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Abstract Physical properties and stability are critical for

delivering safe and healthy food to the consumers and thus

is a theme that attracts food scientists for a long time.

Recently, literature suggests that stability can be fully

grasped only if food molecular dynamics and structure are

taken into consideration, i.e. an appropriate understanding

of the behaviour of food products requires knowledge of its

composition, structure and molecular dynamics, through

the three-dimensional arrangement of the various structural

elements and their interactions. Food systems behaviour is

strongly dependent on the water molecular dynamics.

Understanding changes in location and mobility of water

represents a significant step in food stability knowledge,

since water ‘‘availability’’ profoundly influences the

chemical, physical and microbiological quality of foods.

Nuclear magnetic resonance has been presented as a

powerful technique to investigate water dynamics and

physical structures of foods through analysis of nuclear

magnetisation relaxation times, because it provides infor-

mation on molecular dynamics of different components in

dense complex systems. The application of this technique

may be very useful in predicting food systems physico-

chemical changes, namely texture, viscosity or water

migration. This paper aims at reviewing some of the main

aspects related to food physical properties and stability, and

the role of water in these properties. More specifically, this

paper intends to contribute to a deeper understanding of the

relationship of molecular constituents–structure–function

of food systems, contributing to the development of foods

with improved functionality.
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Overall Molecular Dynamics Concept

Molecular dynamics has been pointed as the actual most

promising parameter for characterising multicomponent

systems. Analysis of systems at a molecular scale has been

demonstrated to be a useful methodology for investigating

complex geometries and molecules, as well as studying

structural and dynamic properties [71].

Molecular dynamics involves, at a microscopic level,

the displacement of reactants, which promote chemical

reactions. Macroscopically, molecular dynamics can be

related to the viscosity of the material, which in turn

controls the flow properties, structure collapse, mechanical

properties and thus the product texture [57].

It is generally accepted that the knowledge of

molecular dynamics is determinant for assessing physi-

cochemical and microbiological stability of food systems

[38, 57] and is quite dependent on composition and

matrices microstructure.

Food stability is a critical parameter for different

stakeholders. Concerning consumers, stability assures

safety, nutritional and sensorial quality of food products

and answers to the increasing demand for a diversity of

ready-to-eat food with fresh appearance and health-pro-

moting properties [46]. For industry, stability allows

maximising shelf-life: minimising waste along the distri-

bution chain, increasing profit and reducing the environ-

mental impact [32, 53, 54, 67].
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Food physical stability is assessed by shelf-life changes

of mechanical, thermal or surface properties, which are

often related to food product’s quality, processing behav-

iour or development of novel food products and processes

[8, 36]. Physical state is directly affected and responsible

for the molecular dynamics of a matrix [40, 51].

It is possible to observe in Fig. 1 a simplified scheme of

how molecular dynamics covers several concepts related to

food properties and stability, being a key and linking factor

between all aspects involved in food systems assessment,

including food structure/microstructure. The better under-

standing of these factors and relationship between them is

essential for controlling degradation reactions rates and

maintaining food integrity [53].

Food systems are complex mixtures of water, biopoly-

mers (proteins and polysaccharides), low molecular weight

ingredients (minerals, sugars, surfactants, etc.) and colloid

particles (oil droplets or air bubbles). The molecular

dynamics between these different components reflects on

the stability of such systems, determining the physical

state, microstructure and composition, which impacts on

food characteristics [55]. Water, as one of the most

important food constituents and its interactions with other

food ingredients, controls both thermodynamic and

dynamic properties of all aqueous elements [57]. These

interactions affect mainly appearance and sensory attri-

butes (texture/firmness) [47, 64, 72], nutrient quality [72]

and the microbiological load [30]. The extensions of the

reactions between food constituents, usually associated

with metabolic processes, are responsible for the degra-

dation of quality, safety and nutritional attributes.

Although molecular dynamics has been considered an

useful methodology for investigating complex systems

(geometries and molecules) [71] and the degradation

reactions extension, a large number of studies have been

focused on chemically pure or homogeneous materials,

such as proteins or polysaccharides, instead of food

systems. The data for ‘‘pure and simple’’ systems cannot be

extrapolated when considering food systems, since it is

necessary to take into account the heterogeneity of the

systems, as well as their interactions with water [57].

Moreover, it is important to consider the system’s micro-

structure to understand the spatial and molecular distribu-

tion of water within its food matrix environment and

determine whether water is already accessible for meta-

bolic reactions.

Aspects of Water Molecular Dynamics

Water is the most important solvent, dispersion medium

and plasticiser in biological and food systems [45]. It

affects reactions, can be a substrate and a product of

reactions and is involved in nutrient transport and disso-

lution of salts and other solutes. It establishes pH, acts as a

polymer plasticiser and modulates viscosity, osmotic

pressure, etc. [69]. Specifically, the state of water in food

influences physical properties, such as rheological, elec-

trical, optical, thermal or mass transfer [36].

For long, water has been recognised as one of the most

important food components in impacting food physico-

chemical and microbiological attributes, shelf-life and

deteriorative changes [24, 31, 32, 36, 44, 50, 54, 59, 61].

Therefore, determination of water content is one of the

most frequent analyses in the food industry laboratories

[44]. Water content of food systems normally ranges from

80 to 95 %, for high-moisture foods, to a percentage close

to zero in semi-dry and dry foods [5, 50]. However, various

foods with the same water content differ in stability [30],

which demonstrates that the sole value of ‘‘water content’’

in a food does not inform about the nature of water [18, 30,

44]. In fact, in a food matrix, water molecules can be

accessible or not to participate in degradation reactions

[44].

The knowledge of each of these fractions is important,

specifically because available water, its location and the

interactions with the other food components (like proteins

and polysaccharides) are responsible for the physico-

chemical and microbiological properties and stability of

foods [45, 59].

As such, besides water content in a food material, it is

important to understand the water state and dynamics for a

proper comprehension of properties and stability of food

products.

Water mobility/dynamics can thus be described as a

manifestation how ‘‘freely’’ water molecules can partici-

pate in reactions or how easily water molecules diffuse to

the reaction sites to participate in reactions [58]. Presence

of molecules of different molecular weight and solubility in

water can have a profound influence on water mobility/
Fig. 1 Schematic representation of molecular dynamics as a key

factor for food physical properties and stability assessment
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dynamics, as this is dependent on the physicochemical

properties of other nonaqueous food constituents and their

interactions with water and among themselves [58, 70].

Different parameters have been used in the literature to

describe water dynamics in the food systems and its

repercussion in stability: water activity, glass transition

temperature or water relaxation time. These concepts are

detailed in the next sub-sections.

Water Activity Concept and Shortcomings

Water activity (aw) concept was introduced in the mid-

twentieth century as a critical parameter for estimating

food stability [54] and has been one of the most widely

used concepts to evaluate food’s water accessibility [30].

For a long time, aw was regarded as the most important

parameter controlling the behaviour of food during pro-

cessing and storage, with particular emphasis on its effects

on reaction degradation rates [5, 31, 41, 59]. This param-

eter has been used thoroughly as the indicator for microbial

growth and microbial stability of a food system [68]. Also,

with respect to most of degradation reactions of a chemical,

enzymatic, or physical nature, such as lipid oxidation, non-

enzymatic and enzymatic activities, and the texture/

mouthfeel of foods following production, water activity is

currently used as an important parameter [41, 59, 61].

Despite the irrefutable significance of aw for food science

and engineering, the limitations of this analysis are, actually,

evident. Water activity is a thermodynamic measure of the

chemical potential ofwater in the system, assuming that food

is in equilibrium with the surrounding atmosphere [36].

However, it is well known that most foods are not in the state

of equilibrium [24, 53]. Water activity measurements may

not provide, for example, the relationship of the evolution of

the structural changes of the food material with the changes

of the water–macromolecules and water–water interactions

that occur during food shelf-life [71], and studies have

stressed that under many common circumstances, the ther-

modynamics activity of water is far less relevant to pro-

cessing and storage than structure-related properties, which

can restrict themobility and diffusion of the reactants [5, 61].

Moreover, the water activity analysis does not consider

microstructure or the possibility that there may be local

regions differing in water content and presumably of water

availability [24], fact that could be important for microbio-

logical stability, since some authors [25, 27, 69] demon-

strated that microorganisms are sensitive to the local

properties of the system, i.e. local water activity, transla-

tional motions and microstructure, and not to the bulk water

activity. Some authors also showed that microbial response

in a solution is more dependent on the solute used to control

aw values than on aw itself [12, 68], showing the importance

of solute interaction.

Therefore, water activity, defined as a relative vapour

pressure, reflects only the surface properties of a system

and not necessarily the molecular dynamics that takes place

in its interior [69].

Furthermore, it has been reported that solutions with the

same water activity can present dramatic differences in the

system’s ‘‘kinetics’’ (here assessed by viscosity) (see

Fig. 2) [5, 41].

Glass Transition Temperature

The glass transition temperature (Tg) was often used, since

the early 1980s, as a parameter that would be able to assess

food stability and overcome the limitations of water activ-

ity. This concept has been extensively applied, giving way

to a new important area of research and application: food

material science [6, 53, 55, 62]. Essentially, this approach

‘‘simplifies’’ the foods as partially crystalline partially

amorphous materials. The amorphous part is in a metastable

state, which is very sensitive to changes in moisture content

and temperature. Such amorphous matrix may exist either

as a very viscous glass or as a more liquid-like ‘‘rubbery’’

amorphous structure. The characteristic temperature, Tg, at

which the glass–rubber transition occurs, is the physico-

chemical parameter that is a basis for product properties,

stability and safety of foods [13, 56, 61] (Fig. 3).

The transition observed at Tg resembles a second-order

thermodynamical transition, at which the material under-

goes a change of state but not a phase change [53], and the

temperature at which it occurs is dependent on both com-

position and solid content of a material [19]. Tg greatly

influences food stability, as the water in the concentrated

phase becomes less mobile and therefore less accessible to

support or participate in reactions [53, 61]. Below Tg, the

food is expected to be physically stable, and above this

temperature, the difference (T–Tg) between Tg and the

Fig. 2 Viscosity versus water activity of model solutions produced

with different solutes (adapted from [5])
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storage temperature T is assumed to control the rate of

physical, chemical and biological changes. As discussed

already, these physical and chemical reactions, which are

dependent on the diffusion of reactant molecules, would be

quite slow in the supercooled liquid or rubber, in the

vicinity of the Tg, and kinetically controlled by mobility or

viscosity [10].

Tg is a very promising and innovative concept for food

science and is considered as a future challenge when

associated with other food mechanisms [53]. Despite this,

experimental evidences demonstrate some fragility [12, 26,

38, 70]. Glass transition temperature considers mobility at

a macromolecular level and, therefore, is a parameter

descriptive of the physical state and overall mobility of

macromolecules, which differs from the molecular mobil-

ity of smaller molecules such as water [38, 69].

Moreover, some experimental evidence does not support

a clear correlation between Tg and microbial activity [12,

70]. Similarly, many investigations demonstrate that glass

transition alone cannot explain enzymatic and nonenzymatic

activities below Tg. In some cases, reactions occur slower in

the rubbery state than in the glassy state (e.g. ascorbic acid

oxidation, because the structural collapse in the rubbery state

impeded O2 diffusion through the system, which resulted in

slower ascorbic acid degradation rates) [38].

Moreover, Tg is not as easy to measure as, for example,

water activity and may not be a representative parameter in

multicomponent, multidomain complex foods [41].

Water Proton Relaxation Time and NMR as a Powerful

Technique for Assessing Proton Relaxation Time

Biological systems, and particularly foods, consist largely

of water and macromolecules, both rich in protons. Proton

relaxation time is a characteristic of proton dynamics/

mobility [10] and is a function of physical and chemical

characteristics of individual chemical compounds as well

as interactions among them [42, 58]. Water protons are one

of the most important contributors to the proton relaxation

in biological systems, and the interaction between water

and macromolecules is the most important factor affecting

proton relaxation process [58].

Nuclear magnetic resonance (NMR) spectroscopy is one

of the most common investigative techniques used to

evaluate systems molecular dynamics, by identifying

molecular structures and evaluating the progress of chem-

ical reactions [42]. This technique provides information on

different food components that are considered as dense

complex systems [16, 23, 58], both in solution and in solid

state [15, 29, 74]. It also allows to study independently the

dynamics of water and food solids [30].

Water dynamics/mobility can be analysed by NMR,

through proton (1H), deuterium (2H) and oxygen-17 (17O)

[70]. 1H NMR, as the most used NMR technique, has been

used to investigate water dynamics and physical structures

thought analysis of proton nuclear magnetisation relaxation

times [20, 37]. Many researchers have found that the

mobility of water, as measured by NMR, is related to the

dynamics and ‘‘availability’’ of water in complex systems

[23, 58], i.e. the higher the mobility of water, the higher the

availability of water, very mobile water molecules take a

long time to reach their equilibrium state, or relax very

slowly, thus having a small relaxation rate or long relax-

ation time [58].

In these measurements, the samples are submitted to a

static magnetic field and the protons are excited by means

of a radiofrequency pulse. The analysis of the signal

emitted while the samples return to equilibrium (FID)

Fig. 3 Representation of Tg
effects on structural

transformation and diffusion-

controlled changes in biological

food systems (adapted from

[56])
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allows determining the spin–lattice (T1) and spin–spin (T2)

relaxation. This later variable is related to the mobility of

the protons in the sample matrix [20].

For example, in plant tissues different compartments can

be discriminated, where water molecules or protons are in

exchange. These exchange rates between compartments are

controlled by the proton permeability of the membranes

separating the compartments and/or by the diffusion pro-

cess by which water molecules reach the membranes [63].

NMR can be applied in complex food systems [1, 7, 14]

to do quantitative and conformational analysis (nutritional

or functional aspects), quality control of packaging mate-

rials, process control [42] and also to evaluate food quality

during storage period [11]. In the last case, the degradation

changes that occur along the storage promote changes both

in water and in solutes bounding and structure, which

results in differences in NMR properties of the food [40,

58].

Literature reports diverse studies applying this technique

to different foods and with different purposes. Some

examples are discussed below (Practical application of

NMR to assess molecular dynamics and structure).

Food Structure/Microstructure

Food ‘‘matrices’’ (systems) physical behaviour and stability

depend strongly on its molecular mobility, but also on its

microstructure. Food microstructure recognises that foods

are highly structured and heterogeneous materials, com-

posed of architectural elements. The types of such struc-

tural units and their interactions are decisive for the food

physical behaviour and functional properties, such as tex-

ture or sensorial attributes, and also physical and chemical

stability during storage. They influence the water/solute

interactions and hence the water availability to participate

in microbial growth and degradation reactions [2]. In fact,

these intermolecular interactions in which the water mol-

ecules play a very important role can determine the

structure of the food material at the beginning of a given

process and during processing [71].

Also, the effective water diffusivity in foods, as well as

free water content, highly depends on pore structure or

particle size distribution [49, 50, 73].

In addition to water, other structural elements can be

identified in foods, such as oil droplets, gas cells, fat

crystals, strands, granules, micelles and interfaces [2].

These structural elements, composed of proteins, carbo-

hydrates and lipids (in various combinations and propor-

tions), can exist in different states (glassy/rubbery/

crystalline/liquid and solubilised) even at uniform tem-

peratures and water activity. This structural heterogeneity

will necessarily affect the molecular dynamics in the

system and consequently the macroscopic food quality

attributes [40] and their behaviour along storage.

Designing the food structure during processing can also

affect the behaviour during shelf-life. For example, phys-

ically separating the reactants in microstructural locations

can control the biochemical activity by avoiding the reac-

tants to be in contact, thus minimising the development of

off-flavours and browning reactions [2].

Food microstructure can also be altered by controlling

various intermolecular and inter-particle interactions

among the different ingredients during processing and

storage [35]. Engineering structures requires knowledge on

the molecular organisation of the ingredients (short- and

long-range molecule assemblies) and physical properties,

such as charge density, hydrophobicity, molecular size and

conformation under different environmental conditions

[60]. The expression ‘‘structure–function’’, nowadays

widely used, describes basically the way in which physi-

cochemical and functional properties of foods are related to

their structure [3].

Practical Application of NMR to Assess Molecular

Dynamics and Structure

As previously described, molecular mobility/dynamics has

been identified as one of the actual most promising

parameters for assessing physicochemical properties in

multicomponent systems. This fact justifies the significant

number and type of experimental works performed in food

systems. This section briefly discusses examples of 1H

NMR practical applications on food systems, considering

matrices of different complexities.

Edible Films as Food Systems Models

Edible films have been studied for a long time for their

potential to improve shelf-life and safety of food products

[4, 17]. The literature is extensive in characterisation of

such materials and particularly in reporting the thermo-

mechanical behaviour and barrier properties of glassy

biopolymers and polymers [9, 33]. These systems are

partially crystalline/partially amorphous and easily

reproducible materials. From a fundamental perspective,

foods are mainly edible and digestible biopolymers that

are partially crystalline/partially amorphous [71], and

thus, edible films can be very interesting food model

systems for mobility and microstructure studies. Also, in

these films, water is one of the most important compo-

nents, i.e. is used significantly as a plasticiser, creating

hydrogen bonds with the polymeric chains present in the

system and influencing its physical properties, e.g.

relaxation [21].
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However, the lack of systematic information about the

relationship between the effect of films composition on the

microstructure and molecular dynamics of polymeric sys-

tems behaviour is evident. A few published papers take

advantage of these techniques.
1H NMR has been used to characterise starch–chitosan

films with different levels of glycerol [39]. This technique

proved to be useful in clarifying the interactions between

films components. It was showed that the addition of

glycerol promoted the interactions among chitosan, starch

and glycerol through hydrogen bonding. The stronger

glycerol/starch/chitosan interactions in samples containing

higher glycerol concentration were confirmed by an

observed decrease of glycerol mobility.

Another research workwas developedwith the purpose of

investigating the effect of polysaccharide/plasticiser (chito-

san/glycerol and water) concentration on the molecular

dynamics and microstructure of the film [20]. In this case,

results of molecular mobility contributed to the under-

standing of the films molecular rearrangement. NMR mea-

surements showed two different populationswithmobility in

the matrix: water and glycerol. It was possible to conclude

that, while glycerol is mainly bounded to the chitosan chain

network, the water present in the system is predominantly

free from the polymeric chain. However, it was observed that

for lower glycerol concentrations, free chitosan binding sites

can also be occupied by water molecules (Fig. 4a). Water

content and water activity measurements also allowed con-

cluding that not only the water content affects the water

mobility, but also structural differences in the film may

influence the water relaxation time.Water mobility relates to

the water in the bulk and thus complements information on

water activity of a system (Fig. 4b, c).
1H NMR experiments have also allowed understanding

the differences on ascorbic acid stability observed in

different films [34]. This study proved that the water

dynamics influences the ascorbic acid stability and recog-

nises which of the compounds added to film-forming

solutions (e.g. calcium) interacted with this dynamics.

Real Food Matrices: Fruits

Fruits are high water content products, with a complex

cellular structure where water can be present in both intra-

and extra-cellular spaces. The general fruit constitution

may be described as a watery solution of low molecular

weight species, mainly sugars, salts and organic acids, and

high molecular weight hydrocolloids, contained in a water-

insoluble cellular matrix of macromolecules, mostly car-

bohydrates including insoluble pectic substances, hemi-

celluloses, proteins and, sometimes, lignins. Intracellular

air spaces are present in parenchymous tissue, and these

may be considered as true structural elements, having a

very characteristic influence on the perceived texture. This

complexity makes these systems of special interest for

mobility studies.

Many studies have been performed on the application of
1H NMR techniques for evolution of quality in fruits. This

technique allows using the changes in the distribution of

water proton transverse relaxation times to monitor the

subcellular compartmentation of water.
1H NMR has been a tool used for purposes as diverse as

studying the effect of preservation processes [28, 48, 66],

monitoring food quality changes during storage [75], ana-

lysing food quality characteristics [22, 43, 65] or just

monitoring ripening [52].

The work of Hills and co-workers was an important

milestone on the use of this technique. The group first

identified the signals of water in the cellular wall, cytoplasm

and vacuole [23, 24, 26] and applied the methodology for

Fig. 4 Films water proton transverse relaxation time (T2) as function of films. a Polysaccharide/plasticiser ratio. b Water content. c Water

activity (adapted from [20])
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studying the effect of preservation processes in foods. An

example is the study on changes in subcellular water

compartmentation in parenchyma apple tissues during

freezing/thawing [28]. Figure 5 shows the differences in

water proton transverse relaxation time profile for fresh and

freezing/thawing apple tissues. For the fresh apple, tissue

behaviour presents a proton distribution following three

peaks that can be assigned to water located in the vacuolar,

cytoplasm and cell wall compartments. After thawing, the

absence of the three peaks indicates membrane rupture and

loss of turgor in the tissue, the cellular structure was broken

and the vacuole, cytoplasm and cellular wall lost their

integrity and become just one compartment.

As discussed, another example of the use of NMR is to

understand the response of fruit quality parameters to dif-

ferent storage conditions, such as on pomegranate fruit

[75]. In this case, NMR measurements allow analysing the

microscopic structure changes during storage and confirm

the water environment in each component. The authors

found that water was redistributed between subcellular

compartments of the pomegranate aril tissues during con-

trolled atmosphere storage.

Another study has addressed the water proton relaxation

times in different pear varieties with two different levels of

internal damage (sound tissue and disordered tissue) and

tried to find a relationship with the internal browning

process and complement the observations with image

techniques [22]. It was possible to conclude that, at least

for one pear variety, internal browning (postharvest disor-

der) may be identified and correlated with the NMR

parameters. Moreover, it was also possible to infer that the

cell decompartmentation facilitates the accessibility of

enzymes and subtracts (responsible for browning reac-

tions). The analysis of firmness and soluble solids content

was performed, and no correlation between internal

browning was found, evidencing once again the relevance

of NMR to support the internal inspection of the fruit.

One last example is a study aiming to understand the

banana ripening phenomenon [52], showing the relation-

ship between changes in water dynamics with variations in

chemical composition. Results from NMR allow explain-

ing the ripening process that happen for a period of 7 days,

and where membrane-bound starch granules are almost

converted to soluble sugars. Shortly, three components

were determined, attributed to vacuole, cytoplasm and cell

wall. T2 values attributed to cytoplasmatic and vacuolar

water show a gradual increase, correlated with the disap-

pearance of starch that acts as a relaxation sink (Fig. 6).

The disappearance of these granules during ripening

increases the cytoplasm and vacuolar water fractions that

can be influenced by the chemical diffusive exchange

effect, increasing cytoplasm and vacuole T2.

Conclusions

This paper reviews some critical issues and highlights works

in food systems molecular dynamics assessment. Molecular

dynamics together with structure/microstructure is an

important approach to study food systems properties and

stability. Water is one of the most important food compo-

nents and is a key factor in biological systems performance.

Water activity, glass transition temperature and water proton

relaxation time are three concepts that have been used to

determine the water performance. Water proton relaxation

time, assessed by NMR techniques, is one of the broadest

methods to understand dynamics even in complex biological

systems like foods. Dynamic properties play an important

Fig. 5 Distribution of transverse water proton relaxation times in

fresh and freeze-thawed apple tissues (adapted from [28]
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role in complementing the information provided bymethods

based on systems equilibrium and global kinetics. However,

the lack of systematic information, even in straightforward

model food matrices is evident.

Further work on relationships between water and solids

mobility and glass transition or water activity in food sys-

tems is a fundamental and necessary approach to fully attain

food physical properties and stability. The absence of studies

on the relationship between degradation of quality factors

and molecular mobility along shelf-life is also evident.

These studies may be extremely useful for food product

and process design, safety and sensorial attributes and also

for better understanding and predicting, for example, food

storage stability conditions.
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