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Abstract Muscle foods play an important role in providing

a vital source of high-quality protein, amino acids and vita-

min for human health. Chemical composition is one of the

most vital information of muscle foods, which directly

relates to the quality of pork, beef, chicken, fish and other

meats. Therefore, it is significant to identify the chemical

information of muscle foods for the purpose of controlling

the quality and safety of meat. Hyperspectral imaging can

obtain spectral and spatial information of targets simulta-

neously and has been developed for rapid and nondestructive

determination and identification of chemical information of

muscle foods. This review focuses on recent applications of

hyperspectral imaging technology for the measurement and

analysis of chemical composition of muscle foods, including

moisture content, fat and fatty acid, pH, protein content,

pigment, salt content and freshness attributes. The funda-

mentals of hyperspectral imaging as well as future devel-

opment trends are also presented and discussed.

Keywords Hyperspectral imaging � Chemical

composition � Muscle foods � Seafood products � Optimal
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Introduction

Generally speaking, muscle foods such as pork, beef, lamb,

chicken and seafood are one of the most vital part of

people’s daily diet, as they are important sources of high-

quality protein, amino acids and vitamin. In addition, they

are highly perishable. With the development of living

standard, customers pay more and more attention to the

quality and safety of food. Therefore, besides the need for

reservation techniques and methods such as cooling [1–4],

freezing [5] and drying [6, 7] to provide superior quality

meat and meat products, the meat industry also require

modern reliable tools for quality and safety assurance. The

quality attributes of muscle foods generally consist of

physical attributes, biological attributes and chemical

attributes [8], among which chemical composition has a

major impact on the quality.

Traditionally, chemical composition is usually identified

by chemical analysis methods, even by experienced

assessors, for instance, a solvent-based method for mea-

suring the total fat content in meat [9], a portable pH meter

or a surface electrode for measuring the pH value of sal-

mon flesh [10] and the marbling score assessed by trained

assessors according to a referenced table for estimating the

intramuscular fat content of meat [11]. However, the

above-mentioned methods are time-consuming, destruc-

tive, tedious and demanding, which are not suitable for

real-time or on-line operations. With the target of giving

consumers more reliance on current environment of food,

objective, noninvasive and nondestructive techniques are

needed for the rapid identification of chemical composition

of muscle foods.

In recent years, a number of nondestructive and objec-

tive technologies for measuring the chemical properties of

muscle foods have emerged, including ultrasound imaging
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(UI), fluorescence imaging (FI), visible (VIS) and near-

infrared (NIR) spectroscopy and computer vision [12–15],

among which spectroscopic and imaging are two important

technologies available. The spectral data obtained by VIS–

NIR spectroscopy cover 380–2526 nm and provide the

chemical information of samples. Meanwhile, imaging

techniques focus on collecting external information of

samples, such as shape, size, color and texture, so that it is

usually used for rapid identification of different visual

quality parameters based on spatial information. However,

these methods have their own disadvantages; for instance,

UI can be affected by operators easily and is only available

for detecting specific parts of objects [16], FI can only

detect some specific materials related to fluorescence [17],

while NIR spectroscopy and computer vision can only

obtain spectral or spatial data, respectively. More specifi-

cally, spectral information obtained by spectroscopy alone

is not able to illustrate the concentration gradients in the

entire tested sample, because it uses information of a

specific part of the specimen analyzed to represent the

average value of the specimen; while only using imaging

techniques, internal attributes such as moisture, fat and

protein cannot be identified quantitatively.

On the other hand, by the integration of two popular

techniques, spectroscopic and imaging, into one system,

hyperspectral imaging is able to obtain both abundant

contiguous spectral bands and spatial distribution infor-

mation of objects simultaneously [18–28]. Originally,

hyperspectral imaging was applied in the field of remote

sensing, such as marine monitoring, detecting of forest fire,

and exploring geological and mineral resources [29]. Over

the past few years, the applications of hyperspectral

imaging technology have been extended to the area of

assessing food quality and safety [30–33], including iden-

tifying chemical composition of muscle foods.

Up to now, there are some reviews about the applica-

tions of hyperspectral imaging in measuring quality and

safety of muscle foods [25, 34, 35]; however, no reviews

are available focusing on muscle foods chemical compo-

sition. Therefore, this paper is aimed at summarizing the

applications of hyperspectral imaging in this domain.

Fundamentals of Hyperspectral Imaging

Fundamental Devices and Software

There are three available types of hyperspectral imaging

configurations, including tunable filter, whiskbroom and

push-broom, with the push-broom being the most common

configuration for meat applications. The difference

between three configurations are in the way of scanning,

among which tunable filter is conceptually called

wavelength scanning, while the other two configurations

are called spectral scanning, since samples are scanned

point to point (whiskbroom) or line to line (push-broom) in

the spatial domain, respectively [19]. Figure 1 shows a

typical push-broom hyperspectral imaging system, con-

sisting of a light source, a motor, a wavelength dispersion

device or spectrograph, a two-dimensional detector or

camera, and a computer. It is worth mentioning that

imaging spectrograph acts the same role of human eyes,

but its available scanning range contains ultraviolet, visible

and near-infrared regions (300–2600 nm), overcoming the

limitation of the identification of only red, green and blue

(RGB) bands by human eyes [25]; another function of

imaging spectrograph is to distribute the wide bands into

different wavelengths and disperse the acquired light onto a

two-dimensional charge-coupled device (CCD) detector

array [19], while the computer system with relevant control

and process software is mainly for further analysis of tar-

gets by controlling the hyperspectral imaging system,

including motor rate, exposure time and wavelength range,

and accomplishing the further process procedure, such as

the calibration and storage of images.

In addition to hardware, software developed to make

the transfer of technology successfully plays a significant

role in the application of hyperspectral imaging. So far,

several effective software for processing hyperspectral

data have been implemented widely, including ENVI,

MATLAB, Unscrambler and others. ENVI is a dedicated

software bundled with a variety of image processing

algorithms available, which are usually used for pro-

cessing hyperspectral images, including filtering, cali-

bration and extracting the regions of interest (ROIs);

meanwhile MATLAB, a fourth-generation computing

language, has powerful capacity in aspects of algorithms

development, models establishment, data and images

analysis and visualization [37]. However, more software

needs to be developed for practical and industrial appli-

cation, as the development of software is behind that of

hardware [16].

Image Data Processing

Because of the fusion of spectroscopy and computer vision,

the information contained in hyperspectral images is a

three-dimensional data cube, named ‘‘hypercube’’ or

‘‘spectral cube’’ [37], including two-dimensional spatial

information (x, y) and one-dimensional spectral informa-

tion (k). The relationship between spatial dimension and

spectral dimension is presented in Fig. 2. The resulting

characteristic spectra play the role of fingerprint for iden-

tifying chemical composition, and the images provide

geometrical features of samples, including color, shape,

texture, appearance.
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After collecting hyperspectral images by point scanning,

line scanning, area scanning or the single shot method,

abundant available spectral information of targets can be

extracted, certainly along with some redundant information

having negative impacts on calibration. The redundant data

include collinear information, light scattering, even stripe

and random noise produced by hyperspectral equipment

and other random factors, which carry useless spectral

information and disturbing the extraction of characteristic

spectrum. Therefore, these invalid data can slow down the

efficiency of analysis and have negative effects on

chemical composition prediction. For the purpose of

enhancing the predictive ability of model and diminishing

different impacts between diverse samples, some spectral

preprocessing techniques are applied to calibrate the orig-

inal spectra, generally including using multiplicative scat-

ter correction (MSC), standard normal variables (SNV),

median filter, Fourier transform (FT) and wavelet trans-

forms (WT), among which FT and WT are appropriate for

noise reduction and edge detection. MSC works for

removing the undesirable information caused by scattering

from the data matrix, so that the spectral information

Camera
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Lens

Motor
Sample positionIllumination

Computer system

Translation stage

Fig. 1 Fundamental devices of

a typical push-broom

hyperspectral imaging system

[36]

(xi, yi)i Wavelength λ
(xi, yi)

Image at iλ
Pixel spectrum at (xi, yi)

Refl
ecta
nce

x

y

λ′i

λ

Image at λ′i

Fig. 2 Relationship between spatial dimension and spectral dimension
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available for detection can be enhanced [38]. And the

function of SNV is similar to MSC. After that, calibration

of spectra and establishment of models are the two main

tasks, normally associated with chemometrics for analyz-

ing the relationship between each pixel in the images and

corresponding quality attributes. Among the common

chemometric methods, both linear analysis methods, such

as principal component regression (PCR), multiple linear

regression (MLR) and partial least squares regression

(PLSR), and nonlinear analysis methods, such as artificial

neural network (ANN) and support vector machine (SVM),

can serve for multivariate data processing [39]. It is worth

mentioning that PLSR can perform excellently when the

matrix of wavelengths has more variables than samples and

when the original wavelengths have a high correlation [40].

MLR, an important linear multivariate regression method-

ology, can provide correlation between spectra and target

indexes; however, different from PLSR, it loses efficacy

when the number of samples is less than that of variables

[37]. ANN,whose operating principle is similar to theway of

human brain in processing information, divides the neural

network into hundreds of single units (artificial neurons or

processing elements) with individual weighted coefficient

[41]; however, it lacks in accuracy and universality for each

indexes in neural network and system structure, respectively.

SVM, a popular supervised learning machine, utilizes SV

kernel to translate the variables and dependent variables

from input space into a high-dimensional feature space

where the relationship between variables can be corre-

sponded to by a linear function [42]. Particularly, least

square support vector machine (LS-SVM), an updated ver-

sion of standard SVM, is widely used for classification and

regression tasks in hyperspectral imaging applications. In

addition to the above-mentioned chemometrics, simple

methods to select the optimal wavelengths should also be

considered. Because the target attributes are usually only

related to some key wavelengths, so selecting the optimal

wavelengths are necessary for the purpose of improving the

efficiency of analysis. At present, frequently used selection

methods in multispectral wavelengths include regression

coefficients (RC) of PLSR, independent component analysis

(ICA), principal component analysis (PCA) and genetic

algorithm (GA). Details of recent advances in these wave-

length selection methods for hyperspectral imaging appli-

cations can be found elsewhere [26]. Based on selected

wavelengths, simplified models can be established, and then

best performance model can be selected to translate spectral

data in each pixel into chemical map, which is considered as

the most significant function of hyperspectral imaging.

Figure 3 illustrates several chemical maps of the thiobarbi-

turic acid (TBA) value [43], K value [44], moisture content

[45], pH [46], fat content [47], hydroxyproline values [48]

and salt content [49, 50], respectively. Detailed discussion

and analysis about these studies are presented in the sections

below. Besides, it is worth mentioning that K value is an

important chemical index for evaluating the quality and

freshness of muscle foods by reflecting the degradation of

nucleotide. Meanwhile, the main procedures of hyperspec-

tral imaging in identification of meat chemical composition

are shown in Fig. 4.

Finally, it is worth mentioning the criteria used for

evaluating the performance (accuracy, reliability and pre-

dictive ability) of models. Generally, the evaluation criteria

are associated with statistical references, such as the

coefficients of determination and root mean square errors

in calibration (RC
2 , RMSEC), cross-validation (RCV

2 ,

RMSECV) and prediction (RP
2, RMSEP) [52]. R2 is usually

calculated using the following equation:

R2 ¼
Pn

i¼1 xi � xð Þ yi � yð Þ
� �2

Pn
i¼1 xi � xð Þ2

Pn
i¼1 yi � yð Þ2

ð1Þ

and RMSE can be expressed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � xið Þ2
s

ð2Þ

where xi is the measurement value of target, x is the mean

value of xi, yi is prediction value, and y is the mean value of

yi. A satisfactory model should possess higher values of RC
2 ,

RCV
2 and RP

2, lower values of RMSEC, RMSECV and

RMSEP, even smaller differences between RMSEC,

RMSECV and RMSEP. Moreover, it is commonly believed

that the performance of a model is poor, acceptable, good

and excellent if its R2 is under 0.66, between 0.66–0.81,

between 0.82–0.90 and over 0.9, respectively [53].

Applications

The chemical composition in the muscle foods, such as

moisture, protein, fat and pigment, is directly related to the

flavor, color and quality of meat, which immediately affect

the purchasing desire of consumers. So far, there are a

number of studies involving the identification and assess-

ment of the chemical composition of muscle foods by

hyperspectral imaging techniques, and Tables 1 and 2

summarize these studies. Most of the studies mentioned in

Tables 1 and 2 are introduced in detail in the following

sections.

Moisture Content

Moisture, as one of the most important composition in

meat, profoundly has relation to the quality of meat, as well

as shelf-life and economic profits, as muscle foods are

usually sold by weight. During the past few years, hyper-

spectral imaging as an expeditious emerging and objective
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technology has been widely developed for the moisture

content evaluation.

Among various studies, Barbin et al. [18] focused on

assessing the moisture content of minced and raw pork

using a push-broom hyperspectral imaging system to

extract the spectral data between 900 and 1700 nm. PLSR

was developed to correlate predictors (spectral data) with

responders (measured reference values), and leave-one-out

cross-validation (LOOCV) method was employed to build

PLSR model with training set under full cross-validation.

The final PLSR prediction model, established with seven

feature-related wavelengths (927, 950, 1047, 1211, 1325,

1513 and 1645 nm) selected by RC of PLSR, showed RP
2 of

0.91 and standard error in prediction (SEP) of 0.62 %. In

another study, ElMasry et al. [47] developed a push-broom

hyperspectral imaging system to collect the hyperspectral

images of fresh beef line by line, in order to determine the

moisture content of the samples. In the near-infrared (NIR)

range (900–1700 nm), PLSR model was chosen to visual-

ize the moisture of beef with eight key wavelengths (934,

1048, 1108, 1155, 1185, 1212, 1265 and 1379 nm) selected

by RC of PLSR, with a satisfying result of RP
2 of 0.89 and

SEP of 0.46 %. Furthermore, a push-broom hyperspectral

imaging system, based on the reflectance mode, was

applied to evaluate the moisture content in lamb from

different breeds and muscles [20]. By extracting the

spectral information from the hyperspectral images, PLSR

was employed to establish a multivariate calibration model

for predicting the moisture content with six wavelengths

(960, 1057, 1131, 1211, 1308 and 1394 nm) selected by

Fig. 3 Chemical maps of hyperspectral images. 1 Chemical maps of

TBA value in fish fillets at four different TBA values [43]. a
TBA = 0.2355 mg/kg; b TBA = 0.4602 mg/kg; c TBA = 0.9524

mg/kg; d TBA = 1.1213 mg/kg. 2 Chemical maps of K value in fish

fillets at four different K values [44]. a K = 24.2 %; b K = 45.6 %;

c K = 78.1 %; d K = 89.8 %. 3 Chemical maps of moisture in

salmon fillets at different moisture values [45]. 4 Distribution map for

different pH value in pork samples [46]. 5 Chemical maps of water,

fat and protein contents resulting from two different samples (first and

second rows) and from fat trimmings of beef samples (third row) [47].

6 Visualization of entire salmonids piece with average astaxanthin

content of 2.26 lg [51]. 7 Chemical map of chicken meat at four

different hydroxyproline values [48]. a Hydroxyproline value of

0.065 g/100 g; b hydroxyproline value of 0.110 g/100 g; c hydrox-

yproline value of 0.149 g/100 g; d hydroxyproline value of 0.268 g/

100 g. 8 Chemical maps of salt content in different meat products.

a 2D distribution within one slice of ham for average salt content of

7.8 % [49]. b Distribution map of salt content in a single porcine meat

slices at six different salting periods [50]
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RC of PLSR. Satisfactorily, the simplified PLSR model

showed an encouraging performance in evaluating the

moisture of lamb (RP
2 = 0.84 and SEP = 0.57 %).

On the basis of the above results, it is obvious that PLSR

is one of the most common and available algorithm for

multivariate analysis and models establishment. In addi-

tion, the number and location of optimal wavelengths in the

above three studies are different, although all selected by

RC of PLSR. Compared to the other two studies [18, 47],

the model from Kamruzzaman et al. [20] for predicting

moisture content in pork performed better. The difference

in prediction performance and optimal wavelengths selec-

tion may be resulted from different species of meat samples

used. In the above three studies, all of the RP
2 surpassed 0.8,

not only showing the reliability of models, but also

revealing the potential of hyperspectral imaging technol-

ogy for predicting the target constituent of objects.

For seafood products, He et al. [45] investigated the fea-

sibility of hyperspectral imaging in determination of mois-

ture content distribution in farmed Atlantic salmons with

three spectral ranges, including range I (400–1000 nm),

range II (900–1700 nm) and range III (400–1700 nm).

Based on the whole spectral information, PLSR models are

established for three spectral regions, respectively, and its

mean RESMC (1.535 %) and RESMCV (1.648 %) were

lower than those reported in a previous study on predicting

moisture content in six species fish fillets [71]. In order to

improve computational efficiency, He et al. [45] selected

several feature-relatedwavelengths byRCof PLSR and built

the simplified models based on three spectral ranges,

respectively. The results [45] revealed that the simplified

models can replace the models using full spectral wave-

lengths, as their performanceswere comparable, and spectral

range I showed more reasonable values in industrial

Meat samples

Hyperspectral imaging system

Raw hyperspectral images

Traditional analysis
Images preprocessing

(images calibration, segmentation, 
spectral data extraction)

ROIs selection
Reference values

Spectral data preprocessing
(MSC, SNV)

Calibration model
(with full wavelengths)

Model validation

Optimal wavelengths selection
(RC of PLSR, ICA, PCA, and GA)

Calibration model
(with optimal wavelengths)

Best model selection
(prediction model)

Images at optimal wavelengths

Chemical map

Dimensionality 
reduction

Instrumental analysis

Fig. 4 Main procedures of hyperspectral imaging in identification of meat chemical composition
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applications, as it had prediction precision similar to the

other two ranges (II and III) but would cost less. Based on

similar spectral range (380–1100 nm), Wu et al. [68]

employed hyperspectral imaging to predict moisture content

of prawn during dehydration. In their study [68], with the

target of extracting the spectra of the whole prawn, both

‘‘Manual PrawnMask’’ and ‘‘Automatic PrawnMask’’ were

employed to segregate prawns out of homogenous back-

ground, as the shape of prawn is irregular. Different from the

study of He et al. [45], both linear methods (PLSR andMLR)

and nonlinear method (LS-SVM) were employed to

establish the prediction model in the study ofWu et al. [68],

coupled with twelve optimal wavelengths selected by

successive projections algorithm (SPA). The result showed

that SPA-MLR model had similar performance comparing

to SPA-PLSR model, but worse than SPA-LS-SVM.

However, in the consideration of further industrial appli-

cations, SPA-MLR model was selected as the best predic-

tion model with the RP
2 of 0.962 and ratio of prediction of

deviation (RPD) of 4.997.

Table 1 Applications of hyperspectral imaging for determination of chemical attributes of poultry meats

Species Features Spectral range (nm) Method RP
2/R2 Reference

Pork pH 400–1000 FNN 0.303 Qiao et al. [54]

pH 900–1700 PLSR 0.90 Barbin et al. [46]

pH 400–1000 PLSR 0.794 Liu et al. [55]

pH 400–1000 LS-SVM 0.714 Pu et al. [56]

pH 400–2500 PLSR 0.257 Xie et al. [57]

Moisture

Protein

Fat content

900–1700 PLSR 0.91

0.88

0.93

Barbin et al. [18]

Salt content 400–1000 PLSR

PCA

MLR

0.912

0.933

0.930

Liu et al. [50]

Intramuscular fat (IMF) content 900–1700 PLSR 0.920 Liu and Ngadi [11]

TVB-N 430–960 BP-ANN 0.695 Chen et al. [17, 58]

TVB-N 400–1100 PLSR 0.90 Kim et al. [59]

Beef pH 900–1700 PLSR 0.73 ElMasry et al. [19, 60]

Fat content

Fatty acid (saturated and unsaturated)

1000–2300 PLSR 0.90

(0.87, 0.89)

Kobayashi et al. [61]

Marbling grade 400–1100 MLR 0.92 Li et al. [62]

Moisture

Protein

Fat content

900–1700 PLSR 0.89

0.86

0.84

ElMasry et al. [47]

pigments 400–1000 PLSR 0.953 Xiong et al. [63]

Lamb pH 900–1700 PLSR 0.65 Kamruzzaman et al. [64]

Moisture

Protein

fat content

900–1700 PLSR 0.88

0.63

0.88

Kamruzzaman et al. [20]

Moisture

protein

fat content

900–1700 MLR 0.83

0.64

0.90

Pu et al. [65]

Chicken Moisture content 400-1000 PLSR 0.94 Kandpal et al. [66]

Hydroxyproline content 400–1000 PLSR 0.73 Xiong et al. [48]

TBA value 400–1000 PLSR 0.64 Xiong et al. [67]

Goose/Duck Pigments 400–1000 PLSR 0.953 Xiong et al. [63]

TVB-N total volatile basic nitrogen, TBA thiobarbituric acid, FNN feed-forward neural network, PLSR partial least squares regression, LS-SVM

least square support vector machine, PCA principal component analysis, MLR multiple linear regression, BP-ANN back-propagation artificial

neural network

342 Food Eng Rev (2016) 8:336–350

123



Fat and Fatty Acid Content

Fat and fatty acid content are another two important

chemical components in meat, having an impact on cooked

properties, such as flavor and tenderness. During the past

few years, the potential of hyperspectral imaging to predict

fat and fatty acids content in muscle foods has been

demonstrated. For instance, Kobayashi et al. [61] investi-

gated the relationship between NIR hyperspectral images

and fat and fatty acid content of beef by using a method-

ology that combined NIR hyperspectral imaging

(1000–2300 nm) with PLSR. Their study proved that

hyperspectral imaging was an effective and advanced

method for predicting fat and fatty acid content of beef,

with R2, SEP and RPD of 0.90, 0.87 and 0.89; 4.81, 1.69

and 3.41 %; and 2.84, 2.43 and 2.84 for total fat, saturated

fatty acid (SFA) and unsaturated fatty acid (UFA),

respectively. All the above results are encouraging, how-

ever, for the individual fatty acids, including myristic

(C14:0), palmitic (C16:0), stearic (C18:0), myristoleic

(C14:1), palmitoleic (C16:1), oleic (C18:1) and linoleic

(C18:2) [where Cxy indicates the number of carbon atoms

(x) and the number of double bonds (y)], and the R2 and

RPD ranged from 0.68 to 0.89 and 1.69 to 2.85, respec-

tively, which was considered not good enough for pre-

dicting some individual fatty acids. This is possibly due to

the fact that the same regression method is not being able

to predict various properties of individual fatty acids.

Furthermore, another study [47] also demonstrated the

feasibility of hyperspectral imaging for predicting fat

content in beef, in which the same method (PLSR) was

applied to establish the model, and satisfactory and com-

parable results were obtained.

Specifically, intramuscular fat (the amount of fat found

between fiber bundles, denoted as IMF), is usually sub-

jectively assessed based on marbling [72]. IMF is signifi-

cantly related to sensory quality, tenderness and

palatability and can play an important role in genetic

selection in the meat industry as well. In an early study,

Qiao et al. [73] first investigated the relationship between

marbling scores of pork and hyperspectral images, using

angular second moment (ASM) that defined as a texture

index and calculated by gray-level co-occurrence matrix

(GLCM) to assess the marbling scores. In their study [73],

feed-forward neural network (FNN) models were estab-

lished for classifying the quality groups of pork samples,

with 5 PCs, 10 PCs and 20 PCs, selected from entire

spectral wavelengths (430–1000 nm) by PCA, and refer-

enced marbling scores estimated by ASM (ranged from 1.0

to 10.0). The FNN models showed a satisfactory results,

yielding correct classification rate (CCR) of 69 % by 5 PCs

and 85 % by 10 PCs. For pork, not only quality classifi-

cation has been made by the marbling scores, but also

prediction for the IMF content (assessed by marbling

scores) has been carried out. Liu and Ngadi [11] developed

hyperspectral imaging to assess IMF content in pork using

the wide line detector (WLD), and the WLD-based models

have been proved more robust than GLCM-based models

[74]. In their study [11], correlation analysis was applied to

select the key wavelengths by comparing the Pearson’s

correlation coefficients, which showed the correlation

values between IMF content and spectral feature (MS), 1st

Table 2 Applications of

hyperspectral imaging for

detection of chemical attributes

of seafood products

Species Chemical attributes Spectral range (nm) Method RP
2/R2 Reference

Prawn Moisture content 380–1100 PLSR

MLR

LS-SVM

0.955

0.965

0.984

Wu et al. [68]

Salmon pH 400–1700 PLSR 0.877 He et al. [10]

Moisture content 400–1700 PLSR 0.893 He et al. [45]

Moisture content

Fat content

900–1700 PLSR 0.887

0.865

Fengle et al. [69]

Astaxanthin concentration 385–970 PLSR 0.86 Dissing et al. [51]

Salt content 760–1040 PLSR 0.74 Segtnan et al. [70]

Grass carp TVB-N value 400–1000 PLSR

LS-SVM

0.891

0.902

Cheng et al. [36]

TBA value 400–1000 PLSR

MLR

0.832

0.840

Cheng et al. [43]

K value 400–1000 PLSR

LS-SVM

0.935

0.915

Cheng et al. [44]

TVB-N total volatile basic nitrogen, TBA thiobarbituric acid, FNN feed-forward neural network, PLSR

partial least squares regression, MLR multiple linear regression, LS-SVM least square support vector

machine
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derivative (MS1) and 2nd derivative (MS2). Based on the

five selected wavelengths, both stepwise regression and

PLSR were employed to establish prediction models for

analyzing the feasibility of obtaining the proportion of IMF

fleck areas (PFA) for predicting IMF content of pork, and

MLR models with different entry variables were selected

for stepwise procedure. The results showed that PLSR

prediction model outperformed the three MLR models,

with adjusted R2 of 0.92 and 0.93 for calibration set and

validation set, respectively, which indicated the potential of

hyperspectral imaging to predict IMF content in pork with

PFA. In addition to pork, hyperspectral imaging was also

conducted to determine the marbling content in beef [62].

In addition to beef and pork, fat prediction associating

with hyperspectral imaging was carried out in the field of

seafood products and showed satisfactory performance.

ElMasry and Wold [71] developed hyperspectral imaging

in the region of 760–1040 nm to evaluate the fat distribu-

tion in six species of fish fillets. In their study, PLSR was

applied to establish prediction model with the best number

of latent variables (LVs) selected by predicted residual

error sum of squares (PRESS) and the selected model

performed well with correlation value of 0.91 and

RMSECV of 2.99 %. Another study [69], using hyper-

spectral imaging to assess the fat content of Atlantic sal-

mon fillets in NIR region (899–1649 nm), showed similar

performance to the study by ElMasry and Wold [71], with

R2 of 0.93 and RMSEP of 1.24.

pH

pH, as a technological attribute [64], can reflect some

chemical attributes of target objects in a way by affecting

the activity of microorganisms and has a great influence on

color, flavor, water-holding capacity, shelf-life of meat and

properties of protein.

Traditionally, pH value of meat is measured by a pH

meter or a surface electrode [10]. In the past few years,

hyperspectral imaging has been investigated for rapid

determination of pH values of meat. In an early study, Qiao

et al. [54] determined the pH of pork using a hyperspectral

imaging in the spectral region of 430–980 nm, and the six

selected wavelengths (494, 571, 637, 69, 703 and 978 nm)

show the highest correlation coefficient (r) in simple cor-

relation analysis; however, the FNN model built only

achieved a correlation coefficient of 0.55, which is con-

sidered not adequate for using in reliable prediction of pH.

Recently, a better performed pH prediction model of pork

was developed by Barbin et al. [46], who pre-treated all

spectra (900–1700 nm) and used PLSR as the regression

method to establish prediction model with feature-related

wavelengths selected by PLSR-weighted regression coef-

ficients, showing that the model was satisfactory, with RC
2 ,

RP
2, RMSEC and RMSEP being 0.88, 0.90, 0.10 and 0.09,

respectively. In addition, another spectral range

(400–1000 nm) was employed to predict pH of pork by Pu

et al. [56], who used wavelet textural analysis to predict the

pH of meat coupled with hyperspectral imaging. In their

study, a PLSR model was first established with all spectral

data with the purpose of selecting optimal wavelengths,

LS-SVM was then applied to establish prediction models

with the spectra acquired from feature images, and the best

result was obtained when LS-SVM model was established

with WT1 (wavelet texture at four level denoted by WT1,

WT2, WT3 and WT4), achieving RC, RP, RMSEC and

RMSEP of 0.964, 0.845, 0.054 and 0.138, respectively. The

above two studies [46, 56] employing different spectral

range and different analysis methods shows different

results, among which the study developed by Barbin et al.

[46] showed a better prediction performance. However, it

is worth mentioning that wavelet analysis used by Pu et al.

[56] is a powerful signal analysis tool for presenting the

visual texture of digital images at multiple resolutions [75],

which is considered as an important advantage over clas-

sical methods as wavelet analysis needs less computational

demanding. In addition, wavelets play a role of mathe-

matical functions and are applied to analyze hyperspectral

data by disintegrating data into various frequency and

components that characterize with a resolution suitable for

its scale [56]. Wavelets were first introduced into texture

analysis over decades ago [76] and were used to disinte-

grate texture images that are characterized by first deriva-

tive gray-level distribution. Gradually, wavelet analysis has

been employed to reduce noise, separate overlapping

bands, smooth and correct base line and remove redun-

dancy spectra [26, 77, 78]. Recently, wavelet analysis was

also applied in the application of hyperspectral imaging

[79], for instance, for the prediction of total volatile basic

nitrogen (TVB-N) of prawn [80]. In addition, in the study

of Pu et al. [56], wavelet texture analysis, which is usually

applied in classification, was employed to fuse both spec-

tral and image features in pH prediction of pork in an

attempt to examine its feasibility in such an application,

and the results obtained were considered acceptable,

showing the potential of wavelet texture analysis to predict

pH in pork with hyperspectral images.

In addition to pork, pH determination by hyperspectral

imaging was also carried out in meat products; however,

published papers in this domain are limited. Iqbal et al. [81]

determined pH in cooked and pre-sliced turkey hams by

NIR hyperspectral imaging (900–1700 nm). In the study,

hyperspectral images of samples were obtained by line-by-

line scanning, and based on PLSR analysis, eight optimal

wavelengths (927, 947, 1004, 1071, 1121, 1255, 1312 and

1641 nm) were selected, determined by beta coefficients.

With the identified optimum wavelengths, PLSR model
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was then built for pH prediction with R2 of 0.81, revealing

the robustness of the model for quality assessment in tur-

key hams.

Similarly, in spite of seafood products that are important

sources of human daily diets, little effort was made in pH

determination of seafood products with hyperspectral

imaging technique. Until recently [10], employed hyper-

spectral imaging for identifying pH distribution in fresh

farmed Atlantic salmons (Salmon salar) and the spectral

data in visible and near-infrared spectral ranges

(400–1700 nm) were collected for subsequent analysis.

With the help of PLSR analysis, ten feature-related

wavelengths were selected by the means of regression

coefficients, and based on these wavelengths, simplified

PLSR model was established, yielding RCV of 0.877 and

RMSECV of 0.046, which strongly showed the ability of

hyperspectral imaging also for pH determination in seafood

products.

Protein Content

In addition to moisture, fat and fatty acid, protein is an

important functional component of meat as well and has a

significant effect on nutritional value and quality of food by

affecting their color, flavor and texture, especially on the

change of physical and chemical properties of food during

processing and storage. On the other hand, the properties of

protein are prone to change during storage, due to the

activities of microorganism and enzyme, which may cause

the loss of nutrition and economic benefit [82]. Therefore,

protein content of meat needs to be determined accurately.

Like moisture, the protein content of muscle foods was

also assessed in the studies mentioned above, including

lamb [20], pork [18] and beef [47]. PLSR was employed to

predict protein content of muscle foods in the above three

studies, all showing similar satisfactory results, with RP
2

and SEP of 0.82, 0.88 and 0.86 and 0.47, 0.40 and 0.29 %

for lamb, pork and beef, respectively. Among these

researches, protein prediction model of pork showed the

best RP
2, while that of beef showed the lowest SEP, which

might be due to the different properties and composition of

samples. Besides, the prediction of protein content was not

only implemented in poultry meats, but also in other meat

products, such as ham. Talens et al. [83] developed

hyperspectral imaging technique to predict protein content

of Spanish cooked hams in NIR spectral region of

900–1700 nm, and PLSR was applied to establish statisti-

cal model with ten feature-related wavelengths (930, 971,

1051, 1137, 1165, 1212, 1295, 1400, 1645 and 1682 nm)

selected by weighted b-coefficients of PLSR models. Most

importantly, the results of the optimal model (RCv
2 =

0.855 and RMSECV = 1.09) were good enough to

demonstrate the reliability, robustness and accuracy of the

selected model. Simultaneously, based on the information

of moisture and protein contents, partial least squares-dis-

criminant analysis (PLS-DA) model was established with

the reflectance spectral data to perform classification task.

Satisfactorily, the PLS-DA model successfully classified

the examined samples into various quality categories,

which revealed that protein makes a key contribution to

hams classification. The above results indicated the ability

of hyperspectral imaging technique for the prediction of

protein contents in poultry meats and Spanish cooked

hams.

As for seafood products, despite being one of the most

important quality protein sources, providing 40 % of pro-

tein intake approximately in our diet [84], no studies have

been conducted to investigate the ability of hyperspectral

imaging technique for the identification of protein content

of seafood products. Therefore, relevant studies need to be

developed, including prediction of some individual protein

or amino acids. It is worth mentioning that the potential of

hyperspectral imaging for predicting individual amino

acids content, hydroxyproline, in chicken meat has been

successfully investigated by Xiong et al. [48], with RP of

0.854 and RMSEP of 0.049.

Pigment

Apparently, satisfactory color meats, reflecting good

quality and freshness, are attractive to customers more than

pale color meats, and pigments make a significant contri-

bution to the color of meats; for instance, astaxanthin and

castaxanthin, two natural carotenoids existing in salmons,

oysters, trouts or the shell of prawns [51], work as

antioxidant to keep a bright color of seafood products.

Therefore, a number of researchers have made effort to

measure the pigments of meats with hyperspectral imaging.

With regard to poultry meats, Xiong et al. [63] used

hyperspectral imaging technique to determine total pig-

ments in poultry meats, including goose, beef and duck, in

the range of 400–1000 nm, and MSC, SPA and PLSR were

applied to pre-treat spectral data, select seven optimal

wavelengths and establish prediction model, respectively.

Fortunately, SPA-PLSR model was reliable, robust and

stable, with RP
2 of 0.953, RMSEP of 9.896 and RPD of

4.628. Apparently, the high RP
2 and RPD value revealed the

excellent performance of the model. However, the RMSEP

value, which is expected to be low, was actually high at the

same time, which might relate with different levels of

pigments in three different types of meats.

At the same time, relevant studies for pigments predic-

tion, especially for astaxanthin, were carried out in aqua-

culture. The first attempt, integrating hyperspectral

imaging technique with astaxanthin concentration predic-

tion in rainbow trout fillets, was made by Dissing et al.
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[51]. This study successfully proved the ability of hyper-

spectral imaging for astaxanthin prediction by using PLSR

to calibrate model, with RP
2 of 0.86 and RMSEP of 0.27 for

multispectral imaging and RGB imaging, respectively.

However, very few researches about pigments prediction of

seafood products by hyperspectral imaging have been

reported, and thus, more studies should be conducted in

this area in future.

Salt Content

It is known that salt content is of great importance to

perceived saltiness, quality and shelf-life of processed

meats, for the reason that it works as flavor modifier and

microbial inhibitor. However, high level of salt has

received negative reports, because of its apparent harm for

cardiovascular system of human [50]. Although hyper-

spectral imaging could be used to detect salt content, very

few studies were conducted in the area probably due to that

salt content can only be predicted indirectly as absorption

bands of NaCl cannot be collected in the region of NIR

wavelength [85]. A research developed by Liu et al. [50]

proved the feasibility of hyperspectral imaging for pre-

dicting salt content in porcine meat, in which three linear

algorithms, including PLSR, PCR and MLR, were

employed to develop model with six key wavelengths

selected by PLSR-weighted regression coefficients,

respectively. After comparing the above three models,

MLR model was selected as the best calibration model to

visualize the salt content of porcine meat, with RP
2 of 0.930

and RMSEP of 0.682. Another study about prediction of

salt content in dry-cured ham slices was developed by Gou

et al. [49], in which acceptable results were also obtained.

In the case of seafood products, an analysis about salt

distribution in salted and smoked salmon fillets using NIR

interactance imaging was done by Segtnan et al. [70]. In

this research, PLSR calibration model was established with

referenced NaCl values and average NIR spectra pre-trea-

ted by SNV, yielding an RMECV of 0.56 and an R of 0.86,

which was considered as acceptable.

Freshness Attributes

Freshness attributes, immediately reflecting the change or

the reaction of chemical composition of muscle foods,

belong to chemical attributes and are significant for both

consumers and industrial merchants, as abundant nutri-

tional composition in muscle foods is sensitive to the

biochemical activities internally, which affects freshness

and quality of meat. In fact, there are various indexes that

can reflect freshness of meat, including TBA, K value,

trimethylamine (TMA), biogenic amines and TVB-N.

However, up to now, only a few studies have been

conducted that using hyperspectral imaging for TVB-N,

TBA and K value determination.

TVB-N, defined as a kind of alkali compound containing

nitrogen, appearing during the decomposition of protein, is

considered as an effective index to assess the freshness of

meat. In recent years, some researchers have devoted effort

to determine TVB-N. Chen et al. [58] demonstrated that

hyperspectral imaging was a promising tool for TVB-N

determination with a suitable hypercube processing algo-

rithm in pork in jelly. In their study [58], a back-propa-

gation artificial neural network (BP-ANN) coupled with

PCA was used to construct prediction model of TVB-N

with fusion data, and the final model achieved a satisfac-

tory result with RP of 0.8334. However, the algorithm

employed in the above study was simple and lacked

comparison to show the superiority of BP-ANN. Hence,

both Cheng et al. [36] and Dai et al. [86] employed

hyperspectral imaging technique (400–1000 nm) with

more robust algorithms, including LS-SVM, PLSR, Ada-

Boost and BP-ANN in TVB-N prediction of grass craps

(Ctenopharyngodon idella) or freshness classification of

prawns based on TVB-N value, and both studies showed

that LS-SVM model had better performance than other

models, with RP
2 of 0.902 for TVB-N prediction in grass

carp and CCR 98.33 and 95 % for frozen and unfrozen

groups in classification of prawns, respectively.

TBA can also reflect the freshness of meat by deter-

mining the level of lipid oxidation during storage, and

higher TBA value indicates lower freshness and worse

quality. Recently, investigations about TBA prediction

using hyperspectral imaging have been extended to poultry

meat and seafood products. For instance, the prediction of

thiobarbituric acid reactive substances (TBARS) was

developed with hyperspectral imaging by Xiong et al. [67],

in which SPA-PLSR was selected as the optimal model to

visualize TBARS content in the chicken meat, showing an

encouraging result with RP of 0.801 and RMSEP of 0.157.

At the same time, Cheng et al. [43] developed a laboratory

push-broom hyperspectral imaging system to determine

TBA in grass carp (Ctenopharyngodon idella), constructed

PLSR and MLR models with ten optimal wavelengths

(444, 475, 553, 577, 590, 623, 710, 795, 847 and 937 nm)

selected by weighted regression coefficients and showed

that the best result was achieved from the MLR model,

with RP
2 of 0.8395 and RMSEP of 0.1147.

In addition to TVB-N and TBA, K value is another

attribute widely used to determine the freshness of seafood

products by indicating nucleotide degradation, which has a

great impact on the flavor of seafood products. K value can

reflect the quantitative relation of adenosine 50-triphos-

phate (ATP) and its corresponding series of breakdown

products, including adenosine 50-diphosphate (ADP),

adenosine 50-monophosphate (AMP), inosine 50-
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monophosphate (IMP), inosine (HxR) and hypoxhantine

(Hx) [87], and is usually calculated as the ratio of HxR and

Hx to the sum of ATP and all the degradation products and

expressed as follows:

K ¼ HxRþ Hx

ATPþ ADP þ AMPþ IMPþ HxRþ Hx
� 100 %

ð3Þ

Up to now, only one study [44] was available, in which

the feasibility of hyperspectral imaging for identification of

K value of fish fillets was investigated, and both linear

(PLSR) and nonlinear algorithms (LS-SVM) were applied

to establish models with both full wavelengths and seven

optimal wavelengths (432, 455, 588, 635, 750, 840 and

970 nm) in the region of 400–1000 nm. After comparison,

the PLSR model established with the seven optimal

wavelengths was selected as the best model and was used

to generate chemical map, with RP
2 of 0.935 and RMSEP of

0.0517. For the first time, this study indicated the possi-

bility of hyperspectral imaging for prediction of K value in

muscle foods.

Advantages and Future Trends

Based upon the above studies, it has been confirmed that

hyperspectral imaging is an available and alternative

technique for rapidly and nondestructively identifying

chemical composition of muscle foods. Different from

traditional methods, the measurements using hyperspectral

imaging technique is chemical-free, nondestructive, time-

saving and environmentally friendly. In addition, hyper-

spectral imaging technique overcomes the limitation of

individual technique of spectroscopy and computer vision,

which means that it can simultaneously obtain both spectral

and spatial information of the samples. Most importantly, it

provides means to visualize the concentration of chemical

composition through chemical mapping, using color scale

to indicate concentration gradient in the chemical map. For

practical application, hyperspectral imaging technique can

be implemented as an innovative technological tool to

accomplish quantitative identification and qualitative

analysis; for industrial application, it can realize rapid

detection and real-time information collection.

On the other hand, like other novel technologies,

hyperspectral imaging technique is no doubt possessing

some disadvantages that need to be overcome in further

studies as discussed below.

• At present, optimal wavelengths containing most

valuable information of the quality attributes need to

be selected manually, which takes time and reduces

processing efficiency. Therefore, future studies can

develop algorithms for automatic selection of optimal

wavelengths for use in establishing model directly.

• Most studies employ regular linear regression algo-

rithms, including PLSR, MLR, and PCA, and more

nonlinear algorithms and new regression algorithms

need to be developed for enhancing model performance

and robustness.

• Current configurations of hyperspectral imaging cannot

be employed directly in the industry as it cannot meet

the current requirements in on-line industrial settings

due to the following reasons. Firstly, hyperspectral

images contain a significant number of redundant data,

which can slow down the image processing rate;

secondly, although there are a number of models

available for quality attribute prediction, these models

are normally established based on single quality

attribute and thus cannot be used for the prediction of

multiple quality attributes, therefore a number of

models will be needed, and alternatively efforts should

be made to develop models that can predict multiple

quality attributes; and finally, the cost for hyperspectral

imaging instruments are still high, and low cost

instruments should be developed.

• For industrial applications, efforts should be made to

make multispectral imaging technology widely avail-

able for the food industry.

Conclusions

This review first introduced the principles of hyperspectral

imaging, and its hardware, software requirements and rel-

evant chemometrics. The applications of hyperspectral

imaging in identifying chemical composition of meat are

then thoroughly discussed, including moisture content, fat

and fatty acid contents, pH, protein content, pigments, salt

content and some freshness attributes. It is shown that

hyperspectral imaging, as a rapid and noninvasive tech-

nique, is able to obtain both spectral information and

images simultaneously. However, some obstacles still need

to be overcome, such as the redundant information from

full wavelengths, and the limited number of regression

algorithms available. With the development of computing

and chemometric techniques, it is expected that hyper-

spectral or multispectral imaging technique should find

wider applications in the food industry in future.
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31. Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, Garcı́a-

Navarrete O-L, Blasco J (2012) Recent advances and applications

of hyperspectral imaging for fruit and vegetable quality assess-

ment. Food Bioprocess Technol 5(4):1121–1142

32. Cheng J-H, Sun D-W (2015) Rapid quantification analysis and

visualization of Escherichia coli loads in grass carp fish flesh by

hyperspectral imaging method. Food Bioprocess Technol 8(5):

951–959

33. Zhu F, Zhang D, He Y, Liu F, Sun D-W (2013) Application of

visible and near infrared hyperspectral imaging to differentiate

between fresh and frozen–thawed fish fillets. Food Bioprocess

Technol 6(10):2931–2937

34. Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM

(2007) Hyperspectral imaging—an emerging process analytical

tool for food quality and safety control. Trends Food Sci Technol

18(12):590–598

35. Qin JW, Chao KL, Kim MS, Lu RF, Burks TF (2013) Hyper-

spectral and multispectral imaging for evaluating food safety and
quality. J Food Eng 118(2):157–171

36. Cheng J-H, Sun D-W, Zeng X-A, Pu H-B (2014) Non-destructive

and rapid determination of TVB-N content for freshness evalu-

ation of grass carp (Ctenopharyngodon idella) by hyperspectral

imaging. Innov Food Sci Emerg Technol 21:179–187

37. Wu D, Sun D-W (2013) Advanced applications of hyperspectral

imaging technology for food quality and safety analysis and

assessment: a review-part I—fundamentals. Innov Food Sci

Emerg Technol 19:1–14

348 Food Eng Rev (2016) 8:336–350

123



38. Zeaiter M, Roger JM, Bellon-Maurel V, Rutledge DN (2004)

Robustness ofmodels developed bymultivariate calibration. Part I: the

assessment of robustness. TrAC Trends Anal Chem 23(2):157–170

39. Prats-Montalbán JM, de Juan A, Ferrer A (2011) Multivariate

image analysis: a review with applications. Chemometr Intell Lab

Syst 107(1):1–23
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