, the premise parameters are held fixed,

the signals are propagated forward from layer 1 to layer 4

and the consequent parameters are found by the LS

method. In the second step, the consequent parameters are

fixed, while the error signals are propagated backward from

the output to the input end, where the premise parameters

are updated by the standard BP algorithm [11]. Back-

propagation algorithm uses the gradient-descent method to

obtain premise parameters. Several nonlinear least-squares

algorithms, however, are used to estimate the consequent

parameters such as Gauss–Newton, Levenberg–Marquardt

algorithm or conjugate gradient method. A summary of the

advantages and disadvantages of main algorithms used in

ANFIS are shown in Table 2 [19]. As can be seen, each

algorithm has advantages as well as limitations in terms of

computational complexity, speed and convergence. Nev-

ertheless, the Levenberg–Marquardt algorithm (LMA) has

gained the most popularity in solving nonlinear problems.

Identifying a good ANFIS structure requires the imple-

mentation of efficient gradient-descent learning to the

membership function parameters. This will allow speci-

fying the I/O space partition, consequent variables and rule

premise, the initial positions and number of the member-

ship functions as well as the number of if–then rules. The

dimensionality of input variables in FIS structure is usually

reduced by using the clustering techniques such as sub-

tractive clustering. Using the clustering techniques to find

FIS rules has the advantage of being more tailored to the

input data than when FIS is generated without using

clustering. This can help eliminate the problem of com-

binatorial explosion of rules especially with higher-di-

mensional input data. Clustering can be used to identify the

large data set groups in a given data set to produce a

concise representation of the system’s behavior. When

little or no prior knowledge of the data exists, the fuzzy

clustering approach can be used to develop the fuzzy

model. The membership functions and associated fuzzy

rules can be determined with the help of some clustering

methods by classifying the data sets to clusters or subsets.

This will result in a set of cluster centers that act as pro-

totypical data points which describe a specific character-

istic mode of the system and represent the nucleus of the

fuzzy if–then rule. In subtractive clustering, an efficient,

one-pass algorithm estimates the cluster number and cen-

ters in a specific data set. The cluster centers can then be

used to generate the primary Sugeno-type fuzzy inferences

system which is capable of modeling the data behavior.

Finally, ANFIS fine-tunes the parameters of the neuro-

fuzzy model [14].

Applications of Adaptive Neural Fuzzy Inference
Systems in Food Processing and Technology

Demonstrating the Use of ANFIS: Case Studies

To demonstrate the use of ANFIS in food process model-

ing, two case studies are discussed in details. The first case

exemplifies the use of ANFIS in modeling a complex and

Table 2 A comparison between the main optimization algorithms

Advantages Disadvantages

Gradient descent

(GD) (used in

BP)

Works in spaces of any number of dimensions, even in

infinite-dimensional ones

Relatively slow close to the minimum

Can take many iterations to compute a local minimum with a

required accuracy

For non-differentiable functions, gradient methods are ill-

defined

Levenberg–

Marquardt

algorithm

(LMA)

It can find the solution even if it starts very far from the

final minimum

A popular curve-fitting algorithm applied in many

software applications involving solution to generic

curve-fitting problems

May converge to a local rather than the global minimum

Conjugate

gradient (CG)

Can be viewed as a direct method, since it can produce

the exact solution after a finite number of iterations

Unstable with respect to small perturbations

Gauss–Newton

(GN)

Does not require the computation of the second

derivatives, which can be challenging to find

Convergence is not guaranteed (even local convergence)

If the initial guess is far from the desired minimum or the matrix

is ill-conditioned, the algorithm may converge slowly or not

converge at all
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nonlinear time-dependent intermittent drying of spouted

grains. The second case demonstrates the use of ANFIS in

modeling fuzzy sensory attributes of espresso coffee by

pod.

Case Study 1: Using ANFIS in Modeling Nonlinear

Time-Dependent Intermittent Drying of Spouted

Grains

Modeling intermittent drying of spouted corn using ANFIS

was discussed by Jumah and Mujumdar [14]. They repor-

ted that intermittent drying is a multivariable, time-varying,

highly nonlinear and strongly interactive process. Such

complexities render the process too difficult to be modeled

using conventional mechanistic modeling techniques which

are more or less a simplification of the reality. The authors

used MATLAB to develop an overall ANFIS model for this

process that consisted of two sub-models as follows:

Step 1: Assigning Governing Equations, Input and Output

Variables

The authors used six different sub-models to predict solid

temperature and solid moisture content. Three sub-models

were used for predicting solid temperature (Ts) and the

other three for predicting the solid moisture content (X).

The first three sub-models are named the T-Models which

yield the solid temperature (Ts) as the output variable as

follows:

• T-Model (1) with two input variables: Tin(t), Ts(t - 1)

and 2 membership functions per input and two fuzzy

rules.

• T-Model (2) with one input variable: Tin(t) and 2

membership functions per input and two fuzzy rules.

• T-Model (3) with two input variables: t, Tin(t) and 4

membership functions per input and four fuzzy rules.

The second set of three sub-models is the X-Model

which gives the solid moisture content (X) as the output

variable as follows:

• X-Model (1) with three input variables: Tin(t), Ts(t) and

X(t - 1) and 3 membership functions per input with

three fuzzy rules.

• X-Model (2) with one input variable: Tin(t), Ts(t) and 3

membership functions per input with three fuzzy rules.

• X-Model (3) with two input variables: t, Ts(t) and 6

membership functions per input with six fuzzy rules.

The authors used data on intermittent drying of corn in a

spouted bed. The data set is obtained from a previous study

which they conducted [14]. They used continuous spouting

air supply at u = 0.5 m/s with periodic heating. The inlet

air temperature Tin was varied accordingly to provide an

intermittent drying scheme as follows:

Tin ¼ Th at s n� t� s nþ að Þ
Tin ¼ Tc at s nþ að Þ� t� s nþ 1ð Þ

where Th and Tc are the higher and lower (cooler) tem-

peratures, respectively,

s is the drying cycle period, a is the intermittency

(fraction of the drying cycle when Tin = Th), and n denotes

the number of heating cycles (n = 0, 1, 2, etc.). The fol-

lowing parameter values were specified: s = 0.6 min,

a = 0.25, Tin = 80 �C, Tc = 40 �C, Th = 80 �C.
The input and output data vectors are loaded into

MATLAB and assigned a vector for each input and output.

In total, 50 % of the total input–output data vectors (odd

data rows: 1, 3, 5, etc.) are assigned to training data set,

while the other 50 % (even data rows: 2, 4, 6, etc.) are

assigned for testing.

Step 2: Assigning the Type and Number of Membership

Functions and Number of Epoch

An intuitive approach which involves choosing most

common type MF (Gauss-bell MF) and the smallest num-

ber of membership functions (i.e., two membership func-

tions per input variable). The number of MFs per input

variable is then increased to 4 or 6 to improve ANFIS

prediction accuracy. Three hundred epochs are used to

guarantee convergence to a good solution.

Step 3: Training and Testing of ANFIS

In this step, MATLAB function ‘‘genfis1’’ is used to train

and test ANFIS. This function provides the training and

testing of output vectors, training and testing errors, initial

and tuned membership functions as well as the fuzzy if–

then rule extracted.

Step 4: Extracting Outputs and Calculating ANFIS

Prediction Accuracy

The training and testing results as well as selected statis-

tical accuracy indicators (such as the root-mean-squared

error (RMSE) and the correlation coefficient (R2) used in

this study) are applied to evaluate the overall performance

of ANFIS. Based on the results obtained, steps 1–4 were

repeated until the desired ANFIS performance was

attained. This involved adding or removing inputs,

changing the training to testing date partition ratio and

changing the type and/or number of membership functions.
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Final Results

The final results revealed that among the three solid tem-

perature sub-models tested, the T-model (1) showed the

best performance with lowest RMSE and highest R2 values

for both training and testing data (0.146 and 0.178, and

0.999 and 0.999, respectively). They also specified two

Gauss-bell membership functions per input with two fuzzy

rules. With regard to solid moisture content (X-model),

they reported that X-model (1) showed the best accuracy

among the three sub-models tested with highest R2 and

lowest RMSE (0.999 and 0.999, 0.00029 and 0.00026, for

training and testing data sets, respectively). They used

three Gauss-bell membership functions per input with three

fuzzy rules.

Jumah et al. [13] reported the use of a diffusion-based

model to solve coupled mass and heat transfer in inter-

mittent drying of spouted grain. The study will be analyzed

to demonstrate the advantage of using ANFIS over con-

ventional diffusion-based models. In their study, they used

key assumptions to facilitate the solution methodology and

to compensate for the lack of adequate information. The

assumptions included:

1. Uniform, homogeneous and isotropic spherical shape

of corn kernels.

2. Perfect mixing of grains so that moisture content and

temperatures of kernels are uniform throughout the

grain bed.

3. The internal mass transfer resistance to moisture in the

grain is significantly larger than external resistance at

the gas layer surrounding the grain kernel.

4. Heat losses, particle shrinkage and both conduction

and mass transfer between grains particles are

negligible.

The intermittent drying problem involved solving a set of

semi-discrete nonlinear ordinary differential equations with

appropriate boundary conditions to predict grain surface

temperature [Ts(t)] and grain moisture content [Xs(t)]. The

authors reported that results showed a systematic discrep-

ancy between predicted and experimentally measured grain

surface temperature. They explained the observed discrep-

ancy in terms of several factors including: neglecting heat

loss from the bed, using of inappropriate heat transfer

boundary conditions at the surface of grain kernel by

assuming negligible drying during the off period leading to

an assumption of zero concentration gradient at the surface

of the grain particle. They reported that the use of such

boundary conditions was driven by the lack of information

about the heat and mass transfer processes for an aggregate

of particles in zero flow static bed. They observed that such

lack of information led to an overestimated heat and mass

transfer coefficients (Nusselt and Sherwood numbers). They

reported, however, a more reasonable agreement between

experimental and predicted moisture content although it was

difficult to compare them due to the difficulty in fitting the

behavior of intermittent drying.

A comparison between ANFIS and diffusion-based

model for the prediction of grain particle surface temper-

ature and moisture content variation during intermittent

drying demonstrates the clear advantages of using ANFIS

over the diffusion-based, coupled heat and mass transfer

analytical approach. ANFIS provided a grain particle sur-

face temperature [T-model (1)] and moisture content model

[X-model (1)] with almost a perfect fit between experi-

mental and predicted data as observed by the high value of

R2 (0.999) for both surface temperature and moisture

content predictions. This can be referred to the exceptional

computational capability of ANFIS which implements a

universal approximator function that can fit any functional

relationship. The only requirement for ANFIS to perform

well is the availability of a good data to learn from. ANFIS,

therefore, can be an excellent choice when assumptions or

approximations may reduce the performance or accuracy of

the analytical mathematical models. This will be the case

when the model is too complicated or essential information

are missing such as the case with heat and mass transfer

coefficients in the above example.

Case Study 2: Using ANFIS in Modeling Sensory

Attributes of Espresso Coffee

The second case study will discuss the use of ANFIS to

design and optimize espresso coffee quality as reported by

Russo et al. [26]. The previous case involved predicting

intermittent drying using ANFIS and comparing the results

with analytical methods. It was observed that input–output

relationship was modeled analytically at a reasonable

accuracy. Sensory analysis, however, is very difficult to

model analytically. This is mainly due to the unreliability

and subjectivity in measuring sensory attributes and the

nature of interactions among those attributes. Sensory

panel evaluation of coffee quality is usually subjective;

therefore, a computerized method is needed to design the

quality characteristics of optimal coffee blend by mim-

icking the role of sensory panel but in a less subjective

way. Russo et al. [26] proposed an approach to optimize

coffee blend composition, extraction time and temperature

to produce a high-quality espresso coffee by using ANFIS

and simulated annealing. In their study, the expert system

capabilities of ANFIS were combined with multi-criteria

heuristic approach (sensory expert’s evaluation) to opti-

mize coffee quality. In other words, ANFIS was used to

optimize the output sensory quality attributes such as taste

and aroma in a way similar to sensory experts by manip-

ulating the input variables (coffee blend, extraction time
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and temperature). In their study, the authors first used the

predefined attributes of a good-quality espresso including a

balanced bitter and acid taste, a strong body, persistent

hazelnut foam, a potent and fine aroma, and a compact

texture. They also specified the input factors that affect the

presence and intensity of each specific sensory attribute in

espresso coffee including coffee blend, extraction temper-

ature and time during the percolation process. Based on

that, they constructed a computerized ANFIS model that is

capable of designing the optimal espresso coffee attributes

on the basis of the predefined sensory evaluation results.

They specified the desired ANFIS input–output vector as

follows:

Input Variables

• Five different roasted coffee blends’ combinations:

pure Arabica from Coffee Arabica (A), pure Robusta

from Coffee Canephora (R) and Arabica Robusta

blends at three different percentage [A20:R80,

A80:R20 and A40:R60)]

• Four extraction temperatures (80, 90, 100 and 110 �C)
• Five extraction times (10, 15, 20, 25 and 30 s).

Output Variables

Those were selected as eight specific sensory attributes

measured using a variation in the quantitative descriptive

analysis (QDA) method. The optimal output sensory attri-

butes were obtained on a scale from 1 to 10 as follows:

(1) color intensity = 7, (2) acidity = 7, (3) olfactive

intensity = 9, (4) body = 9, (5) bitterness = 5, (6)

texture = 9, (7) roast intensity = 7, (8) astringency = 3.

The next step involved constructing ANFIS model to

map the input–output data vectors for training data (70 %

of total data set). They used three triangular membership

functions for each input variable and then derived the rule

base which included 27 Tagaki–Sugeno if–then rules. The

derived network was then tested (cross-validated) with the

remaining 30 % data sets. A backpropagation algorithm

was used for this purpose to assure no over-fitting occurs.

ANFIS was then utilized to obtain the optimal quality

attributes. For example, the best color intensity was

obtained at extraction time around 20 s and extraction

temperature around 100 �C. Other quality attributes such as
bitterness and olfactive intensity which are related to coffee

aroma were found to be optimal at temperatures ranging

from 95 to 100 �C and extraction time near 20 s with a

coffee blend containing 60–70 % of Arabica.

Next, the results obtained from ANFIS were used to

perform inverse optimization using simulated annealing.

This involves working backward to obtain the best input

conditions (coffee blend, extraction time and temperature)

for a desired output (optimal coffee quality). For example,

if the optimal extraction time which is related to the desired

volume of the coffee is known, what would be the optimum

extraction temperature, time and coffee blend? ANFIS will

provide the needed information: The best quality coffee

achieved at 15 s extraction time should be extracted at

92 �C extraction temperature and 67 % Arabica and 33 %

Robusta coffee blend. Simulated annealing reverse opti-

mization will rephrase the question in the reversed order as

follows: If the optimal composition of coffee mixture

(obtained from ANFIS) is given, what would be the best

extraction temperature and time to get the best coffee

quality? To give an example, if the coffee blend was pre-

pared from 10 % Arabica and 90 % Robusta, then the best

coffee can be obtained at extraction time and temperatures

equal to 22 s and 95 �C, respectively.
This case study on the application of ANFIS in coffee

quality optimization demonstrates the superior capabilities

of ANFIS in solving highly complicated and practical food

industry problems that would be difficult to be solved by

any other method. The authors concluded that ANFIS uti-

lized a synergy between the outstanding computational

capabilities of artificial neural networks and the human-like

reasoning heuristic approach of fuzzy sets in addition to

simulated annealing reverse optimization to solve a diffi-

cult food quality problem. In addition, they reported that

they were the first to use this approach in optimizing food

processes.

Further applications of ANFIS in food processing and

technology are grouped into five categories and discussed

briefly by focusing on the main objectives for using ANFIS

as well as a brief discussion on inputs–outputs, perfor-

mance indicators as well as a comparison with the per-

formance of other modeling methods when applicable

(such as artificial neural networks, multivariate regression).

The five categories include food drying, prediction of food

properties, microbial growth and thermal process model-

ing, applications in food quality control and food rheology.

Food Drying

The application of ANFIS in food drying is reported by

several researchers as shown in Table 3. Yüzgeç et al. [35]

used ANFIS in fluidized bed drying to model Baker’s yeast

production to predict the yield of dry product and product

temperature. It was found that the overall performance of

ANFIS model was better than the three other conventional

modeling tools based on heat and mass transfer, diffusion

in granules and artificial neural networks. The performance

measures showed a higher R2 for both yeast yield (0.985)

and temperature (0.815) when using ANFIS compared to
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other models. In another study by Prakash and Anil Kumar

[23], ANFIS was applied successfully to model jaggery

drying in a greenhouse dryer. It was used to model the

moisture ratio, jaggery temperature and thermal perfor-

mance of the greenhouse. When compared to conventional

thermal modeling, ANFIS was found to provide better

model fit in terms of R2 and root mean error deviation E %

(0.999 and 0.7 % compared to 0.98 and 2.47 %) for ANFIS

and thermal modeling, respectively. Rami and Mujumdar

[12] reported the use of ANFIS in modeling nonlinear

complex intermittent drying of grains in a spouted bed,

which is normally difficult to model using conventional

drying models. They used drying air temperature and grain

moisture content to predict grains temperature and drying

rate over time. ANFIS was found to model both grains

temperature and drying rate with high precision

(R2 = 0.999 and RMSE = 0.178). Al-Mahasneh et al. [2]

used ANFIS in comparison with conventional thin-layer

drying models to predict moisture ratio in open sun drying

of roasted green wheat. ANFIS showed superior perfor-

mance in comparison with two-term exponential mode

with RMSE = 1.2 9 10-6 and R2 = 0.999 and

RMSE = 0.038 and R2 = 0.988, respectively. Nikrooz

et al. [21] reported the use of ANFIS in predicting energy

efficiency in leafy vegetables solar dryer using various

climatic conditions and design parameters. They observed

higher performance of ANFIS prediction compared to

empirical thermal models (R2 = 0.99 vs. 0.68).

Food Properties

The application of ANFIS in modeling various food

properties is reported by several researchers as shown in

Table 4. In a study by Sagdic et al. [27], ANFIS was used

to model antibacterial activities of Turkeys’ grape pomace

powders and pomace extracts at different concentrations

against Staphylococcus aureus and Escherichia coli in

vegetable soup. The results showed that ANFIS model

performed better than both artificial neural networks

(ANN) and multiple linear regressions (MLR) for pre-

dicting antibacterial effects. ANFIS provided fitting results

much better than MLR and slightly better than ANN with

RMSE = 0.0023, mean absolute errors (MAE) = 0.0215

and determination coefficient (R2) = 0.999. Taghadomi-

Saberi et al. [30] reported the use of ANFIS with triangular

and two-term Gaussian membership functions and ANNs

with two hidden layer networks architectures to model

antioxidant activity and anthocyanin content of sweet

cherry at different ripening stages. They reported better

performance of ANNs with the lowest error and highest

correlation coefficients values for predicting antioxidant

activity and anthocyanin content (R = 0.93 and 0.98,

respectively). ANFIS models, however, performed slightly

worse than ANNs with R = 0.87 and 0.90 for antioxidant

activity and anthocyanin content, respectively. Shah-

bazikhah et al. [29] used ANFIS to develop a quantitative

structural property relationship for the prediction of the

partition coefficient K in various food packaging. The

model used two packaging materials, four food simulants

and six migrants to predict the partition coefficient. They

reported that ANFIS was applied for the first time in this

field as a new modeling technique. They observed that

ANFIS model outperformed the conventional MLR with a

root-mean-square error (RMSE) = 0.0006 and 0.024 and

correlation coefficient (R2) of 0.992 and 0.904, respec-

tively. Yalcin et al. [32] used ANFIS and artificial neural

networks (ANNs) to model the fatty acid composition of

seven vegetable oils including hazelnut, soybean, sun-

flower, olive, canola, corn and cotton seed. They used shear

rate, shear stress and oil type as inputs and the fatty acids

Table 3 Application of ANFIS in drying

Process Product Inputs Outputs Other

methods

Refs.

Greenhouse

drying

Jaggery Solar intensity, diffuse solar intensity,

ambient temperature, specific heat of

jaggery, temperature above the jaggery

surface, relative humidity of greenhouse

and air

Moisture rate

Jaggery temperature

Thermal performance of

greenhouse

TM Prakash and Kumar

[23]

Intermittent

drying

Grains in a

spouted bed

Air temperature, moisture content Solid temperature, drying

rate

N/A Jumah and

Mujumdar [14]

Open sun

drying

Roasted green

wheat

Drying time, ambient temperature Moisture ratio TE-TLD Al-Mahasneh et al.

[2]

Solar drying Leafy vegetables Temperatures in collector inlet, and in

collector outlet in the dry chamber exit,

absorbed heat energy by collector,

evaporation energy

Energy efficiency ETM Nikrooz et al. [21]

TM thermal modeling, TE-TLD two-term exponential thin-layer drying model, ETM empirical thermal modeling
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C16:0 and C18:2 percentages as outputs. The root-mean-

square error (RMSE), mean absolute error (MAE) and

determination coefficient (R2) were 0.729, 0.539, 0.983 and

1.996, 1.671, 0.890, respectively. ANFIS not only per-

formed better than ANNs but also replaced the complicated

chromatography methods for evaluating fatty acid profile.

Rahman et al. [25] reported the use of ANFIS and ANNs to

predict thermal conductivity of various fruits and vegeta-

bles. The inputs were temperature, apparent porosity and

water content of foods. They noticed that the use of a wide

temperature range including those below freezing points

made it difficult to predict thermal conductivity by con-

ventional models. On the contrary, ANFIS was able to

predict thermal conductivity quite well with values that

closely matched experimental date (mean square

error = 0.011) compared to 0.021 and 0.011 for ANN and

MLR, respectively, and R2 = 0.978 compared to 0.951 and

0.931 for ANN and MLR, respectively. They also reported

that ANFIS alleviated the problem associated with defining

the hidden structure of ANN by trial and error.

Microbial Growth and Thermal Processing of Food

The application of ANFIS in modeling microbial growth

and thermal processing is reported by several researchers

as shown in Table 5. Yolmeh et al. [34] used ANFIS and

genetic algorithm–artificial neural network (GA-ANN)

models to model the effect of annatto dye on Salmonella

enteritidis population in mayonnaise using three inputs

(annatto dye concentration at 0, 0.1, 0.2 and 0.4 %, storage

time of 1–20 days and storage temperatures at 4 and

25 �C). Both ANFIS and GA-ANN were able to predict S.

enteritidis population with high accuracy of 0.998 and

0.999, respectively. They also reported that sensitivity

analysis of the input factors revealed that storage temper-

ature was the most important factor for the prediction of S.

enteritidis population in mayonnaise. Amiryousefi et al. [3]

reported the use of ANFIS and self-organizing map (SOM)

clustering to predict mass transfer kinetics in deep-fat

frying of ostrich meat. They used ANFIS to predict fat and

moisture content as the most important quality parameters

in fried foods. The data set of each mass transfer parameter

was classified into two clusters using SOM, and each

cluster was then fed into a separate ANFIS model that was

capable of extracting the rule base by data tuning by using

a triangular membership function (MF) in training ANFIS.

The results demonstrated that the optimized ANFIS model

with SOM clustering was able to improve the prediction

performance of ANFIS and successfully describe mass

transfer during deep-fat frying compared to ANFIS alone

with a 12.46 % improvement and with R = 0.96 in MC

prediction and 5.46 % improvement with R = 0.92 for FC

prediction. They concluded that the described methodology

can also be applied in optimizing the operating conditions

of the deep-fat frying process. Qin et al. [24] reported the

use of neuro-fuzzy-based approach to predict the risk fac-

tors for Salmonella Typhimurium infections in various

food types (green salad, fruit juices, eggs, burgers), contact

types (such as living on a livestock farm) and other factors

(such as taking any anti-diarrheal medicines). The neuro-

fuzzy model was used to choose and tune the membership

functions and the parameters associated with them rather

than using the trial and error procedure used in conven-

tional fuzzy logic. The ANFIS model was trained with

Table 4 Application of ANNs in modeling food properties

Property Product Inputs Outputs Other

methods

Refs.

Antibacterial

activities in

vegetable soup

Grape pomace powders and

grape pomace extracts

Grape pomace powders

extracts

Variety of Grape pomace powder

extracts, concentration of grape

pomace and powder extracts

BC Sagdic et al.

[27]

Antioxidant

activity and

anthocyanin

content

Different ripening stages of

sweet cherry

Maturity stage, size and

color features extracted

using machine vision

Measured antioxidant activity and

anthocyanin content

Using analytical techniques

ANN Taghadomi-

Saberi et al.

[30]

Migrants in food

packages

Food simulant and Polymer

Systems

Four food simulants, six

migrants and two

packaging materials

Partition coefficients of migrants MLR Shahbazikhah

et al. [29]

Fatty acid

composition

Vegetable oils (hazelnut,

soybean, sunflower, olive,

canola, corn, and cotton

seed)

Oil type, shear rate and

shear stress

The fatty acids: C16:0 and C18:2 ANN Yalcin et al.

[32]

Various fruits

and vegetables

Thermal conductivity Fraction of water content,

temperature and

apparent porosity

Thermal conductivity ANN,

MLR

Rahman et al.

[25]

BC bacteria counts, ANN artificial neural networks, MLR multiple linear regression
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80 % of the training data and tested (validated) with the

rest 20 % unexposed data. The results showed better per-

formance of the proposed neuro-fuzzy approach when

compared to the conventional fuzzy logic model with an

accuracy of 69.45 and 54.67 %, respectively. They con-

cluded that neuro-fuzzy model proposed a good mean that

can help evaluating the risks associated with Salmonella

Typhimurium infections in various food and nonfood fac-

tors. Escaño et al. [7] used a neuro-fuzzy model to predict

the temperature variation in batch sterilization autoclave

with time [T(t)] using the positions of the steam valve,

drain and purge valves, temperature of steam and previous

samples for the temperature inside the retort (T(t - 1);

T(t - 2)) as inputs. They observed that ANFIS was able to

accurately predict the measured autoclave temperature.

They reported an important advantage of neuro-fuzzy

control strategy as it can be integrated on industrial PLC,

which may save a considerable cost on commercial hard-

ware setups. In addition, the neuro-fuzzy modeling was

relatively simple, making it an attractive choice in indus-

trial environments.

Food Quality Control

The field of food quality control received much attention in

food industry. Some applications of neuro-fuzzy system in

food quality control are given in Table 6. ANFIS was used

by Zheng et al. [36] in detecting bruises of Chinese bay-

berries. They used different input membership functions

(MFs) for this purpose and showed that the ‘‘gauss2mf’’

MF performed much better than other types of MFs in

terms of bruises detection. They reported a classification

accuracy of 78.57 and 100 % for bruised and healthy fruits,

respectively, with a 90 % total correct classification rate.

They concluded that ANFIS provides a good potential for

developing a useful classification tool on the basis of FD

and RGB values for detecting bruises in other fruits during

handling, processing and storage. ANFIS was reported by

Atsalakis et al. [4] to forecast the yearly production of five

fruits including cherries, lemons, olives, oranges and pis-

tachios by estimating the optimal food forecast parameters

for the individual year. The model used the time series of

yearly data as input variables. ANFIS results were com-

pared to an autoregressive moving average (ARMA) and an

autoregressive (AR) model. The results were compared on

the basis of root-mean-square error (RMSE) and mean

absolute percentage error (MAPE). In all five fruits pro-

duction forecasting, ANFIS gave better results than both

ARMA and AR models. They concluded that the suggested

neuro-fuzzy model could be used to efficiently forecast

yearly fruit production using time series data for the

studied fruits. Russo et al. [26] used a combination of

neuro-fuzzy technique with simulated annealing as a non-

linear modeling methodology to design and optimize

espresso coffee quality. They used three input variables

that have a strong influence on the sensory quality of the

coffee including the extraction time between 10 and 30 s,

the coffee blends (100 % Arabica, 100 % Robusta and

Arabica Robusta: A20R80, A80R20 and A40R60) and the

extraction temperatures from 80 to 110 �C. The output was
measured as the sensory quality of the coffee measured

using the quantitative descriptive analysis method (QDA)

which is based on acidity, astringency, bitterness, body,

olfactive intensity, color intensity, roast intensity and tex-

ture. They reported that based on the results obtained, the

optimal blend composition with respect to sensorial values

was found by using 70 % Arabica and 30 % Robusta

extracted at 93 �C and 15 s. Davidson et al. [6] developed

an ANFIS model to recognize consumer preferences for

biscuits as part of an automated bakery inspection system.

Table 5 Application of ANFIS in microbial growth and thermal processing

Process Product Inputs Outputs Other

methods

Refs.

Antibacterial activity

of annatto dye on

Salmonella enteritidis

Mayonnaise Annatto dye concentration (0, 0.1, 0.2 and 0.4 %),

storage temperature (4 and 25 �C) and storage time

(1–20 days)

S. enteritidis

population

GA-

ANN

Yolmeh

et al. [34]

Deep-fat frying Ostrich meat Moisture content (MC) and fat content (FC) Microwave

power frying

time

SOM Amiryousefi

et al. [3],

Salmonella

Typhimurium

infections

Green salad,

fresh juices,

eggs,

hamburgers

Food type (green salad, etc.), contact type (live on a

livestock farm) and other factors (take any

antidiarrheal medicines, etc.)

Probability of

infection risk

FL Qin et al.

[24]

Thermal sterilization Solid canned

food in steam

retorts

Steam valve (us), drain and purge valves (ud; ub),

steam temperature (Ts), samples temperature history

inside the retort [T(t - 1); T(t - 2)]

T(t), the current

temperature

of autoclave

N/A Escaño et al.

[7]

GA-ANN genetic algorithm–artificial neural network, SOM self-organizing maps, FL fuzzy logic, N/A not available
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They used digital images to estimate some physical fea-

tures of chocolate chip cookies (biscuits) such as baked

dough color, fraction of top surface area, size and shape.

ANFIS was then used in order to predict consumer ratings

based on the three features extracted from digital images.

Two of the fuzzy models based on Mamdani and Sugeno

ANFIS gave satisfactory results of average consumer rat-

ings. They reported that feature extraction can be combined

with high-level information processing method such as

ANFIS to integrate features in a way that enables auto-

mated prediction of average consumer ratings of the biscuit

quality. They concluded that fuzzy inference system was

also simple in terms of inference methods and the number

of rules used. ANFIS was used by Madadlou et al. [18] to

model sono-disruption process of re-assembled casein

micelles which influences the acid-induced gelation time.

ANFIS model utilized four inputs (sonication time, pH

value of casein solution, ultrasonic frequencies (ultrasonic

bath and probe) and acoustic power dissipated to the

medium) and one output (the size of re-assembled

micelles). Two primary networks were obtained by both

subtractive clustering and grid partition. Grid partitioning

provided an ANFIS with higher recognition capability

(RMSE = 10.66) compared to subtractive clustering

(RMSE = 16.64). However, subtractive clustering was

able to describe the process by using much fewer rules.

When the number of epochs (iterations) was increased, a

model with higher recognition capability with simpler

structure was obtained with a small fuzzy rules number (16

rules). When ANFIS was generated using a lower range of

influence (0.2 vs. 0.5), a higher recognition capability was

observed but with a relatively more complex fuzzy rule

base (41 rules). Khalifa et al. [16] developed an efficient

walnut sorting system by combining (ANFIS) classifier and

principle component analysis (PCA) with acoustic emis-

sions analysis. The system was used to classify walnuts

into two classes (empty and fill walnuts). The system was

trained and validated with 281 sample data points. Some

statistical indicators of the sound impact signals in time

domain were chosen as sorting features, and PCA was used

for feature reduction to decrease the dimensionality of

input variables. The selected statistical features were then

used as input to ANFIS. The system used 27 rules with

excellent classification accuracy (100 % accurate). They

concluded that ANFIS-PCA classification system proposed

in the study demonstrated massive advantages such as

nondestructiveness, high-speed operation and low cost. The

authors proposed using the system for commercial walnut

classifications although they suggested a wider study

involving more cases for more efficient cross-validation.

Food Rheology

Some applications of neuro-fuzzy systems in food rheology

are shown in Table 7. Toker et al. [31] investigated the

effect of temperature (60, 70 and 80 �C), starch

Table 6 Application of ANFIS in food quality control

Application Inputs Outputs Other

methods

Refs.

Detection of bruises on Chinese

bayberry (Myrica rubra) based on

fractal dimension and RGB color

intensity

Fracture dimension, Red, Green and Blue

(RGB) color

Defect status (bruised or)

healthy

N/A Zheng

et al.

[36]

Fruit production forecasting The time series of yearly fruits production

from 1961 to 2003 (cherries, lemons, olives,

oranges and pistachios)

Yearly production of some fruits

(cherries, lemons, olives,

oranges and pistachios)

(ARMA)

and

(AR)

Atsalakis

et al. [4]

Multi-criteria optimization of the

quality of espresso coffee

Extraction time (ranging from 10 to 30 s),

temperature (80–110 �C) and blends

(100 % Arabica, 100 % Robusta and

Arabica Robusta: A20R80, A80R20 and

A40R60)

The sensory quality of the coffee

measured using the

quantitative descriptive

analysis method (QDA)

N/A Russo

et al.

[26]

Predict Consumer Ratings for

Biscuits Based on Digital Image

Features

Three cookie features (dough lightness, size,

and visible chips

Average consumer ratings N/A Davidson

et al. [6]

Sono-disruption process of re-

assembled casein micelles

Sonication time, pH value of casein solution,

ultrasonic frequencies (ultrasonic bath and

probe) and acoustic power dissipated

The size of re-assembled

micelles

N/A Madadlou

et al.

[18]

Walnut sorting using by using

acoustic emissions analysis

Time-domain values of acoustic emissions

impact signals

Walnuts status (empty and

filled)

N/A Khalifa

et al.

[16]

N/A not available, ARMA autoregressive moving-average model, AR autoregressive model
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concentration (5, 7.5 and 10 %) and time on the creep and

recovery behavior of the grape molasses using ANFIS and

ANN. ANFIS model was established to predict the com-

pliance value [J(t)] obtained from creep and recovery

analyses. Comparison based on the statistical parameters

(R2 value, mean absolute error and root-mean-square error)

showed that ANFIS outperformed ANN model for the

desired output. R2 fitted values of J(t) varied between 0.987

and 0.999 and between 0.075 0.159 for ANFIS and ANN,

respectively. Karaman and Kayacier [15] reported using

ANFIS to study the effect of temperature on rheological

characteristics of apricot and date molasses. The rheolog-

ical properties were evaluated in the temperature range

from 10 to 40 �C and shear rates from 0.1 to 100 s-1. Both

ANFIS and conventional power law model were able to

calculate apparent viscosity of apricot and date molasses

with high prediction capabilities (R2 = 0.979–0.999 and

RMSE = 0.12–0.46). Yilmaz [33] reported the use of

ANFIS to accurately model the compliance (J) for linear

creep and recovery properties of model meat emulsions

using the effect of creep test time, oil level and tempera-

ture. He reported that it is impossible to perform mathe-

matical modeling of structure or to interpret the results

obtained from meat emulsion systems using the conven-

tional molecular perspective due to their complexity and

the ill-defined viscoelastic nature in both creep and

recovery behavior. ANFIS with ‘‘trimf’’ input membership

function (MF) was observed to perform better than other

types of MFs. The results obtained from ANFIS were

compared with both ANN and (MLR). It was found that

ANFIS was superior to both MLR and ANN models with

R2 = 0.990, 0.984 and 0.441, respectively. Al-Mahasneh

et al. [1] used ANFIS along with ANNs to model apparent

viscosity of eight Jordanian honeys using shear rates

between 2.2 and 47 s-1, temperatures between 28 and

58 �C and water content from 16.1 to 17.3 %. They

reported that both ANFIS and ANNs were able to predict

apparent viscosity with good accuracy (R2 = 0.956 and

0.978 for ANFIS and ANNs, respectively). The two models

were observed to have an extra advantage over conven-

tional mathematical models, since they can predict honey

viscosity as a function of all input variables, offering a

wider range of viscosity prediction. In addition, they con-

cluded that ANFIS can be used to model rheological

properties of more complex liquid foods where conven-

tional rheological models often fail or can be too compli-

cated to describe such properties. Ghoush et al. [9] reported

the use of ANFIS to model and identify the rheological and

emulsification properties (viscosity and emulsion stability)

of a model egg yolk mayonnaise prepared from wheat

protein (WP) at 4 % and iota-carrageenan (IC) at 0.1 % as

an alternative emulsifier. ANFIS was used to compare

several mayonnaise treatments based on emulsion stability

and viscosity at 4, 23 and 40 �C. They reported that ANFIS

used 27 nodes and 8 fuzzy rules to model the mayonnaise

viscosity and emulsion stability with high prediction

accuracy = 96 % and an estimated prediction error of

output properties close to 4 %. They reported that ANFIS

Table 7 Application of ANFIS in food rheology

Application Inputs Outputs Other

methods

Refs.

Effect of temperature and starch

concentration on the creep/recovery

behavior of the grape molasses

Temperature (60–80 �C), starch concentration

(5–10 %) and time

The compliance value

[J(t)] obtained from

creep and recovery

ANN Toker et al.

[31]

Effect of temperature on rheological

characteristics of apricot and date

molasses

Temperature (10–40 �C) and shear rates

(0.1–100 s-1)

Apparent viscosity PL

model

Karaman

and

Kayacier

[15]

Estimation of linear creep and recovery

properties of model meat emulsions

Creep test time, oil level and temperature The compliance (J) for

linear creep and

recovery properties

ANN

and

MLR

Yilmaz [33]

Evaluating the combined effect of

temperature, shear rate and water

content on wild-flower honey viscosity

Temperature (28–58 �C), water content
(16.1–17.3 %) and shear rate (2.2–47 s-1),

honey type

Apparent viscosity ANN Al-

Mahasneh

et al. [1]

Modeling of a emulsion stability and

viscosity of a gum–protein emulsifier in

a model mayonnaise system

Solution conc. (%) (made from 4 % wheat

protein, 0.1 %, iota-carrageenan at egg yolk

conc. (%), temperature (4–40 �C)

Mayonnaise system

viscosity (Pa s) and

stability (days)

N/A Ghoush

et al. [9]

Modeling of a gum-protein emulsifier in

a model mayonnaise color development

system

Solution conc. (%) (made from 4 % wheat

protein, 0.1 %, iota-carrageenan at egg yolk

conc. (%), temperature (4–40 �C)

Mayonnaise system

color parameters

(lightness and

yellowness)

N/A Samhouri

et al. [28]

ANN artificial neural network, PL power law, MLR multiple linear regression
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can be used efficiently for predicting many other food

properties related to food industry. Samhouri et al. [28]

reported the use of ANFIS to model the color parameters

(lightness and yellowness) of the mayonnaise formulation

system studied in Ghoush et al. [9] which represents a

model egg yolk mayonnaise prepared from wheat protein

(WP) at 4 % and iota-carrageenan (IC) at 0.1 % as an

alternative emulsifier. ANFIS was used to compare several

mayonnaise treatments based on the color parameters

(lightness and yellowness) at 4, 23 and 40 �C. They

reported that ANFIS used also 27 nodes and 8 fuzzy rules

to model the mayonnaise lightness and yellowness with

high prediction accuracy = 96–97 % and an estimated

prediction error of output properties close to 3–4 %.

Advantages and Disadvantages of Using ANFIS

Advantages

1. ANFIS has the ability to handle large amounts of noisy

or ill-behaved data from nonlinear or complex

dynamic systems.

2. ANFIS is especially useful in modeling system with

unknown or not fully understood underlying physical

relationships between inputs and outputs.

3. ANFIS can integrate information from several sources

such as expert systems, human reasoning (heuristics),

empirical models and data for effective model

development.

4. ANFIS is capable of reducing the dimensionality of the

problem by using a subtractive clustering technique

which prevents the combinatorial explosion of fuzzy

rules when input data sets involve higher dimensions.

Subtractive clustering methods are especially useful for

building the fuzzy model when no prior knowledge of

the fuzzy rules exists. The cluster produced is then

utilized to produce the initial Sugeno-type fuzzy

inference system that best models the behavior of the

given data. Backpropagation in ANFIS can be used after

that to tune the parameters of the neuro-fuzzy model.

Disadvantages

1. Since ANFIS is a data-driven modeling technique, it is

extremely important to select the appropriate input

variables which provide the essential information

needed for successful modeling. In other words, it is

important to avoid losing key information when

omitting one or more key input variables and to pre-

vent the inclusion of redundant or irrelevant input

variables that can confuse the training process. While

this applies to any modeling technique, it is more

crucial in ANFIS as it depends heavily on input–output

data for modeling compared to other methods.

2. The number of fuzzy rules increases exponentially

with the increase in the number of input variables as

given by the formula: pn where p is the number of

fuzzy membership functions and n is the number of

input variables. This means a high number of mem-

bership functions and/or input variables will yield an

excessively high number of fuzzy rules, making

ANFIS too difficult to apply for new unseen data and

increasing the computational time significantly. Prior

experience and knowledge of the user and the use of a

clustering tool for input variables may help reducing

this problem.

3. The successful implementation of ANFIS requires the

availability of a relatively large data set for training

and cross-validation. In several cases, however, it may

be difficult to generate adequate amount of data for

various reasons such as cost, difficulty in measure-

ments or simply unavailability. Adequate data sets are

needed to prevent model under-fitting (a model with

poor generalization capability for unseen data).

General Guidelines for Using ANFIS

There are general guidelines that can be followed for

successful development of ANFIS.

(a) Selecting appropriate input variables selecting ade-

quate input variables is important to avoid model

under-fitting. In other words, to avoid missing

important information about the system is being

modeled. This is considered an important primary

task. Inclusion of irrelevant or highly correlated

input variables may degrade the reliability of model

training and validation process. On the other hand,

model over-fitting which occurs when too many

input variables are used to build the model can

adversely affect the usefulness and generalization

capabilities of the model. In ANFIS, this depends on

the experience and knowledge of the user in a

specific process. In addition, some tools such as

subtractive culturing, by combining the highly

related (correlated) input variables to one or more

clusters and therefore reducing the dimensionality of

the input variables, can improve the reliability of the

model developed and reduce the computational

burden.

(b) Choosing appropriate number and type of member-

ship functions prior experience and knowledge of the

user can help choosing the appropriate type and

number of membership functions in addition to data

partition scheme (splitting the data for training and

364 Food Eng Rev (2016) 8:351–366
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validation) and selecting the best type of optimiza-

tion algorithm.

(c) The successful implementation of ANFIS this

requires a relatively large data set for training and

validation which is sometimes needed to prevent

model under-fitting and to yield a good generaliza-

tion of the results for unseen data. A general

guideline would be to increase the size of data set

as the number of model inputs is increased.

When to Use ANFIS?

ANFIS is a hybrid intelligent modeling technique with

outstanding modeling capabilities which can be applied in

several areas of food industry. Nevertheless, it would be

inefficient it in applications where analytical modeling or

other more straightforward statistical modeling techniques

are applicable and adequate. Some applications where the

application of ANFIS is recommended include:

• Problems which involve fuzzy or blurred attributes

such as in descriptive sensory testing.

• Problems that involve complex or ill-conditioned

systems such as multivariable, time-varying processes

or highly complex functional relationships such as such

as intermittent drying.

• Problems that involve noisy data from dynamic or

nonlinear systems such as time series forecasting.

• Problems which involve physical relationships that may

not be fully understood or difficult to predict accurately

such as modeling microbial growth.

Concluding Remarks

This review explains the applications of ANFIS in food

processing and technology. The paper discussed ANFIS in

comparison with fuzzy logic systems (FLS) and artificial

neural network (ANNs) in terms of structure, function,

complexity and applications in the food industry. It was

found that ANFIS prediction and modeling capabilities of

various food processing and technology applications such

as drying, food properties prediction, quality control and

rheology were almost always better or similar to the other

modeling methods such as ANNs, FLS or multiple

regressions (MR). However, ANFIS implementation may

yield high number of fuzzy rules rendering it more com-

plex than other methods. In addition it requires a relatively

large data set for training and validation to yield a gener-

alized model and prevent over-fitting. Nevertheless,

application of ANFIS has gained increasing attention in

various modeling and control applications in food

processing and technology. Finally, ANFIS is best utilized

in situation where no alternative mechanistic conventional

modeling techniques are feasible or when the modeling

problem is too complicated to be solved otherwise such as

fuzzy systems. Even if ANFIS was used in such situations,

a compromise should be made between a sophisticated

model structure which is capable of predicting outputs

accurately and generalizing to unseen data but has the

potential to be complicated and to include a large set of

fuzzy rules, with a simple model structure but yet incapable

of capturing the whole picture and missing essential

information and therefore providing poor prediction and

generalization results. Such compromise is normally

attained by the user knowledge and experience in both the

nature of problem and the skill in using ANFIS.
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35. YüzgeçU Y Becerikli, Türker M (2009) Comparison of different

modeling concepts for drying process of baker’s yeast. IEEE

Trans Neural Netw 19(7):1231–1242

36. Zheng H, Jiang B, Lu H (2011) An adaptive neural-fuzzy infer-

ence system (ANFIS) for detection of bruises on Chinese bay-

berry (Myricarubra) based on fractal dimension and RGB

intensity color. J Food Eng 104(4):663–667

366 Food Eng Rev (2016) 8:351–366

123

http://dx.doi.org/10.1081/DRT-200059138
http://dx.doi.org/10.1016/j.jfoodeng.2009.12.031
http://www.cigrjournal.org
http://dx.doi.org/10.1080/14786451.2012.724070
http://dx.doi.org/10.1080/14786451.2012.724070
http://dx.doi.org/10.1016/j.asoc.2011.06.012
http://dx.doi.org/10.1016/j.fbp.2011.07.001
http://dx.doi.org/10.1111/j.1365-2621.2011.02916.x
http://dx.doi.org/10.1590/S0103-50532011000800007
http://dx.doi.org/10.1002/jsfa.6202
http://dx.doi.org/10.1002/jsfa.6202
http://dx.doi.org/10.1007/s00217-013-1959
http://dx.doi.org/10.1007/s00217-013-1959
http://dx.doi.org/10.1002/ejlt.201200040
http://dx.doi.org/10.1111/j.1745-4603.2012.00349.x
http://dx.doi.org/10.1111/j.1745-4603.2012.00349.x
http://dx.doi.org/10.1016/j.micpath.2014.02.003
http://dx.doi.org/10.1016/j.micpath.2014.02.003

	Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology
	Abstract
	Overview of Adaptive Neural Fuzzy Inference Systems (ANFIS)
	Overview of Artificial Neural Networks (ANNs)
	Overview of Fuzzy Inference Systems (FIS)
	Adaptive Neural Fuzzy Inference System (ANFIS)
	ANFIS General Structure
	ANFIS Model Development, Testing and Computational Considerations

	Applications of Adaptive Neural Fuzzy Inference Systems in Food Processing and Technology
	Demonstrating the Use of ANFIS: Case Studies
	Case Study 1: Using ANFIS in Modeling Nonlinear Time-Dependent Intermittent Drying of Spouted Grains
	Step 1: Assigning Governing Equations, Input and Output Variables
	Step 2: Assigning the Type and Number of Membership Functions and Number of Epoch
	Step 3: Training and Testing of ANFIS
	Step 4: Extracting Outputs and Calculating ANFIS Prediction Accuracy
	Final Results

	Case Study 2: Using ANFIS in Modeling Sensory Attributes of Espresso Coffee
	Input Variables
	Output Variables
	Food Drying
	Food Properties
	Microbial Growth and Thermal Processing of Food
	Food Quality Control
	Food Rheology

	Advantages and Disadvantages of Using ANFIS
	Advantages
	Disadvantages

	General Guidelines for Using ANFIS
	When to Use ANFIS?


	Concluding Remarks
	References




